
A SIMPLE ALGORITHM FOR MULTICUTS IN PLANAR
GRAPHS WITH OUTER TERMINALS

Cédric Bentz∗

Abstract

Given an edge-weighted graph G and a list of source-sink pairs of
terminal vertices of G, the minimum multicut problem consists in se-
lecting a minimum weight set of edges of G whose removal leaves no
path from the ith source to the ith sink, for each i. Few tractable
special cases are known for this problem. In this paper, we give a sim-
ple polynomial-time algorithm solving it in undirected planar graphs
where (I) all the terminals lie on the outer face and (II) there is a
bounded number of terminals.

Keywords: Multicuts, Planar graphs, Graph algorithms.

1 Introduction

In this note, we study the polynomial-time solvability of the minimum
multicut problem in planar undirected graphs.

Assume we are given an n-vertex graph G = (V,E), a weight function
c : E → Z+ on the edges of G and a list N of pairs (source si, sink s′i)
of terminal vertices. The minimum multicut problem (MinMC) consists in
selecting a minimum weight set of edges whose removal leaves no path from
si to s′i for each i. The minimum multiterminal cut problem (MinMTC) is
a special case of MinMC in which, given a set of vertices T = {t1, . . . , t|T |},
the terminal pairs are (ti, tj) for i 6= j.

For |N | = 1, MinMC is equivalent to the minimum cut problem, and
therefore is polynomial-time solvable both in directed and in undirected
graphs [7]. For the same reason, MinMTC is polynomial-time solvable for
|T | = 2 in undirected graphs. Unfortunately, MinMTC becomes NP-hard,
and even APX -hard, as soon as |T | = 3 in undirected graphs [5], and as soon
as |T | = 2 in directed graphs [11]. This implies that MinMC is APX -hard
for fixed |N | ≥ 3 in undirected graphs, and for fixed |N | ≥ 2 in directed
graphs. Note, however, that MinMC is tractable in undirected graphs when
|N | = 2 [19].
∗LRI, Univ. Paris-Sud and CNRS, Orsay, F-91405.

Phone: +33 (0) 1 69 15 31 06. E-mail address: cedric.bentz@lri.fr

1

For an arbitrary number of source-sink pairs, MinMC is tractable in
paths and in chains, but APX -hard even in unweighted stars [10]. How-
ever, when |N | is fixed, it becomes tractable in trees, and even in bounded
tree-width graphs [2]. Moreover, there is a polynomial-time approximation
scheme (PTAS) for MinMC in unweighted undirected graphs of bounded
tree-width and bounded degree, but dropping any of these three assump-
tions leads to APX -hardness (instead of NP-hardness only) [3]. There
also exists an O(log |N |)-approximation algorithm for MinMC in general
graphs [9] and an O(1)-approximation algorithm in planar graphs [18].

In this note, we show that MinMC is polynomial-time solvable in planar
graphs where (I) all the terminals lie on the outer face (we shall say in this
case that the graph has outer terminals) and (II) |N | is fixed. We also give
a linear-time algorithm for the special case where |N | = 2.

The interest of this result may follow from several reasons. First, it
generalizes the result for trees given in [10] and is, to our best knowledge,
the first tractability result for MinMC in graphs more general than trees
(and with unbounded tree-width). Second, it should be noticed once again
that MinMC remains APX -hard if the graph is not planar (even for |N | =
3) [5], or if |N | is not fixed (even in trees) [10]. This latter result implies
the NP-hardness of MinMC in planar graphs with outer terminals and
arbitrary |N |, while MinMTC is tractable in this case (this follows from a
nice reduction to a tractable special case of the Steiner tree problem) [4].
Third, MinMTC, which is a special case of MinMC, is tractable in planar
graphs if |N | is fixed (it is NP-hard otherwise) [5, 12]. As a comparison,
the complexity of MinMC in planar graphs is still open when |N | is fixed:
the case studied in this paper is thus a natural special case of this more
general (open) case. Indeed, several flow and cut problems have already
been efficiently solved in planar graphs with outer terminals, although they
were much harder in “general” planar graphs [4, 8, 14, 15, 16].

Furthermore, an interesting feature of our approach is that it relies on
a (new) reduction from MinMC to MinMTC. Such a reduction was given
in [5], but unfortunately the authors observed that it did not preserve pla-
narity: we modify their reduction slightly and show that, in planar graphs
with outer terminals, this new reduction does preserve planarity. To our best
knowledge, such a planarity-preserving reduction was not known before.

