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1 Introduction

In this paper we introduce the following two concepts: in an undirected graph
G = (V, E) a set of edges T such that each maximum matching in G contains
at least a given number d of edges of T is a d-transversal; a d-blocker is a set of
edges B such that the matching number (the cardinality of a maximum match-
ing) of (V, E \ B) is at most the matching number of G minus d. We will consider
the problem of finding a minimum d-transversal T and a minimum d-blocker B in G.

The problem of the d-blocker is closely related to some edge deletion and edge mod-
ification problems which have been studied in [4, 12, 13]. Similar problems have also
been analyzed for vertices (see [5, 11, 14]).

In [9] and [10], the authors consider the problem of existence of a maximum match-
ing whose removal leads to a graph with given upper (resp. lower) bound for the
cardinality of its maximum matching. Here we will not impose any structure on the
edge set representing the d-blocker.

In [2] a minimal blocker for a bipartite graph G is defined as a minimal set of edges
the removal of which leaves no perfect matching in G and explicit characterizations
of minimal blockers of bipartite graphs are given. Efficient algorithms enumerat-
ing the minimal blockers or, equivalently, for listing the anti-vertices of the perfect
matching polytope are given.

A concept close to d-transversal can be found in [3] where authors consider the
notion of multiple transversal, another generalization of a transversal in the hyper-
graph of perfect matchings. Here a multiple transversal must intersect each perfect
matching Mi with at least bi edges.

A different concept of d-transversals has been studied in [6]. Given a set of integers
{p0, p1, . . . , ps} and a bipartite graph G, one has to find a minimum set of edges
R such that for each pi, i = 0, 1, . . . , s, there exists a maximum matching Mi with
|Mi ∩R| = pi. Results have been given for special classes of bipartite graphs.

Our paper is organized as follows. In Section 2, we give some defintions and show
some basic properties concerning transversals and blockers. We also study the con-
nections between both notions. Section 3 deals with complexity results. We show
that given two integers d and k, deciding whether there exists a d-transversal or
a d-blocker of size k is NP-complete in bipartite graphs. Some special classes of
graphs are analyzed in Section 4. These include complete graphs, regular bipartite
graphs, chains and cycles.

2 Definitions and basic properties

All graph theoretical terms not defined here can be found in [1]. Throughout this
paper we are concerned with undirected simple loopless graphs G = (V, E). The
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degree of a vertex v is denoted d(v) and ∆(G) stands for the maximum degree of
a vertex in G. G will be assumed connected. A cut-edge e = uv is an edge such
that its removal disconnects G. A matching M is a set of pairwise non adjacent
edges. A matching M is called maximum if its cardinality |M | is maximum. The
largest cardinality of a matching in G, its matching number, will be denoted by
ν(G). More specifically we will be interested in subsets of edges which will intersect
maximum matchings in G or whose removal will reduce by a given number the
matching number.
We shall say that a subset T ⊆ E is a d-transversal of G if for every maximum
matching M ∈ G we have |M ∩ T | ≥ d. Thus a d-transversal is a subset of edges
which intersect each maximum matching in at least d edges.
A subset B ⊆ E will be called a d-blocker of G if ν(G′) ≤ ν(G) − d where G′ is
the partial graph G′ = (V, E \ B). So B is a subset of edges such that its removal
reduces by at least d the cardinality of a maximum matching.
In case where d = 1, a d-transversal or a d-blocker is called a transversal or a
blocker, respectively. We remark that in this case our definition of a transversal
coincide with of one of a transversal in the hypergraph of maximum matchings of
G.
We denote by βd(G) the minimum cardinality of a d-blocker in G and by τd(G)
the minimum cardinality of a d-transversal in G (β(G) and τ(G) in case of a blocker
or a transversal).
Let v be a vertex in graph G. The bundle of v, denoted by ω(v), is the set of edges
which are incident to v. So |ω(v)| = d(v) is the degree of v. As we will see, bundles
play an important role in finding d-transversals and d-blockers.
Let P0(G)= {vw ∈ E| ∀ maximum matching M , vw 6∈ M} and P1(G)= {vw ∈
E| ∀ maximum matching M , vw ∈ M}. Let M be a matching. A vertex v ∈ V is
called saturated by M if there exists an edge vw ∈ M . A vertex v ∈ V is called
strongly saturated if for all maximum matchings M , v is saturated by M . We
denote by S(G) the set of strongly saturated vertices of a graph G.
Notice that the sets P0(G), P1(G) and S(G) can be determined in polynomial time.
In fact, if we want to test whether an edge vw belongs to P0(G), we delete all edges
having exactly one endpoint in {v, w} and we determine a maximum matching M
in the remaining graph. Then vw belongs to P0(G) if and only if |M | = ν(G) − 1.
In order to check whether an edge vw is in P1(G), we simply delete this edge and
find a maximum matching M in the remaining graph. Then vw belongs to P1(G) if
and only if |M | = ν(G) − 1. By doing these tests for all edges in G, we determine
the sets P0(G) and P1(G). Since a maximum matching in a graph can be found
in polynomial time (see [7]), P0(G) and P1(G) can be determined in polynomial
time. Concerning S(G), first notice that all vertices which are incident to an edge
of P1(G) necessarily belong to S(G). For each other vertex v, to check whether it
is strongly saturated, we simply delete it in G and find a maximum matching M in
the remaining graph. Then v must belong to S(G) if and only if |M | = ν(G)− 1.

