
DISJOINT PATHS IN SPARSE GRAPHS∗

Cédric Bentz†

Abstract

We generalize all the results obtained for maximum integer multi-
flow and minimum multicut problems in trees by Garg, Vazirani and
Yannakakis [Primal-dual approximation algorithms for integral flow
and multicut in trees, Algorithmica 18 (1997) 3–20] to graphs with a
fixed cyclomatic number, while this cannot be achieved for other classi-
cal generalizations of trees. We also introduce the k-edge-outerplanar
graphs, a class of planar graphs with arbitrary (but bounded) tree-
width that generalizes the cacti, and show that the integrality gap of
the maximum edge-disjoint paths problem is bounded in these graphs.

1 Introduction

In this paper, we are interested in the study of the maximum edge-
disjoint paths and the minimum multicut problems in undirected graphs (no
directed version is considered), as well as some of their variants. These two
fundamental problems have been extensively studied, and are well-known to
be NP-hard even in very restricted classes of graphs.

Assume we are given an n-vertex m-edge undirected graph G = (V,E),
a capacity function c : E → Z+ and a list N of pairs (source si, sink
s′i) of terminal vertices. Each pair (si, s′i) defines a net or a commodity.
The maximum integer multiflow problem (MaxIMF) consists in maximizing
the number of flow units routed between the nets (each unit being routed
between si and s′i for some i), while enforcing the capacity constraints on the
edges. When ce = 1 for each e ∈ E, MaxIMF turns into the maximum edge-
disjoint paths problem (MaxEDP). When each commodity is required to be
routed along a single path, MaxIMF turns into the maximum unsplittable
flow problem (MaxUSF).

The minimum multicut problem (MinMC) consists in selecting a min-
imum weight set of edges (the weight of edge e being c(e)) whose removal
leaves no path between si and s′i for each i. The minimum multiterminal
cut problem (MinMTC) is a special case of MinMC in which, given a set
of vertices T = {t1, . . . , t|T |}, the nets are (ti, tj) for i 6= j.

∗A preliminary version of this paper appeared in [4].
†LRI, Université Paris-Sud and CNRS, Orsay F-91405, France.

Phone: +33 (0) 1 69 15 31 06. E-mail address: cedric.bentz@lri.fr

1

For |N | = 1, the powerful Ford-Fulkerson’s theorem establishes that
the value of the minimum cut is equal to the value of the maximum integral
flow [20]. Unfortunately, this property does not hold for larger |N |. However,
MaxIMF and MinMC do have a fundamental relationship. Both can be
expressed as integer linear programs, and the continuous relaxations of their
linear programming formulations are dual. One consequence is that the
value of any feasible multiflow cannot exceed the value of any multicut. This
property explains why approximation results sometimes relate the value of
an approximately optimal multiflow to the value of a well-suited feasible
multicut, instead of relating it directly to the value of an optimal multiflow.
Throughout the paper, when mentioning integrality gaps for these problems,
we shall always mean integrality gaps with respect to the classical linear
programming formulations of the problems (see [13, 24]).

A lot of work has been done on these problems. Although the basic prob-
lems are known to be NP-hard for a long time, much effort has been done
in two directions: first, identifying classes of graphs or special cases where
the problems become tractable; second, obtaining good polynomial-time ap-
proximation algorithms for these problems, and, in particular, deriving good
integer solutions from fractional solutions (i.e., finding solutions with a small
integrality gap) or designing primal-dual schemes.

Both aspects are considered in this paper. Since we are looking for
valuable cases, we begin by presenting the main known results. Given an
optimization problem P and a real α > 0, an α-approximation algorithm for
P is a polynomial-time algorithm A that always outputs a feasible solution

for P such that maxI / I is an instance of P

{
OPTI

SOLA(I) ,
SOLA(I)

OPTI

}
≤ α, where

OPTI is the optimum value for the instance I of problem P and SOLA(I)
is the value of the solution given by A for the instance I of problem P .

Prior to the study of MaxEDP, lots of results concerned a basic NP-
complete problem, the edge-disjoint paths problem (EDP). Given an undi-
rected graph and a list of nets, the problem is to decide whether it is pos-
sible to route all the nets along edge-disjoint paths. Obviously, whenever
this decision problem is NP-complete, MaxEDP is NP-hard. However,
solving EDP in polynomial time does not necessarily help us for dealing
with MaxEDP efficiently. See [22] for an extensive survey on EDP.

On the negative side, Pfeiffer and Middendorf show that EDP remains
NP-complete even if the graph obtained by adding the edges (si, s′i), i ∈
{1, . . . , |N |}, to the initial graph G, is planar [37] (however, if, in addition,
we restrict the terminals to lie on a bounded number of faces of G, they prove
that the problem becomes tractable). Moreover, Marx shows that EDP is
NP-complete in eulerian planar graphs with maximum degree bounded by
4 (by showing that it is NP-complete in eulerian grids [36]), and Nishizeki
et al. show that it is also NP-complete in series-parallel graphs (i.e., in
graphs with tree-width 2) [38].

2

On the positive side, Robertson and Seymour show that, when |N | is
fixed, EDP is polynomial-time solvable in unrestricted graphs [44]. More-
over, extending a result of Okamura and Seymour [40], Frank shows that
EDP is polynomial-time solvable in planar graphs, if all the terminals lie on
the outer face and all the vertices not on the outer face have even degrees
[21]. Note that the above class of graphs includes the planar graphs with
all their vertices on the outer face, i.e., the outerplanar graphs (a subclass
of the series-parallel graphs).

We turn back to MaxEDP. In their seminal paper, Garg, Vazirani and
Yannakakis show that MaxEDP is polynomial-time solvable in trees [25].
However, they also show that, in trees with capacities 1 and 2, MaxIMF
is NP-hard and APX -hard. By replacing each edge of capacity 2 by two
parallel paths of length two, each containing only edges with capacity 1, this
implies that MaxEDP is NP-hard and APX -hard in outerplanar graphs
having all their edges lying on the outer face. (By replacing any edge (u, v)
that does not lie in a cycle by a cycle (u, v, w, u) (w being a new vertex), and
by adding two nets (u,w) and (v, w), we can show that MaxEDP remains
APX -hard even if the graph is also 2-edge-connected. Then, by replacing
any vertex v whose removal disconnects the graph by a cycle (whose edges
have “large” capacities and which has a number of vertices equal to the
degree of v), and by letting the ith edge initially adjacent to v being linked
to the ith vertex of the new cycle, we can show that MaxEDP remains
APX -hard even if the graph is also 2-vertex-connected.) Moreover, Even,
Itai and Shamir show that, even if |N | = 2, MaxEDP is NP-hard in
unrestricted graphs [19]. It can be noticed that, if |N | is fixed and the degrees
of the vertices are bounded by a constant, then MaxEDP can be solved in
polynomial time by calling a constant number of times the algorithm of
Robertson and Seymour [44]. This is also true if we consider the problem of
linking by edge-disjoint paths as many nets as possible (i.e., if we consider
MaxUSF with unit capacities). However, to our best knowledge, in planar
graphs, MaxEDP remains open if |N | is fixed (although the variant where
one requires vertex-disjoint paths instead of edge-disjoint paths is known to
be tractable [26]). Note that the case where |N | = 2 and adding the edges
(si, s′i), i ∈ {1, . . . , |N |}, does not destroy planarity, is tractable [34].

