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Abstract

Given an edge- or vertex-weighted graph or digraph and a list of
source-sink pairs, the minimum multicut problem consists in selecting a
minimum weight set of edges or vertices whose removal leaves no path
from each source to the corresponding sink. This is a classical NP-
hard problem, and we show that the edge version becomes tractable in
bounded tree-width graphs if the number of source-sink pairs is fixed,
but remains NP-hard in directed acyclic graphs and APX -hard in
bounded tree-width and bounded degree unweighted digraphs. The
vertex version, although tractable in trees, is proved to be NP-hard
in unweighted cacti of bounded degree and bounded path-width.

Keywords: multicuts, NP-hardness, APX -hardness, bounded tree-
width.

1 Introduction

In this paper, we study the complexity of the well-known minimum mul-
ticut problem (MinMC). This problem is one of the fundamental problems
in graph theory, and has many applications [4].

Assume we are given a n-vertex m-edge (di)graph G = (V, E), a weight
function c : E → N∗ and a list N of pairs (source si, sink s′i) of terminal
vertices. Each pair (si, s

′
i) is a net. MinMC consists in selecting a minimum

weight set of edges (or arcs) whose removal disconnects each one of the nets
(si, s

′
i), i.e., leaves no (directed) path from si to s′i for each i. The minimum

multiterminal cut problem (MinMTC) is a particular minimum multicut
problem in which, given a set of ρ vertices {t1, . . . , tρ}, the nets are (ti, tj)
for i 6= j. Note that, for both problems, there exists a variant where we
want to remove vertices instead of edges (in this case, the weight function is
defined on the vertices, i.e., c : V → N∗), and that the graph can be directed
or undirected. Moreover, when removing vertices, we can allow to remove
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terminal vertices or not. We use the letters “V” and “E” to denote the vertex
and edge variants respectively, the letter “D” for the directed variant, and
the letter “U” (for unrestricted, as in [1]) when we allow to remove terminal
vertices. For instance, UVMinMC and DEMinMTC respectively denote
the unrestricted vertex (undirected) variant of MinMC and the directed
edge variant of MinMTC.

For |N | = 1, EMinMC is equivalent to the minimum cut problem, and
therefore is polynomial-time solvable both in directed and in undirected
graphs. However, MinMC and MinMTC become NP-hard (and even
APX -hard, see below for a definition) as soon as |N | = 3 both in undi-
rected and in directed graphs [5], and, for an arbitrary number of nets, EM-
inMC is NP-hard even in unweighted stars [10]. Moreover, DEMinMC is
polynomial-time solvable in directed trees (the constraint matrix being to-
tally unimodular) and DEMinMTC is polynomial-time solvable in directed
acyclic graphs [4]. Eventually, there is a polynomial-time approximation
scheme (PTAS) for EMinMC in unweighted graphs of bounded tree-width
and bounded degree, but dropping any of these three assumptions leads to
APX -hardness (instead of NP-hardness only) [1]. This PTAS also holds
for a variant of DEMinMC, called DEMinMC-SC, where the goal is to
remove a minimum weight set of arcs so that, for each i, no directed cycle
contains both si and s′i. Recall that a minimization problem is APX -hard
if there exists a real ε > 0 such that computing an (1 + ε)-approximation
for all instances of this problem is NP-hard, where, for a real α > 1, an
α-approximation is a feasible solution whose value is at most α times the op-
timal value. The main approximation results for MinMC are that it can be
approximated in polynomial time within O(log n) in undirected graphs [9]
(within 2 in undirected trees [10]) and within O(

√
n) in digraphs [12], while

for DEMinMC-SC an O(log2 |N |)-approximation algorithm is known [15].
See [4] for further results and references concerning MinMC and MinMTC.

The vertex variants are studied in [1], where it is proved that UVMinMC
is polynomial-time solvable in unweighted trees and admits a PTAS in
bounded tree-width unweighted graphs (actually, this PTAS is the basis
of the PTAS for EMinMC). Moreover, UVMinMC is NP-hard in series-
parallel graphs (i.e., in graphs of tree-width 2) with maximum degree 3, and
VMinMC is NP-hard in unweighted trees with maximum degree 4.

We show that EMinMC is tractable in bounded tree-width graphs when
|N | is fixed and that, although UVMinMC is known to be tractable in
trees, it is NP-hard in unweighted cacti of bounded degree and bounded
path-width (Sect. 3). Recall that a cactus is a graph where any edge lies on
at most one cycle. We also prove that, unlike DEMinMTC, DEMinMC is
NP-hard in directed acyclic graphs, even if the graph is restricted to be an
unweighted cactus of bounded in- and out- degrees (Sect. 4). Eventually,
we show that DEMinMC is APX -hard in bounded tree-width and bounded
degree unweighted digraphs (Sect. 4). We start with some useful definitions.
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2 Preliminaries

2.1 Definitions

In this section, we recall the definition of the tree-width of a graph. We
begin with the undirected case (see [17]):

Definition 1. Let G = (V, E) be an undirected graph. We say that a pair
Θ = (T, (Xw)w is a vertex of T), consisting of a tree T and of a multiset whose
elements Xw ⊆ V (called bags) are indexed by the vertices of T , is a tree
decomposition of G if it satisfies:

• ∀(u, v) ∈ E, there is a vertex w of T such that u ∈ Xw and v ∈ Xw;

• ∀v ∈ V , the vertices {w : v ∈ Xw} induce a connected subgraph of T .