Remark 2.1 If G is a graph such that |P1(G)| ≥ d, a minimum d-transversal is
obtained by taking d edges in P1(G). This is not necessarily true for a minimum
d-blocker. In fact, consider the chain C = {x1x2, x2x3, x3x4}. We have P1(C) =
{x1x2, x3x4}, but clearly P1(C) is a 1-blocker but not a 2-blocker for C.
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We will now give some basic properties concerning d-transversals and d-blockers in
a graph G = (V, E). We shall always assume that d ≤ ν(G).

Property 2.1 In any graph G and for any d ≥ 1, a d−blocker B is a d−transversal.

Proof: If the removal of B ⊆ E reduces the maximum cardinality of a matching
by at least d, then every maximum matching will contain at least d edges of B:
indeed if there were a maximum matching M in G with |M ∩ B| ≤ d− 1, then the
matching M \B in (V, E \B) has cardinality |M \B| > ν(G)− d, contradicting the
assumption that B is a d-blocker. �

Property 2.2 In any graph G = (V, E) a set T is a transversal if and only if it is
a blocker.

Proof: From Property 2.1, we just have to show that a transversal T is a blocker.
By definition we have M ∩ T 6= ∅ for every maximum matching M . It follows that
after the removal of T , the matching number in G has decreased by at least one.
�

Observe that in any graph G and for any d ≥ 1, a d-transversal T is a 1-blocker.
In fact, a d-transversal T is also a 1-transversal and hence from Property 2.2 we
conclude that T is a 1-blocker.

Remark 2.2 For d ≥ 2, there are d−transversals which are not d−blockers. Figure
1 shows in a graph G = C6 (cycle on six vertices) a set T ⊆ E (bold edges) which is
a 2-transversal (|M ∩ T | ≥ 2 for every maximum matching). It is not a 2-blocker,
since ν(G) = 3 and in G

′
= (V, E \ T ) we have ν(G

′
) = 2 > ν(G)− 2 = 1.

Figure 1: A 2-transversal which is not a 2-blocker.

Property 2.3 Let G be a graph. For any independent set {v1, v2, . . . , vd} ⊆ S(G),
the set T = ∪d

i=1ω(vi) ⊆ E, is a d-transversal.

Proof: Since vi ∈ S(G) for all i = 1, . . . , d, any maximum matching M in G
satisfies |M ∩ ω(vi)| = 1 for all i = 1, . . . , d. As {v1, v2, . . . , vd} is an independent
set in G we thus have |M ∩ T | = d. �
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Notice that this is not necessarily the case for a d-blocker B. In fact, as shown in
Figure 1, the two bundles do not form a 2-blocker.

Furthermore observe that if T1 is a d1-transversal of a graph G = (V, E) and if T2

is a d2-transversal of G disjoint from T1, then T = T1 ∪ T2 is clearly a (d1 + d2)-
transversal of G. Nevertheless if T1 and T2 are minimum, then T is not necessarily
minimum. This can easily be seen on the graph G = (V, E) with V = {v1, . . . , v7}
and E = {v1v2, v2v3, v3v4, v4v5, v3v6, v6v7} (see Figure 2). In this case two minimum
disjoint transversals are T1 = {v1v2, v2v3} and T2 = {v3v4, v4v5}, but the unique
minimum 2-transversal is T = {v1v2, v4v5, v6v7}.
Now consider the chain on vertices v1, v2, v3, v4. Two minimum disjoint blockers are
given by B1 = {v1v2} and B2 = {v3v4}, but B1 ∪B2 is not a 2-blocker.

Figure 2: Graph for which the union of 2 minimum transversals is not a minimum
2-transversal.

Property 2.4 If T is a minimum d-transversal in a graph G = (V, E) and vivj ∈ T ,
then there exists a maximum matching M containing the edge vivj and such that
|M ∩ T | = d.

Proof: Suppose that for all maximum matchings M of G containing vivj we have
|M ∩T | > d. Then T ′ = T \ {vivj} is a d-transversal of G. This contradicts the fact
that T is minimum. �

One should observe that d-transversals are not necessarily formed by sets of mutually
adjacent edges like bundles. We may indeed have d-transversals formed by sets of
mutually non adjacent edges like matchings. We have the following:

Remark 2.3 For any d ≥ 2, there exists a ∆-regular bipartite graph which admits
a subset T ⊆ E which satisfies the following:

1. T is a d-transversal;

2. T is a blocker but not a 2-blocker;

3. |T | = d∆ and T has minimum cardinality;

4. T is a matching.
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Figure 3: A 3-regular bipartite graph with a minimum 4-transversal (bold edges),
which is also a blocker but not a 2-blocker.