We now look at approximability results. Some important ones are known
for MaxEDP, MaxIMF and MaxUSF. In general graphs, there is an
O(
√
n)-approximation algorithm for MaxEDP and MaxUSF [13], although

the stronger (and very recent) known inapproximability result is that both
cannot be approximated within (logm)1/2−ε for every ε > 0 [1]. For planar
graphs, the approximation ratio is also O(

√
n), while only APX -hardness

is known. Both a greedy algorithm (denoted by SPF, for Shortest Paths
First) and a rounding based algorithm achieve this ratio [3, 29]. Fur-
thermore, it is important to note that there are families of planar graphs
where the integrality gap is Θ(

√
n) [25]. For more restricted classes of

3

graphs, however, constant- or logarithmic-factor approximation algorithms
are known: for MaxIMF, a 2-approximation algorithm in trees [25] and an
O(log(|N |)/ε)-approximation (resp. an O(1/ε)-approximation) in graphs
(resp. in planar graphs) where any multicut has a value at least ε

∑
e∈E c(e)

[39]; for unit capacitated MaxUSF, a 3-approximation in trees of rings
[18] and a 9-approximation in complete graphs [9]; for MaxEDP, an O(1)-
approximation (resp. anO(log n)-approximation) in densely embedded (resp.
in high-diameter) and nearly eulerian planar graphs (including the two-
dimensional mesh) [28, 30], an O(log10 n)-approximation in graphs where
any cut between any pair of vertices contains Ω(log5 n) edges [42], and an
O(F)-approximation in graphs with flow number F (see [32] for details).
Moreover, for high-capacitated networks (i.e., for graphs where all the ca-
pacities are Ω(log n)), an O(1)-approximation can be achieved for MaxIMF
by randomized rounding techniques [41]. In expander graphs, a general re-
sult on the connectivity between pairs of vertices is given in [23]. In planar
graphs where all capacities are at least two, a recent paper of Chekuri et al.
proposes an O(log n)-approximation algorithm for MaxIMF based on a con-
tinuous relaxation [11, 12]. When all capacities are at least four, they obtain
an O(1)-approximation [14]. An even more recent result has been obtained
by the same authors in [15]: they give an O(log n)-approximation algorithm
for MaxEDP in bounded tree-width graphs. Still, it can be noticed that few
(good) approximation results are available, due to the noticeable difficulty
to design good approximation algorithms for these problems.

Now, let us consider the MinMC problem. Garg, Vazirani and Yan-
nakakis show that it is NP-hard and APX -hard even in unweighted stars,
but that it can be solved in polynomial time in trees if |N | is fixed, and
approximated within a factor of 2 otherwise [25]. Moreover, Dahlhaus et
al. show that MinMTC (and thus MinMC) is NP-hard in unrestricted
graphs, even if |N | = 3 [16]; in planar graphs, MinMTC is polynomial-time
solvable if |N | is fixed [16, 27], and NP-hard otherwise [16]. Nevertheless,
the integrality gap for MinMC is O(log |N |) in general graphs [24] and O(1)
in planar graphs [45], and there exist polynomial-time algorithms achieving
these ratios. Furthermore, Călinescu et al. give a polynomial-time approx-
imation scheme for MinMC in unweighted graphs of bounded tree-width
and bounded degree, and show that dropping any of these three assump-
tions leads to APX -hardness (instead of NP-hardness only) [8].

In [25], Garg et al. give a primal-dual scheme showing, in particular,
that the integrality gap for MaxIMF is at most 2 in trees, and exhibit an
example showing that, even in planar graphs, this gap can be quite large
in general. This raises the question of finding classes of graphs where this
gap is small. Actually, there are several motivations to the present paper.
First, trying to generalize the results of Garg et al., i.e., looking for classes
of graphs that generalize the trees and where all (or a main part of) their
results remain true, and trying to understand what makes these problems

4

much easier on trees (is it a structural property? Or merely a key parameter
that is small in trees?). Second, trying to identify a parameter (or some
parameters) that makes MaxEDP tractable if we bound it (or them), and
NP-hard otherwise. And third, finding special cases generalizing the trees
and specializing, in some sense, the example given in [25, page 17], and
where the integrality gap remains bounded for MaxEDP. The first and the
third motivations have been strongly inspired by the work of Garg et al.,
and the second motivation has revealed to be closely related to the first one.

A natural way of generalizing the trees is to consider graphs with bounded
tree-width [43]. Another generalization is to consider planar graphs where
the terminals lie on a fixed number of faces [37]. However, as mentioned
above, Garg et al. have shown that MaxEDP remains NP-hard and APX -
hard in outerplanar graphs, which have tree-width at most 2 [7], and in which
the terminals all lie on one face (the outer one). In addition, their polyno-
mial reduction remains valid even if we restrict ourselves to graphs having
a bounded degree inside each 2-vertex-connected component.

Our first result is that all the results presented in [25] can be generalized,
in some sense, to graphs with a fixed cyclomatic number (a tree being a
graph with cyclomatic number 0). In particular, we prove that MaxEDP
is polynomial-time solvable in such graphs, and that the integrality gap
for MaxIMF is bounded by two times one plus the cyclomatic number.
Although bounding the maximum degree and having all the terminals lying
on one face do not lead to a bounded integrality gap for MaxEDP [25], our
second main result is that the integrality gap for MaxEDP is bounded in k-
outerplanar graphs having a bounded degree inside each 2-vertex-connected
component. Such graphs obviously generalize the trees, but also specialize
the example given in [25, page 17], where each degree is bounded by 3 and
the graph is planar but not k-outerplanar. To prove this last result, we
introduce the k-edge-outerplanar graphs, which form a subclass of the k-
outerplanar graphs, and then we apply on a particular spanning tree the
approximation algorithm given in [25]. We also consider the cacti, a class
of graphs that generalize the trees of rings, and show that, in this case, we
can bound the integrality gap for MaxIMF.

The paper is organized as follows. In Section 2, we give or recall some
definitions and notions that will be needed in the next sections. In Section 3,
we give a new approximation algorithm for MaxIMF. Then, in Section 4, we
detail our results concerning graphs with a fixed cyclomatic number, show-
ing how to generalize the work of Garg, Vazirani and Yannakakis. Finally,
Section 5 deals with the integrality gap of MaxEDP in k-edge-outerplanar
graphs.

5

2 Preliminary notations and definitions

2.1 Notations and classical definitions

A graph (or one of its components) is called 2-vertex-connected (resp.
2-edge-connected) iff for any two of its vertices there are at least two paths
between them that do not share any vertices (resp. any edges). A block is
an inclusionwise maximal 2-vertex-connected component of a graph.

Given k ≥ 1, a k-outerplanar graph is a planar graph having an em-
bedding with at most k layers of vertices, i.e., such that, after removing
iteratively the vertices (and their adjacent edges) lying on the outer face at
most k times, we obtain the empty graph [2]. In particular, an outerplanar
graph (or 1-outerplanar graph) is a planar graph containing at least one
vertex and having an embedding with all its vertices lying on the outer face.
The class of k-outerplanar graphs is very well-known to be an important
class of planar graphs with bounded tree-width [7].

