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CÉDRIC BENTZ†, MARIE-CHRISTINE COSTA∗, CHRISTOPHE PICOULEAU∗§,

AND MARIA ZRIKEM∗

Abstract. In this paper, we present a simple polynomial-time algo-

rithm solving the shortest multipaths problem in particular grid graphs

called dense channels. Our work extends the results of Formann et al.

[5], by considering arbitrary horizontal and vertical capacities.
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1. Introduction

Routing problems frequently arise in industrial settings. In particular,
there have been a lot of papers concerning routing problems in planar graphs,
and especially in grids, because of their application in the design of grid-like
VLSI circuits (for instance, see [9, 10], [12, pp. 625–712], and the papers
cited in the Grid graphs section in [13, pp. 1323–1325]). Moreover, papers
often deal with the unit capacity case, i.e., the edge-disjoint paths prob-
lem (EDP): given an undirected graph and K vertex pairs (sk, tk), decide
whether all the sk’s can be linked to the corresponding tk’s by K edge-
disjoint paths. For the case of a grid where the sk’s and tk’s are on its
boundary, Frank gives a polynomial-time algorithm for this problem [6], but
if they are allowed to lie anywhere in the grid, Marx shows that it becomes
NP-complete even in eulerian grids [11].

Two kinds of optimization problems can be associated with EDP.
First, one can ask what is the maximum number of pairs (sk, tk) that

can be routed along edge-disjoint paths (problem MEDP). In grids, one can
only expect, in polynomial time, to solve special cases [1, 3] or to design
approximation algorithms [8].

Second, one can ask for a feasible routing with minimum total paths
length. More formally, given an undirected graph G = (V,E) with integral
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capacities on the edges and K pairs (source sk, sink tk) of terminal vertices,
the shortest multipaths problem (SMPP) consists of linking each pair (sk, tk)
by a path with respect to the capacity constraints (i.e., the number of paths
routed through each edge must be at most the capacity of this edge), such
that the sum of the lengths of the K paths is minimized [4], where the
length of a path is the number of edges it contains. An instance of SMPP is
called feasible if there exists a way of routing the K paths without violating
any capacity constraint, i.e., if there exists at least one feasible solution.
A variant of this problem is to find a routing minimizing the length of the
longest path. Both this variant and SMPP are NP-hard in planar graphs,
even if all the terminals lie on the outer face, the maximum degree is four
and all the vertices not on the outer face have even degrees [2], although
EDP is polynomial-time solvable in this case, even with unbounded degrees
[7]. Thus, it seems that even interesting polynomial-time solvable cases need
to have a very special structure.

A dense channel is a rectilinear grid with K terminal pairs and K vertical
lines, in which all the terminals are distinct, all the sources lie on the up-
permost horizontal line and all the sinks on the lowermost one (see Figure
1). Assume that each horizontal (resp. vertical) edge of the grid is val-
ued by the same positive integral capacity Ch (resp. Cv). Formann et al.
study the case of a dense channel where Ch = Cv = 1 [5]: in this case, it
follows from a result of Frank in [6] that the problem has no solution (i.e.,
no instance is feasible), unless either all the terminal pairs can be routed
vertically (trivial case) or there is an additional vertical line on the right or
on the left of the grid. Thus, for the non trivial case, the authors add a
vertical line without terminal on one side of the grid and prove that SMPP
is then polynomial-time solvable.

In this paper, we give a greedy polynomial-time algorithm to solve SMPP
in dense channels when Cv and Ch are arbitrary (except for the case Ch =
Cv = 1, settled in [5]). The main feature of our algorithm is that it routes
each pair (sk, tk) along a shortest path (i.e., unlike the case Ch = Cv = 1,
no additional vertical line is needed). Obviously, the total length is thus
minimum.

The paper is organized as follows. Definitions and properties used through-
out the paper are given in Section 2. In Section 3, we solve SMPP in dense
channels with Cv = 1 and Ch = 2. Then, in Section 4, we show how to
generalize the results of Section 3 to the case where Cv = 1 and Ch is even.
Section 5 deals with the case where Cv = 1 and Ch is odd. Eventually, using
results from Sections 3 and 4, Section 6 settles the case where Cv ≥ 2.



THE SHORTEST MULTIPATHS PROBLEM IN A CAPACITATED DENSE CHANNEL 3

2. Preliminaries

Let m be the number of horizontal lines, or simply lines, of the grid (see [6]
for a formal definition of a grid). The first line is the uppermost one. Each
one of the K pairs (sk, tk) is called a net. The grid has 2K terminals and K

vertical lines (or columns), the first and the Kth columns being respectively
the leftmost and rightmost ones.