Figure 3 illustrates our construction for ∆ = 3 and d = 4.
The following result will be useful for characterizing d-transversals and d-blockers
in graphs having cut-edges. It can be applied for instance in enumeration schemes.
It may in particular be used for dealing with trees by a dynamic programming
procedure but this goes beyond the scope of this paper.

Theorem 2.1 Let G = (V, E) be a graph with P0(G) = P1(G) = ∅ and let vw be a
cut-edge. Then exactly one of v and w is in S(G).

Proof: First suppose that v, w 6∈ S(G). Then there are maximum matchings
M, M ′ such that M (resp. M ′) does not saturate v (resp. w). Clearly M (resp.
M ′) must saturate w (resp. v), otherwise M (resp. M ′) would not be a maximum
matching. Let Ev (resp. Ew) be the edge set of the component of (V, E \ {vw})
containing v (resp. w). Let Mv = M ∩ Ev and Mw = M ∩ Ew; let also M ′

v =
M ′ ∩ Ev and M ′

w = M ′ ∩ Ew. We have |Mv| + |Mw| = ν(G) = |M ′
v| + |M ′

w|. Now
Mv ∪ M ′

w ∪ {vw} is a matching; so is M ′
v ∪ Mw. By summing their sizes we have

|Mv|+ |M ′
v|+ |{vw}|+ |M ′

v|+ |Mw| > 2ν(G) which is impossible.
Suppose now that v, w ∈ S(G). Since P0(G) = P1(G) = ∅, there is a maximum
matching M with vw 6∈ M and a maximum matching M ′ with vw ∈ M ′. Again
let Mv = M ∩ Ev, Mw = M ∩ Ew, M ′

v = M ′ ∩ Ev and M ′
w = M ′ ∩ Ew. We have

|Mv| + |Mw| = ν(G) = |M ′
v| + |M ′

w| + 1; w.l.o.g. we may assume |M ′
w| < |Mw|, so

|M ′
v| ≥ |Mv|. But then M ′

v ∪Mw is a matching with |M ′
v|+ |Mw| ≥ |Mv|+ |Mw| not

saturating v, which is a contradiction. �

Since in a tree each edge is a cut-edge, we deduce the following corollary.

Corollary 2.2 Let G = (V, E) be a tree with P0(G) = P1(G) = ∅. Then for each
edge vw exactly one of v and w is in S(G).

3 Complexity results

We shall now discuss the complexity of the two basic existence problems for d-
blockers and d-transversals.

BLOCK(G, d, k)

Instance: An undirected graph G = (V, E) and two positive integers 0 ≤ d ≤ ν(G),
0 ≤ k ≤ |E|.
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Question: Does there exist a set B ⊆ E with |B| ≤ k such that ν(G′) ≤ ν(G) − d
where G′ = (V, E \B)?

TRANS(G, d, k)

Instance: An undirected graph G = (V, E) and two positive integers 0 ≤ d ≤ ν(G),
0 ≤ k ≤ |E|.
Question: Does there exist a set T ⊆ E with |T | ≤ k such that for each maximum
matching M in G, |M ∩ T | ≥ d?

We could also consider the problem of finding a d-blocker B (resp. d-transversal T )
of size at most k in a graph G = (V, E) with the additional constraint that for some
given subset of edges U ⊆ E, we impose B∩U = ∅ (resp. T ∩U = ∅). This problem
can be polynomially reduced to BLOCK(G′, d, k) (resp. TRANS(G′, d, k)) where
G′ = (V, E ′) is the graph obtained from G by adding for each edge e ∈ U , k edges
parallel to e. This can be seen by the following observation. Let U ′ be the set
containing all edges of U and all added edges, i.e., U ′ = U ∪ (E ′ \ E). Since each
edge e ∈ U has k parallel edges e1, e2, . . . , ek ∈ E ′, there exists for any d-blocker B
(resp. d-transversal T ) in G′ with |B| ≤ k (resp. |T | ≤ k) at least one edge among
e, e1, e2, . . . ek which is not contained in B (resp. T ). Thus B \ U ′ (resp. T \ U ′)
is also a d-blocker (resp. d-transversal) with cardinality at most k. Therefore, any
d-blocker (resp. d-transversal) in G′ with cardinality at most k can be transformed
into a d-blocker (resp. d-transversal) in G with cardinality at most k and not using
any edge of U . Conversely, any d-blocker (resp. d-transversal) in G not containing
edges of U is also a d-blocker (resp. d-transversal) in G′.