Now, let us define two other classes of graphs. Given two integers k ≥ 1
and d ≥ 2, the class of k-outerplanar graphs having a degree bounded by
d inside each block will be denoted by OPBIDk,d. Given an integer γ ≥ 0,
the class of connected graphs G = (V,E) with a cyclomatic number ν(G) =
|E| − |V |+ 1 smaller than or equal to γ will be denoted by Sγ (these graphs
being very sparse since |E| ≤ |V | − 1 + γ). Note that each connected planar
graph with at most γ internal faces is in Sγ (in particular, S0 represents the
trees), and that ν(G) is bounded in graphs G with bounded tree-width.

Given a graph G and a list of nets {(s1, s′1), . . . , (s|N |, s′|N |)} on its ver-
tices, we denote by Pi the set of elementary paths linking si to s′i in G,
for i ∈ {1, . . . , |N |}. Moreover, let PN =

⋃
i∈{1,...,|N |} Pi. A flow path is

a path carrying at least one unit of flow of any commodity. Note that all
the graphs considered in this paper are simple (i.e., with no parallel edges),
loopless and connected (if this is not the case, we consider each connected
component independently).

Eventually, we need two simple notation rules. Given a multicut C and a
multiflow F , we shall denote by ‖C‖ and ‖F‖ their respective values. Given
a graph G and a subset R of the edge set of G, let G \ R denote the graph
obtained from G by removing all the edges in R from the edge set of G.

2.2 New notions

In this paper, we introduce the class of k-edge-outerplanar graphs, which
has been inspired by the previously mentioned class of k-outerplanar graphs.
Given k ≥ 1, a k-edge-outerplanar graph is a planar graph having an embed-
ding with at most k layers of edges, i.e., such that, after removing iteratively
the edges lying on the outer face at most k times, we obtain a graph with
no edge. In particular, an edge-outerplanar graph (or 1-edge-outerplanar

6

graph) is a planar graph containing at least one edge and having an em-
bedding with all its edges lying on the outer face. We will detail in Section
5.1 the relationships between k-outerplanar and k-edge-outerplanar graphs.
Note that the 2k × N planar mesh (N > 2k) is both k-outerplanar and
(k + 1)-edge-outerplanar.

We also need to define the notion of inside degrees. Recall that the degree
of a vertex is the number of vertices adjacent to it. Given a graph, one of its
2-vertex-connected components 2V CC, and a vertex v of 2V CC, the degree
of v inside 2V CC, denoted by deg2V CC (v), is the number of vertices lying in
2V CC that are adjacent to v. Note that a vertex can have a bounded inside
degree and an unbounded degree (the converse being obviously false).

3 A simple approximation algorithm

Recall that the approximation ratio of the greedy algorithm SPF is
O(min(

√
m,n2/3)) [10, 33], i.e., O(

√
n) in planar graphs. This simple algo-

rithm iteratively routes the shortest available path in PN (it was introduced
in [31]). Moreover, there exist families of trees where this bound is reached.
We give one family here. Start with a path v1, v2, . . . , vp+2 of length p+ 1.
Then, add a path of length p + 1 from vi to si for each i ∈ {2, . . . , p + 1}.
Eventually, let s1 lie on v1, let s′1 lie on vp+2 and let s′i lie on vi+1 for each
i ∈ {2, . . . , p+1}. This graph has Θ(p2) vertices (i.e., p = Θ(

√
n)) and p+1

nets (i.e., |N | = p + 1), and the path from si to s′i has length p + 2, for
each i ∈ {2, . . . , p+ 1}. SPF routes (s1, s′1) (which has length p+ 1), while
the optimal solution is to route (s2, s′2), . . . , (sp+1, s

′
p+1). Furthermore, the

graph is a tree and the new graph obtained by adding the p+1 edges (si, s′i)
is outerplanar. Note that this instance can easily be transformed into a non
trivial one (i.e., such that the optimal value is neither O(1) nor Θ(|N |)).

Hence, even for restricted classes of graphs, we have to look for better
approximation algorithms. Given a connected graph G, several of our results
use the same basic idea: computing a spanning tree of G in order to use
the results given in [25] for trees. Since we shall use a new simple algorithm
based on this idea several times, we give it here. It can be viewed as a
primal-dual scheme containing three steps:

1. Compute a spanning tree T of G;

2. Use the primal-dual algorithm given in [25] which constructs an integer
multiflow FT and a multicut CT for T such that ‖CT ‖ ≤ 2‖FT ‖;

3. Build a multicut CG for G satisfying ‖CG‖ ≤ α‖CT ‖ for a fixed α > 0.

At the end of this algorithm (let us call it ST-GVY-WG), we obtain an
integer multiflow FT and a multicut CG such that ‖CG‖ ≤ 2α‖FT ‖. Noticing

7

that FT is also feasible for G, this yields 2α-approximation algorithms for
both MaxIMF and MinMC. Obviously, the first step may have to be done
with some care, and the third one as well (even if our purpose is not to
find the best possible α). Note that Step 3 is only relevant to prove the
approximation ratio: if one is only interested in computing an approximately
optimal flow, only the two first steps are needed. Also note that, to the best
of our knowledge, this is the first attempt to generalize the constant bound
of the maximum integer multiflow / minimum multicut theorem of Garg et
al. in trees [25]. Indeed, the family of trees given at the beginning of this
section has an Ω(

√
n) flow number (since any path has length Ω(

√
n)) and

the minimum multicut uses O(
√
n) edges, hence neither the results in [32]

nor the results in [39] provide a constant bound.
An interesting feature of Algorithm ST-GVY-WG is that it can be used

as a fast heuristic for MaxIMF in general graphs (in which case we can call
this heuristic MST-GVY, since we do not need Step 3): we shall consider
in Step 1 a maximum spanning tree, as in Section 4. Actually, since, on the
one hand, SPF works quite well when there remain short paths in PN , and,
on the other hand, MST-GVY can in fact be iterated several times, the
following heuristic, parameterized by a small integer λ ≥ 0, would probably
be better than MST-GVY :

• While there remains a path of length at most λ in PN , run SPF ;

• While there is an i such that there exists a path between si and s′i:

– Run MST-GVY on each connected component of the current
graph (the graph with the current capacities);

– Update the current capacities, and remove any edge whose re-
maining capacity is 0.

It would be interesting to test this heuristic on real-life or randomly
generated instances, for different values of λ.

4 Graphs with a fixed cyclomatic number

In this section, we generalize the results of [25] from trees to graphs in
Sγ . We prove that MaxEDP can be solved in polynomial time for graphs
in Sγ , by solving O((2γ |N | + 1)γ) instances on a set of trees. Then, given
a graph G in Sγ , we show how to compute an integer multiflow FG and
a multicut CG such that ‖CG‖ ≤ 2(γ + 1)‖FG‖, by using Algorithm ST-
GVY-WG. Finally, we show that MinMC can be solved in O(m2γ |N |) time
for graphs in Sγ , which is polynomial in m if |N | is fixed. For the sake of
simplicity, we do not systematically try to optimize the constants used in
our analysis.