For the sake of simplicity, all the (planar) graphs considered in this
paper are simple (i.e., with no parallel edges), loopless, connected (if this
is not the case, we consider each connected component independently), and
already embedded in the plane without crossings. Moreover, any time we
say that some (new) edge is heavy or that some (new) edge weight is equal
to +∞, we mean that the edge weight is equal to a sufficiently large integer,
e.g., 1 +

∑
e∈E c(e), where E is the initial edge set.

2

2 Description of the algorithm

We now present our algorithm. The basic idea for it is simple: we
wish to reduce, in polynomial time, a planar MinMC instance with outer
terminals to a planar MinMTC instance (or, more precisely, to a set of
planar MinMTC instances). Obviously, we also want the planar MinMTC
instance(s) to have a fixed number of terminals (as the MinMC instance
does). Then, we can use any algorithm solving MinMTC in planar graphs
in polynomial time for fixed |T |, such as the ones in [5, 12], to solve our initial
instance of MinMC in polynomial time. Therefore, we begin by describing
our planarity-preserving reduction.

2.1 A reduction that preserves planarity

In [5], a general reduction from MinMC to MinMTC was presented.
More precisely, it was shown that any MinMC instance can be solved by

solving at most (
√

2|N |+1)2|N|

(
√

2|N |+1)!
MinMTC instances. Indeed, in any optimal

solution S for the initial MinMC instance I, the 2|N | terminals are clustered
in q ≤

√
2|N | + 1 sets (or clusters), such that (a) each cluster does not

contain both si and s′i for each i, (b) each cluster is separated from all the
other clusters by the edges of S, and (c) for each pair of clusters, there is
an i such that si is in one cluster and s′i is in the other (otherwise, we can
merge the two clusters and still have a valid clustering, i.e., one that satisfies
(a) and (b)). Given this clustering, for each cluster, we add one new vertex
(called a cluster vertex) linked by a new heavy edge (called a cluster edge)
to every terminal contained in this cluster in order to transform the MinMC
instance I into a MinMTC instance I ′ where the terminals are the cluster
vertices. We have opt(I) = opt(I ′) (where, given any instance J , opt(J) is
the optimal value for J). Indeed, opt(I ′) ≤ opt(I) since S is a solution for
I ′, and opt(I) ≤ opt(I ′) since any solution for I ′ is a solution for I. Hence,
whenever |N | is fixed and such instances of MinMTC are polynomial-time
solvable, one can solve in polynomial time the corresponding instances of
MinMC by trying all the possible clusterings and, for each one of them,
solving a MinMTC instance. The main drawback of this technique is that
it does not necessarily preserve planarity (as it can be easily seen).

We now define another reduction, which is in fact a refinement of the
previous one: in any optimal solution of a MinMC instance, any terminal
belongs to a connected component of the graph obtained by removing the
edges of this solution. Therefore, the idea is to consider only clusterings
associated with these connected components. In other words, for any op-
timal solution S, we define the clustering associated with (the connected
components of) S as follows: Ti, the ith cluster of the clustering, contains
the terminals lying in the ith connected component. We shall see that

3

this particular clustering, which satisfies (a) and (b), has nice properties.
However, since it does not necessarily satisfy (c), it can contain more than√

2|N | + 1 clusters (actually, it can contain Ω(|N |) clusters), and so our
reduction needs to enumerate more clusterings than the general reduction
described above. Before proving that our reduction preserves planarity, we
make some preliminary remarks and give some definitions.

2.2 Obtaining a 2-vertex-connected graph

We consider an arbitrary instance of planar MinMC. Without loss of
generality, we first assume that all the terminal vertices are distinct (if this
is not the case, it is quite an easy job to make this assumption hold). Let
us show that we can also assume without loss of generality that the graph
of this instance is 2-vertex-connected (which will imply that the boundary
of the outer face is a unique cycle). Indeed, we can transform the graph
into a 2-edge-connected graph by doubling all edge weights (and thus, all
weights become even), and then by replacing every edge (u, v) (with weight
c(u, v)) by four edges (u, w), (w, v), (u, w′) and (w′, v), where w and w′ are
two new vertices, of respective weights c(u,v)