However, the auxiliary graph G′ has parallel edges. Since we want to show complex-
ity results which even hold for simple graphs, we will describe another transformation
of the graph G. Instead of introducing parallel edges for each edge uv ∈ U , we re-
place each edge of U by the following construction which we call a k-gadget (between
u and v): we add a complete bipartite graph Kk+1,k+1 = (X, Y, W ) and we link u
to all vertices in X as well as v to all vertices in Y (see Figure 4). The vertices u
and v are called the endpoints of the k-gadget. We denote the graph obtained in
this way by G′′. The problem BLOCK(G, d, k) (resp. TRANS(G, d, k)) is equiv-
alent to BLOCK(G′′, d, k) (resp. TRANS(G′′, d, k)) by the following observation.
Let U ′′ be the set of edges contained in all k-gadgets used in G′′. Notice that a
k-gadget contains k + 1 disjoint perfect matchings and k + 1 disjoint matchings of
cardinality k +1 that do not saturate the endpoints. Therefore, for any d-blocker B
(resp. d-transversal T ) in G′′ with |B| ≤ k (resp. |T | ≤ k), every k-gadget contains
a maximum matching using no edges of B (resp. T ) as well as a matching with
cardinality k + 1 not saturating the endpoints and not containing any edge in B
(resp. T ). Thus, B \U ′′ (resp. T \U ′′) is also a d-blocker (resp. d-transversal) with
cardinality at most k. We conclude that any d-blocker (resp. d-transversal) in G′′

with cardinality at most k can be transformed into a d-blocker (resp. d-transversal)
in G with cardinality at most k and not using any edge of U . Conversely, any d-
blocker (resp. d-transversal) in G not containing edges of U is also a d-blocker (resp.
d-transversal) in G′′.
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u v

Figure 4: A 3-gadget between u and v.

The following proposition is an intermediate result used for proving the main com-
plexity results stated afterwards.

Proposition 3.1 Let k ≥ 4 be an integer and let G = (X, Y, E) be a simple bipartite
graph such that

1. |X| > k;

2. |Y | =
(

k
2

)
;

3. d(y) = 2, ∀y ∈ Y and d(x) ≥ 1, ∀x ∈ X;

4. G contains no C4.

Then ν(G) ≥ k + 1.

Proof: This is equivalent to the following statement: In a simple graph Ĝ = (X,E)
without isolated vertices, with |X| = q ≥ k + 1 and k(k − 1)/2 edges, one can find
a partial graph H where each connected component has at most one cycle and with
|E(H)| ≥ k+1. Indeed starting from the vertex set X of G, we associate with every
y ∈ Y with neighbors x′(y), x′′(y) an edge x′(y)x′′(y). Since G contains neither C4’s

nor multiple edges, the graph Ĝ obtained in this way is a simple graph. Clearly there
is a one-to-one correspondence between the matchings M in G and the partial graphs
H of Ĝ where each connected component has at most one cycle: for each edge xiyj

of M in G, we orient the edge of Ĝ associated to vertex yj towards xi. A matching

M in G corresponds to a partial oriented graph Ĥ in Ĝ such that there is at most
one arc entering into each vertex. Such an orientation exists if and only if every
connected component of Ĥ has at most one cycle. Let n0 (resp. n1) be the number

of vertices of Ĝ in connected components without cycles (resp. with cycles). Since
each connected component on n vertices has n− 1 (resp. n) edges if it has no (resp.

one) cycle, we only have to show that Ĝ has at most q − (k + 1) components which

are trees. Indeed in such a Ĝ we can then choose n1 edges in connected components
with cycles and n0 − q + k + 1 edges in the connected components which are trees.
This gives us a partial graph Ĥ of Ĝ with at least n1 + n0 − (q − (k + 1)) = k + 1
edges. Then n0 + n1 = |X| = q; if n1 ≥ k + 1 we are done: we can get a partial

graph Ĥ with |E(Ĥ)| ≥ k + 1. If n1 = k, we are also done since n0 ≥ 2 and Ĝ has
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no isolated vertex. So we can assume n1 < k. Let by contradiction Ĝ have more
than q − (k + 1) connected components which are trees. Then

|E(Ĝ)| ≤ n1(n1 − 1)

2
+ n0 − (q − k) =

n1(n1 − 1)

2
+ k − n1

=
n2

1

2
− 3

2
n1 + k <

k2

2
− 3

2
k + k =

k(k − 1)

2
,

a contradiction. �

Theorem 3.2 BLOCK(G, d, k) is NP-complete when G is bipartite.

Proof: The problem is clearly in NP . To prove the NP-completeness, we use
a transformation from CLIQUE which is a well known NP-complete problem (see
[8]). Let G′ = (V ′, E ′) be an undirected simple graph and let r ≤ |V ′| be a positive
integer. We construct a bipartite graph G = (V, E) as follows: with each vertex
v′i ∈ V ′, we associate a vertex vi ∈ V and with each edge e′ij = v′iv

′
j ∈ E ′ we

associate a vertex vij ∈ V ; for each vertex vij ∈ V we add a new vertex v̄ij as well
as an edge vij v̄ij; finally for each edge v′iv

′
j ∈ E ′, we add an edge vivij and an edge

vjvij.
Notice that the cardinality of a maximum matching M in G is |M | = m, where m
is the number of edges in G′. Such a matching may be obtained by taking all the
edges vij v̄ij. We will now prove the following statement which finishes the proof: G′

contains a clique of size r if and only if there exists a ( r(r−3)
2

)-blocker B in G with

|B| = r(r−1)
2

and not using any edges of U , where U = ∪v′
iv

′
j∈E′{vivij, vjvij}. Notice

that the auxiliary graph obtained by replacing the edges of U by k-gadgets remains
bipartite.
Let us suppose that G′ contains a clique C of size r and let E ′