8

4.1 Solving MaxEDP

Garg et al. show that MaxEDP is polynomial-time solvable in trees. We
use this result to design a polynomial-time algorithm solving MaxEDP in
graphs of Sγ . Note that this result generalizes and unifies the only tractable
cases known for MaxEDP, namely, trees and rings.

Let G be a graph in Sγ . We remove (at most) γ edges from G, so that
the resulting graph is a spanning tree, by iteratively picking an edge from
a block. Let these edges be e1, . . . , eγ . The main idea is that, since γ is
fixed, there is a bounded number of edges that has to be considered. For
each one of these γ edges, we select either no path or one elementary path
that crosses it, and remove this edge and all the other edges crossed by the
(possibly) selected path. We have to be careful to select only compatible
(i.e., edge-disjoint) paths: for instance, if we select a path p crossing ei, we
must also select p for ej , i 6= j, if p crosses ej . After we do this for the γ
edges, we obtain a forest. We compute an optimal solution for MaxEDP
in this forest by using the algorithm of Garg et al. [25]. Gathering the
paths selected in this solution with the ones selected previously, we obtain
a solution for MaxEDP in G. We repeat this procedure until each possible
combination of the elementary paths crossing e1, . . . , eγ has been tried (recall
that, in fact, for each of these γ edges, we also have to try the case where
no path goes through it). Keeping the best of all these solutions, we obtain
an optimal solution.

Our algorithm solves O((|PN |+ 1)γ) instances of MaxEDP in a forest.
Thus, γ being fixed, if |PN | is polynomial in n and |N |, our algorithm runs
in polynomial time. The following lemma gives a bound on |Pi| for each i1:

Lemma 1. Given a graph G in Sγ and two vertices si and s′i, the number
of elementary paths |Pi| linking si to s′i in G is at most 2γ.

Proof. We proceed by induction on γ. For γ = 0, we have |Pi| = 1 (G is a
tree). Assume this holds for γ − 1, γ ≥ 1, and let us show it holds for γ.
If |Pi| = 1, we are done. Otherwise, let v be the first vertex, encountered
in any elementary path from si to s′i, that lies in a block. We can assume
w.l.o.g. that v = si (if this is not the case, this assumption does not modify
|Pi|). Thus, there are at least two edges, e1 and e2, adjacent to si and lying
in a block. No elementary path from si to s′i crosses both e1 and e2, hence
there is an edge e ∈ {e1, e2} such that at least half of the paths in Pi do not
cross e. Moreover, if we remove e, we obtain a graph G′ ∈ Sγ−1, and we can
apply the induction hypothesis: there are at most 2γ−1 elementary paths
between si and s′i in G′. Hence, |Pi| ≤ 2 · 2γ−1 = 2γ . Lemma 1 follows.

Note that this result is tight: to see this, consider for instance a path of
length γ with si and s′i as endpoints. Then, replace each edge (u, v) of this

1We have not been able to determine whether this result is already known, but we give
a short proof anyway for the sake of completeness.

9

path by a cycle (u,w, v, w′, u). The obtained graph is in Sγ and satisfies
|Pi| = 2γ . Moreover, Lemma 1 implies that |PN | ≤ 2γ |N |, and thus the
algorithm given above runs in polynomial time. Hence:

Theorem 1. MaxEDP is polynomial-time solvable for graphs in Sγ.

Actually, MaxEDP is even FPT [17] for the pair of parameters (|N |, γ).
It would be interesting to determine whether there exists an FPT algo-
rithm for MaxEDP, if only the cyclomatic number is viewed as a parameter
(clearly, our algorithm is not FPT in this case).

Moreover, recall that MaxEDP is NP-hard even for |N | = 2. Never-
theless, using the results in this section, one can state:

Theorem 2. If |N | is fixed, MaxEDP is polynomial-time solvable in graphs
whose cyclomatic number is O(

√
log n).

Proof. We use the above algorithm. Recall that we have to solve O((2γ |N |+
1)γ) instances of MaxEDP in a forest, where γ is the cyclomatic number.
Thus, if γ = O(

√
log n) and |N | is fixed, we have to solve O(nO(1)) instances,

which is polynomial in n.

Note that Theorems 1 and 2 (and their analyses) also hold for the variant
where one requires (internally) vertex-disjoint paths instead of edge-disjoint
paths, since this problem is also polynomial-time solvable in trees [8].

4.2 Bounding the integrality gap for MaxIMF

MaxIMF is NP-hard and APX -hard for trees, and hence for graphs in
Sγ . However, Garg et al. have shown that, given a tree T , one can compute
in polynomial time an integer multiflow FT and a multicut CT such that
‖CT ‖ ≤ 2‖FT ‖. In this section, we prove that, given a graph G in Sγ , one
can compute in polynomial time an integer multiflow FG and a multicut CG
such that ‖CG‖ ≤ 2(γ + 1)‖FG‖.

We use Algorithm ST-GVY-WG given in Section 3. All we have to do is
to detail how to construct a spanning tree T for G (Step 1), and then, how
to construct a multicut CG such that ‖CG‖ ≤ (γ + 1)‖CT ‖ (Step 3).

Step 1 proceeds as follows: we construct a maximum weight spanning
tree ofG, using a variant of Kruskal’s algorithm [35]. In other words, for each
i ≥ 1, we iteratively pick an edge ei having the minimum capacity among
all the edges lying in blocks of G \ {e1, . . . , ei−1}. This gives us a set of γ
edges satisfying c(e1) ≤ c(e2) ≤ · · · ≤ c(eγ), and the graph G \ {e1, . . . , eγ}
is a tree T .

In Step 2, we compute for T an integral multiflow FT and a multicut CT
such that ‖CT ‖ ≤ 2‖FT ‖. Eventually, in Step 3, we use CT to construct a
multicut CG for G, and we let FG = FT . For each edge fj in CT , let λ(fj) be
the largest i such that, before the edge ei was removed fromG\{e1, . . . , ei−1},

10

fj still lied in a block (and hence we have c(fj) ≥ c(eλ(fj))). If fj does not
lie in a block of G, let λ(fj) = 0. Moreover, let λ∗ = maxfj∈CT λ(fj) and
let fj∗ ∈ CT be such that λ(fj∗) = λ∗. Then, let CG = CT

⋃
{e1, . . . , eλ∗}.

First, let us prove that ‖CG‖ ≤ (γ + 1)‖CT ‖. We have ‖CG‖ = ‖CT ‖+∑λ∗

i=1 c(ei) ≤ ‖CT ‖ + λ∗c(eλ∗) ≤ ‖CT ‖ + λ∗c(fj∗) ≤ ‖CT ‖ + λ∗‖CT ‖ =
(λ∗ + 1)‖CT ‖. Note that the inequality c(eλ∗) ≤ c(fj∗) comes from the
definitions of λ∗ and fj∗ , and the way eλ∗ has been chosen.