2 , +∞, c(u,v)
2 and +∞ (hence, we

double the value of any solution, and so, in particular, the optimal value).
Then, we replace any articulation vertex (i.e., any vertex whose removal
disconnects the graph) by a cycle with heavy edges (let us call such a cycle
an articulation cycle), containing one vertex for each edge that was adjacent
to the initial vertex. Eventually, we make the ith edge initially adjacent to
the articulation vertex adjacent to the ith vertex of the articulation cycle.
In order to preserve planarity, we must do this in such a way that the order
of the edges corresponds to the order that one gets, for instance, by visiting
these edges clockwise (assuming that the graph is embedded in the plane
without crossings). If there was a terminal ti on the articulation vertex,
then in this new graph we will make ti lie on one of the vertices of the
corresponding articulation cycle that are on the outer face (there are two
such vertices for each inclusion-wise maximal 2-vertex-connected component
where ti lies in the initial graph). This transformation, which is well-defined
(the articulation cycle being a cycle of length at least 4) and can be done in
linear time, is illustrated in Figure 1.

We also need to number the vertices on the outer face. The numbering
of a vertex v will be denoted by n(v). To do this numbering, start from an
arbitrary vertex of the outer face (which shall thus be the vertex numbered
1), then number the other vertices 2, 3, . . . , by following the order obtained
by visiting the outer face clockwise. (This way, since all terminal vertices are
distinct, no two of them have the same number.) To simplify the notations,
given two vertices u and v lying on the outer face such that n(u) < n(v),
we denote by p(u, v) the vertices of the chain linking u to v on the outer
face (i.e., the vertices w of the outer face such that n(u) ≤ n(w) ≤ n(v)).

4

t i
t i

Figure 1: Transforming an articulation vertex into an articulation cycle (the
big black vertices are the ones of the new cycle that lie on the outer face).

Sometimes, we shall even abuse notation and write p(u, v) for this chain
itself.

2.3 Proof of the algorithm

In this section, we prove our main result. We begin with a useful lemma:

Lemma 1. Given a planar MinMC instance with outer terminals, any clus-
tering of the terminals associated with an optimal solution of this instance
is such that, for any pair of clusters Ti and Tj with i 6= j, for any pair of
terminals vi and v′i of Ti (with n(vi) < n(v′i)) and for any pair of terminals
vj and v′j of Tj (with n(vj) < n(v′j)), we have:

p(vi, v
′
i) ∩ p(vj , v

′
j) = ∅ or p(vi, v

′
i) ⊂ p(vj , v

′
j) or p(vj , v

′
j) ⊂ p(vi, v

′
i). (1)

Proof. Take any optimal solution for this MinMC instance, and define
vi, v

′
i, vj and v′j as above. First, we have vi 6= vj (for instance), so we can-

not have p(vi, v
′
i) = p(vj , v

′
j). Moreover, if we had p(vi, v

′
i) ∩ p(vj , v

′
j) 6= ∅,

p(vi, v
′
i) * p(vj , v

′
j) and p(vj , v

′
j) * p(vi, v

′
i), then this would imply w.l.o.g.

that the four vertices vi, v
′
i, vj , v

′
j are such that n(vi) < n(vj) < n(v′i) <

n(v′j). However, since the solution we consider is optimal, and since vi and
v′i (resp. vj and v′j) belong to the same cluster (of the clustering associated
with this solution), they belong to the same connected component once the
edges of the solution have been removed. Hence, there does exist a chain
between vi and v′i and a chain between vj and v′j . By assumption, these two
chains must be vertex-disjoint (otherwise, the four vertices would be in the
same connected component), but, by the planarity of the graph and the fact
that the terminals lie on the outer face, this is not possible (see [17] for a
complete proof of this fact). Lemma 1 follows.

5

This lemma shows that the clusterings we are interested in correspond,
in fact, to laminar families [13, Chapter 2.2] of the set of vertices lying on
the outer face: actually, the set to be considered for each cluster Ti are the
vertices of p(ui, vi), where n(ui) = minw∈Ti n(w) and n(vi) = maxw∈Ti n(w).
It is known that any laminar family can be represented by a tree: here, the
terminals are the leaves, each other node corresponds to a cluster, and the
father of a node, associated with a set of terminals, is the smallest cluster
that strictly contains all these terminals.