C ⊆ E ′ be the edges

of this clique. By taking B = {vij v̄ij|e′ij ∈ E ′
C}, we obtain a ( r(r−3)

2
)-blocker. In

fact a maximum matching in the graph G∗ = (V, E \ B) is obtained by taking the

remaining edges vij v̄ij (there are exactly m − r(r−1)
2

such edges) and the edges of a
maximum matching in the subgraph induced by vertices vij such that e′ij ∈ E ′

C and
the vertices vi such that v′i ∈ C (the cardinality of such a matching is at most r).

Thus ν(G∗) ≤ m− r(r−1)
2

+ r = m− r(r−3)
2

.

Suppose now that there is a ( r(r−3)
2

)-blocker B in G with |B| = r(r−1)
2

and not using
any edges of U but there is no clique of size r in G′. This implies that the subgraph
induced by vertices vij and the vertices vi, vj such that vij v̄ij ∈ B is a simple bipartite
graph G̃ = (X, Y, Ẽ), where Y = {vij ∈ V | vij v̄ij ∈ B} and X is the subset of the
vertices {vi | v′i ∈ V ′} that are neighbors of Y in G. G̃ has the following properties:

(i) |X| > r (because there is no clique of size r in G′);

(ii) |Y | = r(r−1)
2

=
(

r
2

)
;

(iii) d(vi) = 2, ∀vi ∈ Y and d(vij) ≥ 1, ∀vij ∈ X;

(iv) G̃ contains no C4 (since there are no multiple edges in G′);
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(v) ν(G̃) ≤ r (because all vertices in Y are saturated by any maximum matching

in G and since B is a ( r(r−3)
2

)-blocker, the cardinality of a maximum matching

in G̃ is at most |Y | − r(r−3)
2

= r).

Clearly (v) contradicts Proposition 3.1. Thus there must be a clique of size r in G′

definied by the vertices vi, vj such that vij v̄ij ∈ B and hence |X| = r. �

Remark 3.1 The proofs of Proposition 3.1 and Theorem 3.2 suggest to consider
an alternative formulation. We may define for a graph G the value ρ(G) which is
the maximum number of edges in a unicyclic partial graph of G, where a graph is
called unicyclic if every connected component has at most one cycle. By the above
discussions we have for any graph G on

(
k
2

)
edges that ρ(G) ≤ k if and only if G is

a k-clique. It follows that determining whether for an arbitrary graph G, there is a
subgraph H of G on

(
k
2

)
edges with ρ(H) ≤ k is an NP-complete problem since it

is equivalent to deciding whether G contains a clique of size k.

Theorem 3.3 BLOCK(G, d = 1, k) is NP-complete when G is bipartite.

Proof: The claim will be proven by reducing BLOCK(G′, d, k) to
BLOCK(G, 1, k). Let G′ = (X ′, Y ′, E ′) be a bipartite graph, d ∈ {1, . . . , ν(G′)}
and k ∈ {0, 1, . . . , |E ′|}. The graph G = (X, Y, E) is defined as follows. X = X ′

and Y = Y ′ ∪ Y ′
a is the set Y ′ with |X ′| − ν(G′) + d − 1 additional vertices Y ′

a =
{y′1, . . . , y′|X′|−ν(G′)+d−1}. The set E = E ′ ∪ U consists of the edges in E ′ and for

every pair of vertices x ∈ X and y′ ∈ Y ′
a we add an edge [x, y]. These added edges

are denoted by U . Note that we have ν(G) = |X ′| because of the following. Let M
be a maximum matching in G′. In G the matching M can easily be completed to
a matching with cardinality |X ′| by edges in U since |Y ′

a| ≥ |X ′| − ν(G′). In the
following we prove that there is a d-blocker in G′ with cardinality at most k if and
only if there is a blocker in G with cardinality at most k and not using any edges of
U . We begin by assuming that there is a d-blocker in G′ with cardinality at most
k and not using any edge of U . We will show that B is also a blocker for G. By
contradiction assume that there is a matching M in G \ B with cardinality |X ′|.
This implies that the set M \ U is a matching in G′ \ B with cardinality at least
|X ′| − |Y ′

a| = ν(G′) − d + 1 because any matching in G contains at most |Y ′
a| edges

of U as U consists of |Y ′
a| bundles. This contradicts the fact that B is a d-blocker

in G′.
Conversely suppose that there is no d-blocker in G′ with cardinality at most k. Let
B ⊆ E ′ with |B| ≤ k. Because there is no d-blocker in G′ with cardinality at most k,
there exists a matching M ⊆ E ′ \B with cardinality ν(G′)−d+1. The matching M
can be completed in G by edges in U to a matching M ′ with cardinality |X ′| since
|Y ′

a| = |X ′| − ν(G′) + d− 1, implying that B is not a blocker in G. As B was chosen
arbitrarily this implies that there does not exist a blocker in G with cardinality k
and not using any edge of U . �

From Property 2.2 we deduce the following result.