Second, let us show that CG is indeed a multicut for G. In fact, all we
have to prove is that, given an edge belonging to {eλ∗+1, . . . , eγ}, there is
no need to pick it in CG, i.e., there exists a path in T \ CT linking its two
endpoints. Let (a, b) be an edge belonging to {eλ∗+1, . . . , eγ}. There exists
a path between a and b in T , since T is a spanning tree of G. Thus, if there
exists no path from a to b in T \CT , then necessarily the path from a to b in
T contains an edge f belonging to CT . This implies that, just before (a, b)
was removed, f was lying in a block. Since (a, b) ∈ {eλ∗+1, . . . , eγ}, we have
a contradiction. We have λ∗ ≤ γ, and hence:

Theorem 3. The gap between the optima of MinMC and MaxIMF is
bounded by 2(γ + 1) for the graphs in Sγ. Moreover, solutions for MinMC
and MaxIMF achieving this ratio can be computed in polynomial time.

Corollary 1. The integrality gap of MaxIMF is bounded by 2(γ + 1) for
the graphs in Sγ. Moreover, a solution for MaxIMF achieving this ratio
can be computed in polynomial time.

Note that Theorem 3 applies to MaxUSF as well, since the solution
computed by our method is feasible for MaxUSF. Also note that, in the
analysis of Theorem 3, explicitly knowing that the spanning tree constructed
in Step 1 is actually maximum weighted is not necessary (and knowing how
it is constructed is sufficient). Moreover, we do not know whether the bound
2(γ + 1) in this theorem is tight or not (obviously, this is the case for γ = 0
[25]). Figure 1 shows an example where a weaker bound holds.

. . .

Figure 1: An example for Theorem 3 with one net (in dashed line). The
edges in bold lines (i.e., the edges forming the spanning tree) have capacity
N+1 for some N > 0, while all the other edges have capacity N . So, ‖FT ‖ =
N + 1, ‖CT ‖ = N + 1 (the edge denoted by —×) and ‖CG‖ = γN + (N + 1).

11

4.3 Solving MinMC

In this section, we detail results concerning MinMC. Recall that, in
trees, Garg et al. show how to compute a multicut within twice the optimum
(and even within twice the value of an integral multiflow). If we consider
a graph G in Sγ and assume that all its edges have capacities bounded by
a small integer β, we can construct a spanning tree T as in Section 4.1,
compute a multicut CT and an integer multiflow FT , and build a multicut
CG for G by picking all the edges in CT and the γ edges removed from G
to obtain T . Obviously, CG satisfies ‖CG‖ ≤ ‖CT ‖ + γβ ≤ 2‖FT ‖ + γβ =
(2+o(1))‖FT ‖. This gives another generalization of the approximation result
obtained in [25] for trees, which is different from the one given in Section 4.2,
but which only applies to graphs with small capacities.

Moreover, Garg et al. have shown that, in trees, MinMC can be solved
in polynomial time if |N | is fixed. The idea is that a multicut contains at
most |N | edges, since there is one path from si to s′i, for i ∈ {1, . . . , |N |}:
thus, MinMC can be solved in O(m|N |). For a graph G in Sγ , from Lemma
1, there are at most 2γ paths between si and s′i, for i ∈ {1, . . . , |N |}. Hence,
MinMC can be solved inO(m2γ |N |) for the graphs in Sγ , which is polynomial
in m if |N | is fixed.

Actually, a stronger result has been proved in [5], by using a completely
different approach: MinMC is polynomial-time solvable in bounded tree-
width graphs if |N | is fixed.

5 Integrality gap in k-edge-outerplanar graphs

In this section, we study the case of k-edge-outerplanar graphs. We first
show that k′-outerplanar graphs having a degree bounded by d inside each
block are closely related to these graphs.

5.1 Relationship between k-outerplanar graphs and k-edge-
outerplanar graphs

The main result of this section is given in Theorem 4:

Theorem 4. Any k-outerplanar graph such that the degree of each vertex
is bounded by d ≥ 2 inside each block is (dd2e+(k−1)bd2c)-edge-outerplanar.
Moreover, any k-edge-outerplanar graph is k-outerplanar.

Proof. The second part of Theorem 4 is obvious. We prove the first part
by induction. Let G be a graph in OPBIDk,d, k ≥ 2. For the proof, we
can consider each block of G independently. Let B be a block of G with
|B| ≥ 2, i.e., an inclusionwise maximal 2-vertex-connected component of G
containing at least two vertices. Each vertex of B lying on the outer face of
G is adjacent to exactly two edges of B lying on the outer face. For each

12

such vertex, we remove the corresponding two edges. We repeat this until
each vertex of B lying on the outer face of G has at most one neighbor
among the vertices lying in B. At each iteration, for each vertex v lying on
the outer face and still having at least two neighbors among the vertices in
B, we remove two edges adjacent to v, so we have to do it at most d

2 times if
d is even. If d is odd, then we stop when the residual degB(v) is at most one,
so we have to do it at most d−1

2 times, i.e., at most bd2c times. After that, we
obtain a component in OPBIDk−1,d. Eventually, for a graph in OPBID1,d,
we use the same technique. If d is even, then the analysis is similar. If d is
odd, then we have to make the residual degB(v) of each vertex v equal to 0,
so we have to remove edges on the outer face dd2e times. (We also remove
any edge that does not lie in a block.) Finally, any graph in OPBIDk,d is
((k − 1)bd2c+ dd2e)-edge-outerplanar.

This theorem shows that, in order to be k-edge-outerplanar for some
fixed k, it is sufficient for a graph to be in OPBIDk′,d for some fixed k′ and
d. However, it is not a necessary condition (every Halin graph, i.e., every
planar graph with no vertex of degree 2 and whose edges are the disjoint
union of a tree and a cycle connecting the leaves of this tree, is 2-outerplanar
and 2-edge-outerplanar), and being only k′-outerplanar for some fixed k′ is
not sufficient in general to be k-edge-outerplanar for some fixed k (for any
p > 2, the complete bipartite graph K2,p is dp2e-edge-outerplanar and 2-
outerplanar, the first layer having 4 vertices and the second one p− 2).

Moreover, Figure 2 shows that the bound of Theorem 4 is tight. In
Section 5.2, we consider k-edge-outerplanar graphs. Theorem 4 shows that
our results will apply, in particular, to the graphs in OPBIDk′,d.

5.2 Bounding the gap for MaxEDP

Recall that MaxEDP is NP-hard and APX -hard in edge-outerplanar
graphs [25]. The main result of this section is that we can bound by a
constant the integrality gap for MaxEDP in k-edge-outerplanar graphs.
Before proving it, let us recall that Chekuri et al. have recently proved in
[15] that the integrality gap for MaxEDP is O(log n) in bounded tree-width
graphs. (It should be noticed that the work described in the present paper,
which was already presented in a preliminary conference version in [4], was
carried out before this result was announced.) However, when “specialized”
to k-outerplanar graphs, they observed that their algorithm does not seem
to yield a ratio better than O(log n). Here, we show:

Theorem 5. The integrality gap for MaxEDP is bounded by 4k in k-edge-
outerplanar graphs. Moreover, a solution for MaxEDP achieving this ratio
can be computed in polynomial time.