It is then easy to show that, when adding cluster vertices and edges
to any clustering satisfying Property (1), we obtain a planar MinMTC in-
stance with a bounded number of terminals (one for each cluster). Indeed,
it suffices to show that, given such a clustering, we can add the cluster ver-
tex and edges corresponding to one of the “minimal” clusters Ti (and then
remove Ti from the list of the clusters) in such a way that the graph re-
mains planar and the terminals lying in all the other clusters are still on
the outer face: by induction, this will yield the desired MinMTC instance.
Here, “minimal” means that p(ui, vi) contains only terminals in Ti, where
n(ui) = minw∈Ti n(w) and n(vi) = maxw∈Ti n(w), and such a cluster always
exists when (1) holds. One way of doing this is to draw a curve from ui

to vi (assuming |Ti| ≥ 2, since otherwise there is nothing to do) lying on
the outer face (let us call it a cluster curve), in such a way that this curve
is homotopic to p(ui, vi) with respect to the outer face (i.e., it can be con-
tinuously transformed into p(ui, vi) without being blocked by the boundary
of the outer face when doing so). Then, choose any point on this curve,
and make the cluster vertex lie on it. Finally, link all the terminals in Ti to
this point (vertex) by curves (edges), such that no two curves are crossing
and all the curves are contained in the plane region bounded by p(ui, vi)
and the cluster curve (this can be easily done). The obtained graph is as
required. This may be seen as actually constructing the tree associated with
the laminar family corresponding to the clustering.

It is worth noticing that the planar MinMTC instance we obtain when
adding cluster vertices and edges does not necessarily have outer terminals:
hence, we cannot use the algorithm given in [4]. Also notice that Property
(1) is necessary (for a clustering to be associated with an optimal solution
of a MinMC instance), but it is clearly not sufficient.

To summarize our approach, we only need to enumerate all the cluster-
ings satisfying (a) and containing at most 2|N | clusters (since the graph
obtained by removing the edges of any optimal multicut cannot have more
than 2|N | connected components), and, for each one of them, to check if
Property (1) holds (since otherwise, by Lemma 1, this clustering cannot be
associated with an optimal solution). If it does hold, we compute the best
solution associated with this clustering by reducing the initial MinMC in-
stance to a planar MinMTC instance.

6

Therefore, our algorithm for MinMC is as follows:

• For each clustering satisfying (a) and containing at most 2|N | clusters:

– If the current clustering does not satisfy Property (1), reject it;

– Otherwise, transform the instance into a planar MinMTC in-
stance, and solve this new instance by using your favorite algo-
rithm (e.g., one of the two given in [5, 12]). Keep the solution
obtained only if it is better than the best one found until now;

• At the end of the algorithm, output the best computed solution.

The running time of the step where we check whether Property (1) holds
being small compared to the one needed to solve the MinMTC instance
(more details are given in the next section), the whole running time is
bounded by the number of potential clusterings (a constant, since |N | is
fixed) times the running time of the algorithm used to solve the MinMTC
instance (which is polynomial [5, 12]). Therefore, we have proved:

Theorem 1. MinMC is polynomial-time solvable in planar graphs with
outer terminals, if the number of terminals is fixed.

It can be noticed, in particular, that this includes the cacti, and even
the outerplanar graphs, with a fixed number of terminals.

2.4 Some remarks on the time complexity

In this section, we discuss some implementation details for the algorithm
described in the previous section.

First, while checking whether (a) holds can easily be done in O(|N |)
time, checking whether a given clustering satisfies Property (1) can be done
in O(|N |4) time (it means that this time is dominated by the running time
of Hartvigsen’s algorithm, which is O(|N |4|N |n2|N |−4 log n), and which is
better than the one of Dahlhaus et al.’s algorithm). Indeed, we have to
consider every pair of clusters Ti and Tj (there are O(|N |) clusters, and thus
O(|N |2) pairs to be considered) and every combination of pairs of vertices
vi, v

′
i of Ti and of pairs of vertices vj , v

′
j of Tj . A naive implementation leads

to a running time of O(|N |6). However, it is not difficult to show that,
given two clusters Ti and Tj , it is sufficient to consider the pairs vi, v

′
i ∈ Ti

and vj , v
′
j ∈ Tj such that there is no w satisfying (i) w ∈ Ti and n(vi) <

n(w) < n(v′i) or (ii) w ∈ Tj and n(vj) < n(w) < n(v′j), since, if we had
n(vi) < n(vj) < n(v′i) < n(v′j) and if such a w existed, this would yield
(iii) w ∈ Ti and either n(vi) < n(vj) < n(w) < n(v′j) or n(w) < n(vj) <
n(v′i) < n(v′j), or (iv) w ∈ Tj and either n(vi) < n(w) < n(v′i) < n(v′j) or

7

n(vi) < n(vj) < n(v′i) < n(w): as a consequence, we could replace one of
the four terminals vi, v

′
i, vj , v

′
j by w.