Corollary 3.4 TRANS(G, d = 1, k) is NP-complete when G is bipartite.
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Theorem 3.5 For every fixed d ∈ {1, 2, . . .}, TRANS(G, d, k) is NP-complete
when G is bipartite.

Proof: First let us show that TRANS(G, d, k) is in NP . Given a set T of k edges,
we assign a weight w1 = 1 to these edges as well as a weight w2 = 1 + 1

m
to all the

other edges in G, where m is the number of edges in G. If any maximum matching
M in G has weight W (M) ≤ ν(G)(1 + 1

m
)− d

m
, then T is necessarily a d-transversal

since M uses d edges of T . Maximum matchings of maximum weight can be found
in polynomial time, thus TRANS(G, d, k) is in NP .
We will reduce TRANS(G′, 1, k′) to TRANS(G, d, k). Let d be fixed in {1, 2, . . .},
G′ = (X ′, Y ′, E ′) be a bipartite graph and k′ ∈ {0, 1, . . . , |E ′|}. Let G = (X,Y, E)
be a bipartite graph defined as follows. X consists of the vertices in X ′ plus d −
1 additional vertices denoted by {x1, . . . , xd−1}, Y consists of the vertices in Y ′

and d − 1 additional vertices denoted by {y1, . . . , yd−1} and E = E ′ ∪ {xiyi | i ∈
{1, . . . , d − 1}}. We will finally show that TRANS(G′, 1, k′) is true exactly when
TRANS(G, d, k′ + d − 1) is true. Suppose that T is a 1-transversal in G′ with
|T | = k′. Then T ∪ {xiyi|i ∈ {1, . . . , d− 1}} is a d-transversal in G with cardinality
k′ + d − 1, showing that TRANS(G, d, k) evaluates to true with k = k′ + d − 1.
Conversely, suppose that T is a d-transversal in G with cardinality k. Without loss
of generality we can assume that E \E ′ ⊆ T as E \E ′ ⊆ P1(G). We therefore have
that the set T ′ = T ∩E ′ is a transversal in G′ with cardinality k′ = k−d+1 showing
that TRANS(G′, 1, k′) evaluates to true. �

4 Some special cases

We shall now examine some simple special cases of graphs for which minimum d-
blockers and d-transversals can be found in polynomial time. Actually, we even give
explicit formulae for the size of a minimum d-transversal and d-blocker.
The proofs of the two following propositions, involving chains and cycles, being easy,
we leave them to the gentle reader.

Proposition 4.1 Let G = (V, E) be a chain on vertices v1, v2, . . . , vn (i.e., E =
{[vi, vi+1]|i = 1, . . . , n− 1}) and d ≥ 1 an integer. Then

1. βd(G) = 2d− 1 and τd(G) = d if n is even,

2. βd(G) = τd(G) = 2d if n is odd.

Proposition 4.2 Let G = (V, E) be a cycle on vertices v1, v2, . . . , vn (i.e., E =
{[vi, vi+1]|i = 1, . . . , n− 1} ∪ {[vn, v1]}) and d ≥ 1 an integer. Then

1. βd(G) = τd(G) = 2d if n is even,

2. βd(G) = τd(G) = 2d + 1 if n is odd.

Remark 4.1 Notice that in the case of an even chain, i.e., with an even number of
edges, a minimum d-transversal is not necessarily composed of d bundles. In fact, a
minimum 2-transversal in the chain {v1v2, v2v3, v3v4, v4v5, v5v6, v6v7, v7v8, v8v9} may
be obtained by taking edges {v1v2, v3v4, v6v7, v8v9}.
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Now, we are interested in complete graphs and regular bipartite graphs.

Proposition 4.3 Let G = Kn,n be a complete bipartite graph. Then T ⊆ E is a
d-blocker if and only if T is a d-transversal.

Proof: From Property 2.1, we only have to show that if T is a d-transversal, then it
is also a d-blocker. So suppose that T is a d-transversal of G but it is not a d-blocker
of G. This means that in the graph obtained from G by removing T one can find
a maximum matching M of size at least ν(G) − d + 1 = n − d + 1. Since G is a
complete bipartite graph, M could easily be completed into a perfect matching M ′

in G by adding at most d − 1 edges from T . Thus |M ′ ∩ T | ≤ d − 1 which means
that T is not a d-transversal which is a contradiction. �

Using similar arguments we obtain the following proposition.

Proposition 4.4 Let G = Kn be a complete graph. Then T ⊆ E is a d-blocker if
and only if T is a d-transversal.

Proposition 4.5 Let G = (X,Y, E) be a ∆-regular bipartite graph. Then, if |X| ≥
d, any set B =

⋃d
i=1 ω(xi) ⊆ E, where x1, ..., xd ∈ X, is a minimum d-blocker.