Proof. We use Algorithm ST-GVY-WG, given in Section 3. Let us describe
Steps 1, 2 and 3. Given a k-edge-outerplanar (connected) graph G = (V,E),

13

Figure 2: G1, the skeleton of a family of tight graphs for Theorem 4 (d odd).
(Any edge of G1 lying on the outer face could be replaced by a path.) Each
graph Gi, i ≥ 2, is actually obtained from G1 by replacing each edge by
a copy of Gi−1, the big two vertices corresponding to the endpoints of this
edge. Given k > 0, the graphGk is both k-outerplanar and ((k−1)bd2c+d

d
2e)-

edge-outerplanar (d = 7 here).

Step 1 proceeds as follows: (i) for each layer L among the k layers of edges
of G, (ii) for each internal face Φ, if there exist edges lying both on L and
on the border of Φ, remove exactly one such edge. After part (ii) ends for
the ith layer (i ≤ k − 1), we obtain a (k − i)-edge-outerplanar connected
graph. Hence, at the end of Step 1 (i.e., when part (i) ends), we obtain a
spanning tree T of G. Then, FT and CT are obtained in Step 2. Eventually,
we use CT to construct CG in Step 3.

For each edge in CT , CG will contain at most 2k edges, and hence
‖CG‖ ≤ 2k‖CT ‖ ≤ 4k‖FT ‖. The removal of any edge (u, v) ∈ CT separates
the vertices of T (and hence the vertices of G) in exactly two connected
components, Vu and Vv = V \ Vu. Let δG(u, v) be the set of edges between
Vu and Vv in G, and let the circuit boundary of a block of G be the cycle
delimiting this block (the circuit boundary of G is defined as the disjoint
union of the circuit boundaries of all its blocks). We need the following
lemma, showing that |δG(u, v)| ≤ 2k:

Lemma 2. Given Vu and Vv in a k-edge-outerplanar graph G, δG(u, v)
contains at most 2 edges on each one of the k layers. Moreover, it contains
exactly 2 edges on the kth layer iff they are on the circuit boundary of G.

Proof. We proceed by induction on k. For k = 1, G is an edge-outerplanar
graph. If (u, v) does not lie in a cycle of G, then δG(u, v) contains only (u, v)
and we are done. Otherwise, by the way we construct T , there is a cycle
of G containing both (u, v) and an edge not in T : δG(u, v) contains these 2

14

edges. This completes the case k = 1.
Assume now that Lemma 2 holds for (k − 1)-edge-outerplanar graphs,

k ≥ 2. Let G be a k-edge-outerplanar (connected) graph, and let us prove
it holds for G. So, let us consider Vu and Vv in G: recall that the edge
(u, v) is an edge of the spanning tree obtained for G by applying Step 1 as
described above. During this process, after applying part (i) only once (i.e.,
for only one layer, the one containing the edges of the outer face), we obtain
a (k − 1)-edge-outerplanar connected graph G′ to which we can apply the
induction hypothesis: in particular, at most 2 edges of the (k − 1)th layer
of G′ are in δG′(u, v). Moreover, we have δG′(u, v) ⊆ δG(u, v). We have to
distinguish between three cases:

• If there is no edge on the (k−1)th layer of G′ that belongs to δG′(u, v),
then, obviously, for each edge e on the circuit boundary of G, there
is a path linking its two endpoints and using only edges lying on the
(k− 1)th layer of G′, i.e., using no edge in δG′(u, v). This path uses no
edge from δG(u, v) \ δG′(u, v) either, because such edges do not belong
to G′. Hence, the endpoints of e both belong to Vu or Vv, so e does
not belong to δG(u, v) (i.e., δG′(u, v) = δG(u, v)).

• If there is one edge (say, e) on the (k− 1)th layer of G′ that belongs to
δG′(u, v), then, by assumption, e is not on the circuit boundary of G′.
This means that e is a bridge of G′ (an edge whose removal disconnects
the graph), so δG′(u, v) = {e} = {u, v}. Let us first assume that e
lies in a block of G. If e is on the circuit boundary of G, then, by
construction, there is an internal face Φ of G (adjacent to the outer
face ofG) whose border contains both e and an edge f not inG′: hence,
one endpoint of f is in Vu and the other is in Vv, so δG(u, v) = {e, f}
(see Figure 3(a)). Otherwise, e belongs to the border of two internal
faces of G, Φ1 and Φ2. By construction, Φ1 (resp. Φ2) is adjacent to
the outer face and its border contains one edge f1 (resp. f2) not in G′.
For each i ∈ {1, 2}, one endpoint of fi is in Vu and the other is in Vv, so
δG(u, v) = {e, f1, f2} (see Figure 3(b)). Note that if e does not lie in a
block of G, then e is a bridge ofG, so no edge from the circuit boundary
of G belongs to δG(u, v) (i.e., δG′(u, v) = δG(u, v) = {e} = {u, v}).

• If there are two edges e1 and e2 on the (k− 1)th layer of G′ belonging
to δG′(u, v), then, by assumption, they belong to the circuit boundary
of G′. Hence, e1 (resp. e2) belongs to the border of an internal face
Φ1 (resp. Φ2) of G, adjacent to the outer face of G and containing
one edge f1 (resp. f2) not in G′. Edges f1 and f2 are distinct iff Φ1

and Φ2 are distinct (see Figures 3(c) and 3(d)). Hence, if f1 and f2

are distinct, then we have δG(u, v) = δG′(u, v)∪{f1, f2}; otherwise, we
have δG(u, v) = δG′(u, v).

The proof of Lemma 2 is now complete.

15

(a) e is on the circuit bound-
ary of G.

(b) e is not on the circuit
boundary of G.

(c) Φ1 and Φ2 are distinct. (d) Φ1 and Φ2 are not dis-
tinct.

Figure 3: Illustrating the 4 main cases of Lemma 2.

We apply Lemma 2 for each edge in CT , and this immediately implies
‖CG‖ ≤ 2k‖CT ‖ ≤ 4k‖FT ‖, as claimed. Note that the reason for processing
Step 1 carefully is that, if T is not constructed as indicated, we will not be
able to bound |δG(u, v)|. For example, in Figure 1, assume that all the edges
are valued by one and that the spanning tree constructed in Step 1 is the
one in bold lines. Then, ‖CT ‖ = 1 although δG(u, v) contains all the edges
in thin lines, so ‖CG‖ is unbounded.

The last remark we shall make about the analysis of our algorithm is
that it is tight: indeed, there exist instances where the cut CG and the flow
FT computed by ST-GVY-WG are such that ‖CG‖ = 4k‖FT ‖. Let us give
one such family of instances here. We construct a graph G by using an odd
number of copies of the complete bipartite graph K2,d (d even). For the ith
copy of K2,d, we denote by vi and ti its two vertices with degree d (the d
other vertices having degree 2). We merge all the vi’s into a single vertex,
v (and so we have v1 = v2 = · · · = vi = · · · = v). Moreover, we define all
the nets (ti, tj), i < j (hence, we have T = {t1, . . . , t|T |}). This graph is
d
2 -edge-outerplanar (since d is even). Furthermore, for any spanning tree T ,
‖CT ‖ = |T | − 1 and ‖FT ‖ = |T |−1

2 (since |T | is odd). Finally, in each of
the |T | − 1 first copies of K2,d, one edge belongs to CT and d edges belong
to CG. Therefore, we have ‖CG‖ = d(|T | − 1) = 2d‖FT ‖, which yields the
desired result. Figure 4 shows an example where d = 4 and |T | = 3.