So, actually, only O(|N |) pairs of terminals have to be considered in Ti
(the pairs of terminals vi, v

′
i with n(vi) < n(v′i) such that there is no w ∈ Ti

satisfying n(vi) < n(w) < n(v′i)) and only O(|N |) pairs of terminals have to
be considered in Tj . Finally, given vi, v

′
i ∈ Ti and vj , v

′
j ∈ Tj (with n(vi) <

n(v′i) and n(vj) < n(v′j)), deciding whether vi, v
′
i, vj , v

′
j satisfy Property

(1) can be done in constant time by checking whether n(vi) < n(v′i) <
n(vj) < n(v′j), or whether n(vj) < n(v′j) < n(vi) < n(v′i), or whether
n(vi) < n(vj) < n(v′j) < n(v′i), or whether n(vj) < n(vi) < n(v′i) < n(v′j).
This implies that O(|N |2 · |N | · |N |) = O(|N |4) comparisons are needed to
decide whether Property (1) holds or not.

As already observed, this enables us to conclude that the running time
is dominated by the time needed to enumerate all the clusterings times
the complexity of the algorithm used to solve the MinMTC instances.
Hartvigsen’s algorithm is theoretically the most efficient, but in fact the
time complexities of the two algorithms differ only by small factors, and
both are huge (although polynomial) even for reasonable values of k. It
would be worth improving them.

It should be noticed that we assume here that the enumeration of all the
valid clusterings is done as described in Section 2.3, i.e., by enumerating all
the clusterings containing at most 2|N | clusters, and then checking, for each
one of them, whether Property (1) holds. However, it may be possible that
specific algorithms for enumerating laminar families of a ground set (based,
for instance, on the relationship between laminar families and trees) result
in better running times for this enumeration step. In any case, as we already
pointed out, the bottleneck in the complexity of our algorithm is the time
needed to solve the MinMTC instances.

Finally, the running time of our algorithm can be improved to linear
if there are only two terminal pairs (recall that the minimum cut problem
is linear-time solvable in planar graphs if the source and sink lie on the
outer face [4], and can be solved in O(n log n) time otherwise [5]). In this
configuration, removing the edges of any optimal solution leaves two or
three connected components, so we have to try both possibilities. Indeed,
let us prove that it cannot leave four components. Assume it can. Then,
for i ∈ {1, 2}, let Vi and V ′i denote the set of vertices of the connected
component containing si and s′i respectively. For each i, we know that any
edge of this solution adjacent to a vertex of Vi has to be adjacent to a vertex
of V ′i (and vice-versa), since otherwise this edge would be useless, and so
would not belong to an optimal solution. Therefore, no edge adjacent to
a vertex in V1 ∪ V ′1 is adjacent to a vertex in V2 ∪ V ′2 : this is not possible,
because we assumed the initial graph to be connected.

8

In the case of two components, the associated clustering can be either
{{s1, s

′
2}, {s′1, s2}} or {{s1, s2}, {s′1, s′2}}: denote it by {{a, b}, {c, d}}. The

four terminals lie on the outer face in the order a, b, c, d, since they must
satisfy Property (1). Hence, the instance can be reduced to a planar mini-
mum cut instance with outer source and sink (by linking a new source to a
and b and a new sink to c and d), and solved in linear time.

In the case of three connected components, the associated clustering
can be {{s1}, {s2}, {s′1, s′2}}, {{s′1}, {s′2}, {s1, s2}}, {{s1}, {s′2}, {s′1, s2}} or
{{s′1}, {s2}, {s1, s

′
2}}. Denote this clustering by {{a}, {b}, {c, d}}. Without

loss of generality, the four terminals lie on the outer face in the order a, b, c, d
or a, c, b, d. If they lie in the order a, b, c, d, the instance can be reduced to
a planar MinMTC instance with three terminals, all lying on the outer
face (by linking c and d to a new terminal), and solved in linear time [4].
(Alternatively, it can also be solved in linear time as a planar minimum cut
instance with outer source and sink, separating a, b from c, d.) Otherwise,
an optimal multicut consists of two cuts: one separating a from b, c, d, the
other separating b from a, c, d. These two cuts are necessarily disjoint, since
otherwise they would partition the graph into four connected components,
which, as was already pointed out, is not possible. Hence, the instance can
be solved by solving two planar minimum cut instances with outer source
and sink: the first instance is obtained by linking b, c, d to a new sink (a
being the source), the second one by linking a, c, d to a new sink (b being the
source). The optimal multicut is then the union of these two simple cuts,
and can thus be obtained in linear time.