We assume without loss of generality that the nets are numbered such
that the column of tk is the kth one, for each k ∈ {1, . . . ,K}. Given a net
lk = (sk, tk), we denote by source(lk) the column of sk, and say that lk is
left if source(lk) > k, right if source(lk) < k, and straight otherwise. For
example, in Figure 1, the net (s3, t3) is left and the net (s5, t5) is right.

We call vertical (resp. horizontal) strip the region between two consec-
utive vertical (resp. horizontal) lines: let vj denote the jth vertical strip,
lying between the jth and the j + 1st columns. Since we assume that each
horizontal edge is valued by Ch, the capacity of vj , i.e., the sum of the ca-
pacities of the horizontal edges in vj , is mCh for each j. The density [5] (or
congestion [6]) dj of a vertical strip vj is the number of nets “crossing” it

dj = |{net lk s. t. k ≤ j < source(lk) or source(lk) ≤ j < k}|

An example is given in Figure 1, where the densities are indicated by
numbers lying in the corresponding vertical strips. The density of the grid
is d = max

j∈{1,...,K−1}
{dj} and is at most K. Lemma 1 details the three different

cases for the densities of two consecutive vertical strips.

Lemma 1. Given a vertical strip vj of density dj, dj+1 is equal to

• dj + 2 if and only if the two nets having their source and sink on the
j + 1st column are respectively a right and a left net;
• dj − 2 iff the two nets having their source and sink on the j + 1st

column are respectively a left and a right net;
• dj iff there is a straight net on the j + 1st column or the two nets

having a terminal on this column are both left or both right nets.

Proof. Easily follows from the definition of the density. �

Lemma 1 and the fact that d1 ∈ {0, 2} imply that the density is always
even. An obvious necessary condition for the feasibility of a given instance
is that the capacity of each vertical strip vj is at least the number of nets
that have to cross it, i.e., its density

for all j, mCh ≥ dj , i.e., m ≥ d d
Ch
e (1)
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We are going to show that, whenever Ch is even or Cv ≥ 2, the condition
m = d d

Ch
e is sufficient for routing the K nets along shortest paths.

We define a dense region as a set of consecutive vertical strips of maximal
density, this set being maximal in the sense of inclusion. A dense region
will be denoted by [a, b], where a (resp. b) is the leftmost (resp. rightmost)
column adjacent to this region: dj = d for j ∈ {a, . . . , b− 1} and

da−1 = db = d− 2 = da − 2 = db−1 − 2 (2)

In Figure 1, we have d = 4 and a dense region [a, b] = [2, 4].

1 2 3 4 5

5 4 1 3 2

2 4 4 2

Figure 1. A dense channel with 2 lines and 5 nets

In order to avoid the trivial case, we assume throughout the rest of the
paper that there exists at least one non straight net.

3. SMPP with a capacity 2 on each line

For Ch = 2, (1) becomes m ≥ d
2 , so we assume in this section that m = d

2 .

3.1. Description of the algorithm. In this part, we give the greedy algo-
rithm solving SMPP in dense channels with Cv = 1 and Ch = 2. The main
idea of this algorithm is to route each net along a shortest path. It works
in m iterations, where the ith iteration corresponds to the construction of
the paths on the ith horizontal line. Pulling a net to the right (resp. to the
left) means routing its path horizontally to the right (resp. to the left) on
the current line. The algorithm can be informally described as follows:

• We construct the paths line by line, from the uppermost to the
lowermost one: at each line, we obtain a new instance of SMPP;
• For each line, we compute the residual densities (i.e., the densities

of the new instance of SMPP) and we update the dense regions;
• For each dense region [a, b]

(1) We begin with a left-pulling phase, in which, starting from b,
we sequentially choose one left net and pull it to the left;

(2) Then, we proceed to a right-pulling phase in a symmetric way.
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After the ith iteration ends, for each j, there exists a net whose partial
path is stopped at column j on the ith line: let Ni+1,j denote this net. Then,
j can be viewed as the current source of the net Ni+1,j in the new instance of
SMPP obtained at iteration i+1. We call a column j unused at an iteration
i if no net is pulled to or from it during this iteration. We now give formally
the procedure 1-2-ShortestMultiPaths that solves SMPP.

PROCEDURE 1-2-ShortestMultiPaths

For k from 1 to K do
N1,source(lk) := k; // initially, the column of the source of the net lk is source(lk)

EndFor
For i from 1 to m do

For each dense region [a, b] do
Left-pulling phase([a, b], i);
Right-pulling phase([a, b], i);

EndFor
Update the residual densities;
Route vertically all the nets to the next horizontal line; // pull down the nets

For each unused column j do
Ni+1,j := Ni,j ; // the net having its source on the jth column is unchanged

EndFor

EndFor

The left-pulling and right-pulling phases are quite symmetric, so we give
only the first one. One can obtain the right-pulling phase by replacing “a”
by “b”, “left” by “right” and “>” by “<”.