However, this does not imply that the ratio given in the statement of The-
orem 5 is tight. Indeed, in the above example, we have Opt(MaxEDP)=6.

Note that, in graphs where all the edges have the same capacity, Theorem
5 applies to MaxIMF and MaxUSF as well (since at most one flow path is
associated with each net and only edge-disjoint flow paths are used). More

16

t1

t2
t3

 v

Figure 4: A 2-edge-outerplanar graph, with three terminals and d = 4. The
three nets are drawn in dotted lines, and the edges of the spanning tree T
are in bold lines. Here, we have ‖FT ‖ = 1, ‖CT ‖ = 2 (edges drawn as —×)
and ‖CG‖ = 8 (edges intersecting the dashed lines).

generally, we have the following corollary:

Corollary 2. The integrality gap for MaxIMF and MaxUSF is bounded
by 4βk in k-edge-outerplanar graphs G = (V,E) satisfying maxe∈E c(e) ≤
βmine∈E c(e). Moreover, solutions achieving this ratio can be computed in
polynomial time.

Finally, we would like to point out that, unfortunately, our approach
fails (and seems hard to adapt) if the condition maxe∈E c(e) ≤ βmine∈E c(e)
does not hold. Indeed, if we consider the example given in Figure 1, and
if we assume that all the edges lying on the outer face are weighted by an
integer N > 0 and all the other edges by 1, our approach would yield an
integer multiflow FT and two multicuts CT and CG such that ‖FT ‖ = 1,
‖CT ‖ = 1 and ‖CG‖ = 2N + 1 (by selecting all the edges in δG(u, v)).
However, it should be noticed that the conditions c(e) ≥ β (considered in
[11, 12, 14, 41]) and c(e) ≤ β (considered in this section, and, to our best
knowledge, in no previous work) for each e ∈ E and for some integer β > 0,
are different in nature. The first one does not allow to define the basic
problem MaxEDP (which, as we already observed, captures the essential
hardness of MaxIMF), but it makes the integrality gap shrink to a constant
or logarithmic factor (this is obviously not the case for the second one).

5.3 MaxIMF and MinMC in edge-outerplanar graphs

In this section, we consider the class of graphs where the degree of each
vertex is bounded by two (i.e., is equal to 0 or 2) inside each block. Note that

17

this is exactly the class of graphs where two arbitrary (and not necessarily
inclusionwise maximal) 2-vertex-connected components share at most one
vertex, i.e., the class of graphs where each block is restricted to be a ring:
hence, this is the class of edge-outerplanar graphs (or cacti). Obviously, such
graphs generalize the trees of rings: a tree of rings is a graph obtained from a
tree by replacing each vertex by a ring, two rings sharing a vertex if and only
if the corresponding vertices of the tree are adjacent. Another definition is
that a tree of rings is a 2-edge-connected edge-outerplanar graph.

The polynomial reduction given in [25] shows that MaxEDP (and thus
MaxIMF) is NP-hard and APX -hard in edge-outerplanar graphs. More-
over, Erlebach shows that this also holds in trees of rings and gives a 3-
approximation algorithm for unit capacitated MaxUSF in these graphs [18].
We now show how to obtain 4-approximation algorithms for both MaxIMF
and MinMC in edge-outerplanar graphs. The idea is to use the algorithm
given in Section 3. Given an edge-outerplanar (connected) graph G, we de-
note by Ri, i ∈ {1, . . . , ρ}, its ith cycle (ring). Then, for each i, we remove
the edge ei in Ri having the smallest capacity among all the edges in Ri. This
way, we obtain a maximum weight spanning tree T ofG, and we can compute
an integer multiflow FT and a multicut CT for T such that ‖CT ‖ ≤ 2‖FT ‖
by using the algorithm given in [25]. Eventually, we construct a multicut
CG for G: for each cycle Ri, we select the edge ei in CG if and only if there is
another edge of Ri in CT . Moreover, we add in CG all the edges of CT . We
have ‖CG‖ = ‖CT ‖ +

∑
ei / there is an edge of Ri in CT

c(ei) ≤ 2‖CT ‖ ≤ 4‖FT ‖.
It is easily seen that CG is indeed a multicut for G, since, for each edge
ei = (ai, bi) not selected in CG, there exists a path from ai to bi in T (i.e.,
a path in Ri that does not cross ei). This implies:

Theorem 6. In edge-outerplanar graphs, the integrality gap for MaxIMF
(resp. MinMC) is at most 4. Moreover, a solution for MaxIMF (resp.
MinMC) achieving this ratio can be computed in polynomial time.

Note that Theorem 6 also holds for MaxUSF. Moreover, this theorem
shows that the integrality gap for MaxIMF shrinks to a factor of 4 when
the maximum inside degree is at most 2, while it can be as large as

√
n when

the maximum degree is 3 [25, p. 17].
Finally, the family of instances given in Figure 4 proves that our analysis

is tight, since there exist instances where ‖CG‖ is equal to 4‖FT ‖ (by setting
d = 2). Nevertheless, this does not necessarily imply that the integrality
gaps given for MaxIMF and MinMC in Theorem 6 are tight.

6 Conclusion

In this paper, we have generalized all the results obtained for trees by
Garg, Vazirani and Yannakakis to graphs with a fixed cyclomatic number.

18

In particular, this implies that, in these graphs, MaxEDP is polynomial-
time solvable and MaxIMF has an integrality gap bounded by two times
one plus the cyclomatic number. It is worth mentioning that our algo-
rithmic approaches are simple and directly rely on algorithms for trees, so
any improvement for these algorithms (improved running times, paralleliza-
tion, online versions, etc.) can immediately be used for ours. Moreover,
we have shown that other classical generalizations do not lead to results
such as ours. We have also introduced a new class of planar graphs, the
k-edge-outerplanar graphs. We have proved that the integrality gap for
MaxEDP is bounded in these graphs and have shown how they are related
to k-outerplanar graphs. Furthermore, we have shown that the integrality
gap for MaxIMF is bounded by 4 in edge-outerplanar graphs (or cacti), a
class of graphs that generalizes the trees of rings.

However, there are still interesting open problems for which no significant
progress has been made: can we improve the O(

√
n) approximation ratio for

MaxEDP in planar graphs, or can an inapproximability result stronger than
APX -hardness be proved for this problem? And what about the general
graphs? Turning back to our results, one may also explore further the fixed-
parameter tractability of MaxEDP [17]. Furthermore, is the integrality gap
for MaxEDP or MaxIMF bounded by a constant in k-outerplanar graphs,
or even in bounded tree-width graphs? Finally, the last open problem we
would like to mention concern the k-edge-outerplanar graphs. Given a planar
graph, Bienstock and Monma have shown that a k-outerplanar embedding
for which k is minimal can be found in polynomial time [6]. It would be
interesting to find, if such exists, a similar result for k-edge-outerplanar
graphs.