Proof: Clearly, after having removed B the cardinality of a maximum matching
is at most n − d since there are exactly d isolated vertices in X. Furthermore as
G contains ∆ disjoint maximum matchings, we have βd(G) ≥ d∆, as any d-blocker
must contain at least d edges in each maximum matching. �

From Property 2.1, we deduce that T =
⋃d

i=1 ω(xi) is also a d-transversal for a
∆-regular bipartite graph G = (X, Y, E). As a direct consequence of Property 2.3
we get the following result.

Proposition 4.6 Let G = (X, Y, E) be a ∆-regular bipartite graph. The minimum
cardinality of a d−transversal T is d∆ (for any d with 1 ≤ d ≤ n). Such a T may
be constructed by taking:

T = ω(z1) ∪ ω(z2) ∪ · · · ∪ ω(zd)

where {z1, . . . , zd} ⊆ X ∪ Y is an independent set in G.

Proof: By Property 2.3, the set T as proposed is a d-transversal (with cardinality
d∆). Furthermore as G contains ∆ disjoint maximum matchings, the cardinality of
any d-transversal is at least d∆. �

Theorem 4.7 Let d, n ≥ 1 be two integers with 2d ≤ n and let r = bn
2
c − d. For

the graph Kn, let B be a d-blocker of minimum cardinality (B is also a minimum
d-transversal of Kn by Proposition 4.4).

1. If d ≤ bn
2
c− 2

5
n+ 3

5
, the cardinality of B is

(
n
2

)
−

(
2r+1

2

)
. B may be constructed

by taking n− 2r − 1 bundles.
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2. If d ≥ bn
2
c − 2

5
n + 3

5
, the cardinality of B is

(
n−r

2

)
. B may be constructed by

taking a clique on n− r vertices.

Proof: Notice that searching for a minimum d-blocker B of Kn is equivalent to
searching for a maximum partial graph H = (V, EH) of Kn = (V, E) (i.e. a partial
graph with n vertices and a maximum number of edges) such that ν(H) = r. In
fact, the edges not belonging to H will belong to B. Suppose that H is such a
maximum partial graph corresponding to an r < bn

2
c, i.e., d ≥ 1. In the following

we will prove various properties that H must satisfy to obtain eventually a complete
description of the structure of H.

Claim: ∀ v ∈ S(H), v is connected to all other vertices of H.

Suppose by contradiction that v ∈ S(H) and u ∈ V with vu 6∈ EH . Let H ′ be
the graph obtained by adding vu to H. By edge-maximality of H we must have
ν(H ′) = r + 1. Let M ′ be a matching in H ′ with |M ′| = r + 1. We have vu ∈ M ′

as otherwise we would have ν(H) = r + 1. Therefore M ′ \ {vu} is a matching in H
with cardinality r not saturating the vertex v. This violates v ∈ S(H).

Claim: ∀ v ∈ V \ S(H), v is a simplicial vertex.

Let v, u, w ∈ V , with v 6∈ S(H) and u, w are two distinct neighbors of v in H. Fur-
thermore let M be a maximum matching in H which does not saturate v. Suppose
by contradiction that uw 6∈ EH . By edge-maximality of H this implies that the
graph H ′ obtained by adding uw to H contains an augmenting chain with respect
to the matching M . This augmenting chain consists of the edge uw and two alter-
nating chains Pu and Pw in H where Pu has on the one end a non-saturated vertex
and on the other end u and Pw has on the one end a non-saturated vertex and at
the other end w. At most one of these two chains contains v. Suppose without
loss of generality that the chain Pu does not go through v. This implies that if we
append to the end u of the path Pu the edge uv, we obtain an augmenting chain in
H contradicting the maximality of matching M .

The above claims imply that V can be partitioned into sets C0, C1, . . . , Ck with
C0 = S(H), such that the subgraph of H induced by Ci is a clique ∀i = 0, 1, . . . , k
and there is no edge in EH connecting a vertex in Ci with a vertex in Cj for 1 ≤
i < j ≤ k.

Claim: All sets C1, . . . , Ck contain an odd number of vertices.

Suppose by contradiction that C1 has an even number of vertices. Let v ∈ C1. As
v 6∈ S(H), there exists a maximum matching M in H which does not saturate v.
All other vertices in C1 must be saturated as otherwise the matching M would not
be maximum. As C1 \ {v} contains an odd number of vertices, at least one vertex
u ∈ C1 \ {v} must be saturated by an edge uw ∈ M with w ∈ S(H). By replacing
uw by uv in the matching M we get another maximum matching in H which does
not saturate w. This contradicts w ∈ S(H).

Claim: For any maximum matching M of H, no edge of M has both endpoints
in S(H).
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Let M be a maximum matching in H and suppose by contradiction that there exists
an edge vu ∈ M with v, u ∈ S(H). As d ≥ 1, we have that at least two vertices in H
are not saturated by M . Let w ∈ V be such a non-saturated vertex. Replacing the
edge vu by uw in the matching M , gives another maximum matching in H which
does not saturate v and therefore contradicts v ∈ S(H).