3 Open problems

A lot of problems related to ours are still open. For instance, we leave
as open the complexity of MinMC in planar graphs when |N | is fixed. We
also leave as open the problem of designing an FPT [6] algorithm for the
problem considered in this paper (our algorithm is clearly not FPT, since
the ones given in [5, 12] are not; however, it would be if one of them was).

Another question to consider is whether there exists a polynomial-time
approximation scheme (PTAS) for planar MinMTC: the problem is known
to be NP-hard [5], but not APX-hard. However, although MinMTC is
tractable in k-outerplanar graphs (since, according to [5], it can be solved in
polynomial time in bounded tree-width graphs), it seems that the general
framework for designing PTASs developed in [1] and based on a decomposi-
tion of the planar graph into a set of k-outerplanar graphs (one gets optimal
solutions for the k-outerplanar graphs, and then combines them into a sin-
gle solution) cannot be easily applied to MinMTC, since gluing the pieces
together does not always yield a multiterminal cut for the whole graph.

9

Acknowledgments

The author thanks the anonymous referees for their useful remarks and
comments.

References

[1] B.S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM 41 (1994) 153–180.

[2] C. Bentz. On the complexity of the multicut problem in bounded tree-
width graphs and digraphs. Disc. Appl. Math. 156 (2008) 1908–1917.

[3] G. Călinescu, C.G. Fernandes and B. Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width.
Journal of Algorithms 48 (2003) 333–359.

[4] D.Z. Chen and X. Wu. Efficient algorithms for k-terminal cuts on planar
graphs. Algorithmica 38 (2004) 299–316.

[5] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour and M.
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing 23 (1994) 864–894.

[6] R.G. Downey and M.R. Fellows. Parameterized Complexity (1999).
Springer-Verlag. New York.

[7] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics 8 (1956) 339–404.

[8] A. Frank. Edge-disjoint paths in planar graphs. J. Comb. Theory, Series
B 39 (1985) 164–178.

[9] N. Garg, V.V. Vazirani and M. Yannakakis. Approximate max-flow
min-(multi)cut theorems and their applications. SIAM Journal on Com-
puting 25 (1996) 235–251.

[10] N. Garg, V.V. Vazirani and M. Yannakakis. Primal-dual approxima-
tion algorithms for integral flow and multicut in trees. Algorithmica 18
(1997) 3–20.

[11] N. Garg, V.V. Vazirani and M. Yannakakis. Multiway cuts in node
weighted graphs. Journal of Algorithms 50 (2004) 49–61.

[12] D. Hartvigsen. The planar multiterminal cut problem. Discrete Applied
Mathematics 85 (1998) 203–222.

10

[13] B. Korte and J. Vygen. Combinatorial Optimization. Volume 21, Algo-
rithms and Combinatorics (2000). Springer-Verlag.

[14] R. Möhring, D. Wagner and F. Wagner. VLSI network design: a survey.
M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser (editors),
Handbooks in Operations Research/Management Science, Volume on
Networks (1995). Elsevier.

[15] H. Okamura and P.D. Seymour. Multicommodity flows in planar
graphs. Journal of Combinatorial Theory, Series B 31 (1981) 75–81.

[16] J.S. Provan and R.C. Burk. Two-connected augmentation problems in
planar graphs. Journal of Algorithms 32 (1999) 87–107.

[17] N. Robertson and P.D. Seymour. Graph minors VI: disjoint paths across
a disc. J. Combinatorial Theory, Series B 41 (1986) 115–138.

[18] É. Tardos and V.V. Vazirani. Improved bounds for the max-flow min-
multicut ratio for planar and Kr,r-free graphs. Inform. Process. Lett.
47 (1993) 77–80.

[19] M. Yannakakis, P. Kanellakis, S. Cosmadakis and C. Papadimitriou.
Cutting and partitioning a graph after a fixed pattern. Proceedings
ICALP, Lecture Notes in Computer Science 154 (1983) 712–722.

11