PROCEDURE Left-pulling phase([a, b], i)
k := Ni,b; // let lk be the net whose source lies on b

a is reached := false;
While lk is a left net and ¬ a is reached do

If k > a then // k is the column of tk

Pull lk to the left until k is reached;
Ni+1,k := k; // lk becomes a straight net

k := Ni,k; // the current net is now the net whose source lies on k

Otherwise
Pull lk to the left until a is reached;
Ni+1,a := k; // the source of lk now lies on a

a is reached := true;

EndIf

EndWhile
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An example of a routing given by our algorithm is drawn in Figure 1.

3.2. Correctness. In this part, we prove by induction that, when Ch = 2,
Cv = 1 and m = d

2 , the algorithm given in Section 3.1 provides a feasible
solution for SMPP where each net is routed along a shortest path. We
consider an arbitrary iteration i, and assume that, at the beginning of this
iteration, we are given an initial instance, i.e., an instance of SMPP in a
dense channel of density d − 2(i − 1) and with m − i + 1 lines (obviously,
this is true for i = 1). Then, we prove that, at the end of the iteration, we
obtain a reduced instance, i.e., a valid instance of SMPP in a dense channel
of density d− 2i and with m− i lines.

Fact 1. In a left-pulling phase, no net whose current source is in a dense
region [a, b] is routed such that its new source is no longer in [a, b], since we
stop its path either when a is reached or before a is reached.

Fact 2. In a left-pulling phase, no left net (sk, tk) is routed such that it
becomes a right net in the next iteration, since we stop its path either when
k is reached or before k is reached.

Fact 3. For each net selected in a left-pulling phase, its path crosses only
vertical strips that have to be crossed. This is because only left nets are pulled
to the left, and, from Fact 2, no left net becomes right after being pulled.

Fact 4. Facts 1, 2 and 3 hold symmetrically for the right-pulling phase.

Lemma 2. The routing constructed at iteration i is valid.

Proof. Let us consider the left-pulling phase (the two phases are independent
and symmetric). From (2) and Lemma 1, given a dense region [a, b], the net
lc whose current source lies on b is a left net, so we can pull it to the left. Its
path stops either on a (if c ≤ a) or on c (if a < c < b), where c is the column
of its sink. In the latter case, dc−1 = dc, thus we know from Lemma 1 that
we can continue the left-pulling phase with a left net having its source on c,
and so on until a is reached. �

Lemma 3. At iteration i, the density of the reduced instance is d− 2i.

Proof. In the left-pulling phase, given the current dense region [a, b], we start
from b, then we pull nets to the left until we reach a. From the proof of
Lemma 2, each net selected in this phase starts where the previous selected
one ended. Thus, from Facts 3 and 4, the density of each vertical strip in
a dense region is decreased by 2 when the ith iteration ends. From Facts
1 and 4, the densities of the other vertical strips remain unchanged, so no
residual density exceeds d− 2i. �
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Lemma 3 implies that, at the end of the mth iteration, the residual density
is d−2m = 0: hence, each path has reached the column of its corresponding
sink, and we are done. Thus, our algorithm provides a feasible solution.

Lemma 4. The paths produced by the algorithm are shortest paths.

Proof. Follows immediately from Facts 3 and 4, no net being pulled up. �

Theorem 1. If m = d
2 , the algorithm 1-2-ShortestMultiPaths outputs

a feasible solution for SMPP in which all the nets are routed along shortest
paths. Moreover, it can be implemented to run in O(mK).

Proof. The first part directly follows from Lemmas 2, 3 and 4.
Now, let us prove the second part. At each iteration, we must compute

the residual densities. In fact, using Lemma 1, we compute the densities
once (before the first iteration) in time O(K), and then, at each iteration,
Lemma 3 implies that we just have to decrease dj by two for each vj in
a dense region. Updating the dense regions can be done in O(K) by going
through the vertical strips once, and the left-pulling and right-pulling phases
run in O(b − a) for each dense region [a, b]. There are m iterations, so our
algorithm runs in O(mK), which is linear in the size of the grid. �

4. SMPP with an even capacity on each line

In this section, we show how to generalize the results of Section 3 to the
case where Ch is even and Cv = 1. From Section 2, a necessary condition
for the feasibility of an instance is (1), i.e., m ≥ d d

Ch
e. Therefore, in the

following of Section 4, we assume that m = d d
Ch
e.