Acknowledgements

The author thanks the anonymous referees for their useful comments
and remarks.

References

[1] M. Andrews, J. Chuzhoy, S. Khanna and L. Zhang. Hardness of the
undirected edge-disjoint paths problem with congestion. Proceedings
FOCS 05 (2005).

[2] B.S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM 41 (1994) 153–180.

[3] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint
paths and related routing and packing problems. Math. Oper. Res. 25
(2000) 255–280.

19

[4] C. Bentz. Edge disjoint paths and max integral multiflow/min multicut
theorems in planar graphs. Proceedings 7th International Colloquium
on Graph Theory (ICGT ’05), Electronic Notes in Discrete Mathemat-
ics 22 (2005) 55–60.

[5] C. Bentz. On the complexity of the multicut problem in bounded tree-
width graphs and digraphs. Discrete Applied Mathematics 156 (2008)
1908–1917.

[6] D. Bienstock and C. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica 5 (1990)
93–109.

[7] H.L. Bodlaender. Planar graphs with bounded treewidth. Technical Re-
port RUU-CS-88-14, Utrecht University, The Netherlands (1988).

[8] G. Călinescu, C.G. Fernandes and B. Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width.
Journal of Algorithms 48 (2003) 333–359.

[9] P. Carmi, T. Erlebach and Y. Okamoto. Greedy edge-disjoint paths in
complete graphs. Proceedings 29th International Workshop on Graph
Theoretic Concepts in Computer Science. LNCS 2880 (2003) 143–155.

[10] C. Chekuri and S. Khanna. Edge disjoint paths revisited. Proceedings
SODA 03 (2003).

[11] C. Chekuri, S. Khanna and B. Shepherd. Edge-disjoint paths in planar
graphs. Proceedings 45th IEEE FOCS (2004).

[12] C. Chekuri, S. Khanna and B. Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. Proceedings STOC 05 (2005).

[13] C. Chekuri, S. Khanna and F.B. Shepherd. An O(
√
n)-approximation

and integrality gap for disjoint paths and UFP. Theory of Computing
2 (2006) 137–146.

[14] C. Chekuri, S. Khanna and F.B. Shepherd. Edge-disjoint paths in pla-
nar graphs with constant congestion. Proceedings STOC 06 (2006).

[15] C. Chekuri, S. Khanna and F.B. Shepherd. A note on multiflows and
treewidth. To appear in Algorithmica (2007).

[16] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour and M.
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing 23 (1994) 864–894.

[17] R.G. Downey and M.R. Fellows. Parameterized complexity (1999).
Springer-Verlag. New York.

20

[18] T. Erlebach. Approximation algorithms and complexity results for path
problems in trees of rings. Proceedings 26th International Symposium
on Mathematical Foundations of Computer Science. LNCS 2136 (2001)
351–362.

[19] S. Even, A. Itai and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput. 5 (1976) 691–703.

[20] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics 8 (1956) 339–404.

[21] A. Frank. Edge-disjoint paths in planar graphs. Journal of Combinato-
rial Theory, Series B 39 (1985) 164–178.

[22] A. Frank. Packing paths, circuits and cuts – a survey. In B. Korte, L.
Lovász, H. J. Prömel and A. Schrijver. Paths, Flows and VLSI-Layout.
Algorithms and combinatorics 9 (1990) 47–100. Springer-Verlag. Berlin.

[23] A. Frieze. Edge-disjoint paths in expander graphs. SIAM Journal on
Computing 30 (2000) 1790–1801.

[24] N. Garg, V.V. Vazirani and M. Yannakakis. Approximate max-flow
min-(multi)cut theorems and their applications. SIAM Journal on Com-
puting 25 (1996) 235–251.

[25] N. Garg, V.V. Vazirani and M. Yannakakis. Primal-dual approxima-
tion algorithms for integral flow and multicut in trees. Algorithmica 18
(1997) 3–20.

[26] A.M.H. Gerards and B. Shepherd. Preselecting homotopies for the
weighted disjoint paths problem. Manuscript (1993). Available at:
http://www.math.mcgill.ca/∼bshepherd/PS/homotopy.ps

[27] D. Hartvigsen. The planar multiterminal cut problem. Discrete Applied
Mathematics 85 (1998) 203–222.

[28] J. Kleinberg and É. Tardos. Disjoint paths in densely embedded graphs.
Proceedings 36th IEEE FOCS (1995) 52–61.

[29] J. Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, MIT, Cambridge, MA (1996).

[30] J. Kleinberg and É. Tardos. Approximations for the disjoint paths prob-
lem in high-diameter planar networks. Journal of Computer and System
Sciences 57 (1998) 61–73.

[31] S. Kolliopoulos and C. Stein. Approximating disjoint-paths using
greedy algorithms and packing integer programs. Proceedings IPCO
98 (1998).

21

[32] P. Kolman and C. Scheideler. Improved bounds for the unsplittable flow
problem. Proceedings SODA 02 (2002), 184–193.

[33] P. Kolman. A note on the greedy algorithm for the unsplittable flow
problem. Information Processing Letters 88 (2003) 101–105.

[34] E. Korach and M. Penn. A fast algorithm for maximum integral two-
commodity flow in planar graphs. Discrete Applied Mathematics 47
(1993) 77–83.

[35] J.B. Kruskal. On the shortest spanning subtree of a graph and traveling
salesman problem. Proc. Amer. Math. Soc. 7 (1956) 48–50.

[36] D. Marx. Eulerian disjoint paths problem in grid graphs is NP-complete.
Discrete Applied Mathematics 143 (2004) 336–341.

[37] M. Middendorf and F. Pfeiffer. On the complexity of the disjoint paths
problem. Combinatorica 13 (1993) 97–107.

[38] T. Nishizeki, J. Vygen and X. Zhou. The edge-disjoint paths problem is
NP-complete for series-parallel graphs. Discrete Applied Mathematics
115 (2001) 177–186.

[39] K. Obata. Approximate max-integral-flow/min-multicut theorems. Pro-
ceedings STOC 04 (2004).

[40] H. Okamura and P.D. Seymour. Multicommodity flows in planar
graphs. Journal of Combinatorial Theory, Series B 31 (1981) 75–81.

[41] P. Raghavan. Probabilistic construction of deterministic algorithms:
approximating packing integer programs. Journal of Computer and Sys-
tem Sciences 37 (1988) 130–143.

[42] S. Rao and S. Zhou. Edge disjoint paths in moderately connected
graphs. Proceedings ICALP 06 (2006), 202–213.

[43] N. Robertson and P.D. Seymour. Graph minors II: algorithmic aspects
of tree-width. Journal of Algorithms 7 (1986) 309–322.

[44] N. Robertson and P.D. Seymour. Graphs minors XIII: the disjoint paths
problem. J. Combin. Theory, Ser. B, 63 (1995) 65–110.

[45] É. Tardos and V.V. Vazirani. Improved bounds for the max-flow min-
multicut ratio for planar and Kr,r-free graphs. Inform. Process. Lett.
47 (1993) 77–80.

22