Claim: Let M be a maximum matching in H. For any set C ∈ {C1, . . . , Ck} at
most one edge in M goes from S(H) to C.

Suppose by contradiction that there are two distinct edges v1u1, v2u2 ∈ M with
v1, v2 ∈ S(H) and u1, u2 ∈ C. Let w1, w2 ∈ V be two vertices which are not
saturated by M . This implies that (w1v1, v1u1, u1u2, u2v2, v2w2) is an augmenting
chain in H with respect to M , thus contradicting the maximality of M .

Claim: The number of vertices in H not saturated by a maximum matching is
k − |S(H)|.

By the above observations, a maximum matching M in H consists of at most |S(H)|
edges going from S(H) to C1 ∪ C2 ∪ · · · ∪ Ck and of edges linking two vertices of a
same set Ci for i ∈ {1, 2, . . . , k}. This implies that for every set C ∈ {C1, . . . , Ck},
M contains |C|−1

2
edges in C. Therefore every set Ci with i ∈ {1, 2, . . . , k} contains

exactly one vertex which is not already saturated by the edges of M having both
endpoints in Ci. Furthermore |S(H)| of these k vertices will be saturated by edges
of M incident to S(H). The number of non-saturated vertices in H is therefore
equal to k − |S(H)|.

Claim: There is at most one set in {C1, . . . , Ck} containing more than one
vertex.

Suppose by contradiction that |C1|, |C2| > 1. Let H ′ be the graph obtained from H
by replacing the two sets C1, C2 by a set of size 1 and another set of size |C1|+|C2|−1.
By the previous claim, we have ν(H) = ν(H ′). Furthermore H ′ contains more edges
than H. This contradicts the edge-maximality of H.

Let C be the only set in {C1, . . . , Ck} which may contain more than one vertex.
By the above observations, the graph H can be characterized by two parameters,
p, q ∈ {0, 1, . . .} where p = |S(H)| and 2q + 1 = |C|. The number of disjoint cliques
in H \S(H) can be expressed by k = n−p−2q. Therefore the number of vertices not
saturated by a maximum matching in H is equal to k− |S(H)| = n− 2p− 2q which
must be equal to n − 2r as the complement of graph H is a minimum d-blocker.
This implies r = p + q and allows to describe H by one parameter p. We denote by
H(p) = (VH(p), EH(p)) with p ∈ {0, . . . , r} this parametrized version of H. More
precisely, H(p) is the graph obtained by taking one clique on 2q + 1 vertices where
q = r − p, adding n− p− (2q + 1) isolated vertices and finally adding a clique on p
vertices (that corresponds to S(H(p)) which is connected to all other vertices. Note
that by construction of H(p) the cardinality of a maximum matching in H(p) is
independent of the parameter p. We are looking for the value of p, such that H(p)
has a maximum number of edges. We have |EH(p)| = p(n − 1) −

(
p
2

)
+

(
2q+1

2

)
=

3
2
p2 + (n − 3

2
− 4r)p + 2r2 + r which is a strictly convex function of p. Therefore

its maximum is attained at either p = 0 or p = r. Comparing these two cases we
get that |EH(0)| ≥ |EH(r)| exactly when d ≤ bn

2
c − 2

5
n + 3

5
and |EH(0)| ≤ |EH(r)|

exactly when d ≥ bn
2
c − 2

5
n + 3

5
, thus finishing the proof. �
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Remark 4.2 The constructions suggested above are the only ones giving d-blockers
of minimum cardinality, implying that only for the case d = bn

2
c − 2

5
n + 3

5
, Kn

contains two (and exactly two) non isomorphic minimum d-blockers.

5 Conclusion

We have considered in this paper d-transversals and d-blockers in some special classes
of graphs. The complexity of some basic problems related to blockers and transver-
sals has been established. We have studied in particular the situation of (regular)
bipartite graphs and of cliques. Additional cases where transversals and blockers
can be found in polynomial time should be studied.
For instance the case of trees and of grid graphs should be examined. We recall
that a grid graph Gm,n has m× n vertices xij with integral coordinates (1 ≤ i ≤ m,
1 ≤ j ≤ n) and (horizontal and vertical) edges linking vertices at distance 1.
It is interesting to observe that in grid graphs we may have minimum d-transversals
which are not constructed by taking the bundles of vertices forming a stable set;
moreover we may have for some values of d no minimum d-transversal consisting of
bundles whose central vertices form a stable set. This is in particular the case in
G3,6 for minimum 7-transversals (see Figure 5).

Figure 5: The set E \ T where T is a 7-transversal of G3,6.

A maximum matching has mn
2

= 9 edges. A set T of edges is a 7 transversal in G3,6

if and only if no maximum matching has more than 9− 7 = 2 edges in E \ T where
E is the edge set of G3,6. It is clearly the case for the set E \ T shown in Figure 5.
Here we have |E| = 2mn − (m + n) = 27 and |T | = 27 − 10 = 17. No collection of
7 bundles built on a stable set can have less than 18 edges as can be verified.
We shall study the case of grid graphs and of trees in a forthcoming paper.
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