Let Ch = 2p, 1 ≤ p ≤ d
2 . We begin by transforming the grid with m lines

and a capacity equal to 2p on each horizontal edge into a new grid with mp

lines and a capacity equal to 2 on each horizontal edge. The capacity of
each vertical edge is 1 in both grids. It is easily seen that the new grid still
satisfies (1), and thus we can apply the algorithm given in Section 3.1 and
obtain a feasible set of shortest paths. We use this set of paths to construct a
solution for the initial grid. For each i, the path of each net in the initial grid
is routed through the horizontal edge of the ith line lying in the jth vertical
strip if and only if, in the new grid, it is routed through an horizontal edge
of this vertical strip lying on a line between the (i − 1)p + 1st and the ipth

one. In other words, for each net, its path in the initial grid enters (resp.
exits) the ith line where it enters (resp. exits) the (i − 1)p + 1st line (resp.
ipth line) in the new grid.

The following two facts hold in the initial grid, since otherwise they would
not hold in the new grid anymore: no two paths share a vertical edge, and
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the paths we obtain are shortest paths. Moreover, by the way we pack the
lines of the new grid together, at most 2p paths are routed through each
horizontal edge of the initial grid (i.e., at most 2 paths for each one of the p

corresponding horizontal edges in the new grid).

5. SMPP with an odd capacity on each line

In this section, we show that the case where Cv = 1 and Ch is an odd
number larger than 2 can be reduced to the case of Section 4. Consider
a feasible routing: given any horizontal edge, an even number of paths is
routed through it. Indeed, for each path routed through it “from left to
right”, there is necessarily a path routed through it “from right to left”,
since Cv = 1 and there are as many paths as columns. So, we do not modify
the feasibility of the instance if we replace Ch (odd) by Ch−1 (even). Hence,
either m ≥ d d

Ch−1e and we can apply the results of Section 4, or there is no
solution.

6. SMPP with a capacity at least two on each column

Sections 3, 4 and 5 settle the case where Cv = 1 and Ch ≥ 2. In this
section, we deal with the case where Cv ≥ 2. In fact, we start dealing with
the case Cv = 2 and then we show how to settle the case Cv > 2.

6.1. SMPP with a capacity two on each column and one on each
line. Ch = 1, so (1) becomes m ≥ d. In the following of Section 6.1, we as-
sume that m = d. From Lemma 1, d is even, thus m is even. We successively
proceed to the left-pulling and right-pulling phases on the 2i− 1st and 2ith

lines respectively, for i from 1 to m
2 . Then, similar arguments to those used

in Section 3.2 show that we obtain a feasible set of shortest paths, and thus
an optimal solution for SMPP. The only noticeable difference with the case
studied in Section 3.2 occurs, for each i, after the left-pulling phase ends on
the 2i−1st line: for each dense region [a, b], there is a right net whose source
lies on column a, so one right net and one left net (or a left net which has
become straight on the 2i−1st line) will be routed through the vertical edge
of column a lying between the 2i− 1st and 2ith lines.

6.2. SMPP with a capacity two on each column and at least two
on each line. We borrow ideas from Section 4. We transform the initial
grid (which satisfies the necessary condition (1)) into a new grid where the
vertical edges are also valued by 2, the horizontal edges by 1, and having
mCh lines. If mCh is odd then mCh > d, since d is even and (1) holds
(i.e., mCh ≥ d). Thus, in this case, the new grid could have d lines only.
However, for the sake of simplicity, we assume that it has mCh lines and
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that, from the dth line to the mCh
th line, the nets are routed vertically. We

use the results of Section 6.1 to obtain an optimal solution for SMPP in this
new grid: for each i, the path of each net in the initial grid enters (resp.
exits) the ith line where it enters (resp. exits) the (i− 1)Ch + 1st line (resp.
iCh

th line) in the new grid. An analysis quite similar to the one of Section
4 shows that this provides a solution for SMPP in the initial grid where all
the nets are routed along shortest paths.

6.3. SMPP with a capacity strictly greater than two on each col-
umn. This case can be reduced to the case where Cv = 2, because, in the
routings constructed in the two previous sections, at most two paths share
any vertical edge. Thus, this case can also be solved in polynomial time.

7. Conclusion

We have solved in polynomial time SMPP in dense channels with arbitrary
horizontal and vertical capacities, extending the results in [5], where only
unit capacities are considered. For Ch = 2 and Cv = 1 and for Ch = 1
and Cv = 2, the running time of our greedy algorithm is linear in the size
of the grid. Moreover, we have proved that, if max(Ch, Cv) > 1, whenever
there is a solution, there always exists one where all the nets are routed
along shortest paths, although this is not true if Ch = Cv = 1. This also
shows that our algorithm solves the variant where one wants to minimize
the length of the longest path.
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