The width of the tree decomposition Θ is equal to maxw is a vertex of T |Xw|−1
and the tree-width of G, denoted by tw(G), is the minimum of the widths
of all tree decompositions of G.

The trees are the graphs of tree-width 1. The path-width of a graph G
is defined as the smallest integer δ such that G admits a tree decomposition
of width δ where the tree T is a path.

We now define the tree-width notion for digraphs, which differs from the
one used for undirected graphs. As in [1], we use the definition given in [14].

Definition 2. An arboreal decomposition of a digraph D = (V, A) is a
triple (R, X, W ), where R = (U,F ) is a rooted tree, W = (Wr ⊆ V : r ∈ U)
is a partition of V , and X = (Xe ⊆ V : e ∈ F ) satisfies: if e = (a, b) ∈ F ,
then Ze =

⋃{Wr : r ∈ U is contained in the subtree of R rooted at a} is
such that any directed path (elementary or not) in D − Xe which starts
and ends in Ze is entirely contained in Ze. The width of (R, X, W ) is the
smallest integer δ such that


(⋃

e is adjacent to r Xe

)
∪Wr

 ≤ δ + 1 for all
r in U . The tree-width of D is the smallest integer δ such that D has an
arboreal decomposition of width δ.

The directed acyclic graphs are the digraphs of tree-width 0. Moreover,
given an undirected graph G of tree-width δ, the digraph obtained from G
by replacing every edge by two opposite arcs has directed tree-width δ.

2.2 A general scheme to prove the NP-hardness of MinMC

In [1], Călinescu et al. prove that EMinMC is NP-hard in unweighted
binary (undirected) trees. Although this result is interesting enough in itself,
its main interest lies in its proof. Indeed, the basic idea of this proof is quite
powerful, in the sense that it can easily be adapted to prove theNP-hardness
of MinMC in various special cases (for both edge and vertex variants). Since
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we will use this general idea in several of our own proofs, we detail in this
section the main properties that we shall need.

The reduction is from the NP-complete problem 3SAT [8], and we as-
sociate a gadget (called “variable gadget”) to each one of the ν variables xi

and a gadget (called “clause gadget”) to each one of the µ clauses Cj . All
these gadgets are vertex-disjoint, unweighted and linked together via a com-
mon path Q: each gadget is linked to a vertex of Q, and no two gadgets are
linked to the same vertex of Q. No terminal lies on Q, and a net is an intra-
gadget net if its two endpoints lie in the same gadget, an inter-gadget net
otherwise. The variable and clause gadgets have the following properties:

1. The ith variable gadget has two vertices labelled xi and x̄i. There is
a (intra-gadget) net between two vertices of this gadget and there are
two (mutually exclusive) ways of disconnecting this net by removing
one edge/vertex: in the first case, there remains a path from the vertex
labelled xi (for the sake of simplicity, we shall just say from xi) to the
vertices of Q; in the second case, there remains a path from (the vertex
labelled) x̄i to the vertices of Q;

2. The gadget of clause Cj = x̂a ∨ x̂b ∨ x̂c (where x̂i is xi or x̄i for each
i) has three particular vertices, labelled x̂a, x̂b and x̂c. There are two
(intra-gadget) nets between vertices of this gadget, and at least two
edges/vertices are needed in order to disconnect them (one for each
net). There are four (mutually exclusive) ways of disconnecting these
two nets by removing two edges/vertices: in the two first cases, there
remains a path from the vertices of Q to x̂a; in the third case, there
remains a path from the vertices of Q to x̂b, and in the fourth case
there remains a path from the vertices of Q to x̂c;

3. For each i, there is a (inter-gadget) net between the vertex labelled xi

(resp. labelled x̄i) in the ith variable gadget and every vertex labelled
xi (resp. labelled x̄i) in a clause gadget.

The intra-gadget nets guarantee that at least ν + 2µ edges/vertices are
required in any feasible multicut (one in each variable gadget and two in each
clause gadget). The inter-gadget nets guarantee that ν + 2µ edges/vertices
are enough if and only if there is a satisfying truth assignment (STA, for
short) for the corresponding instance of 3SAT. Indeed, if a STA exists, we
can construct an edge/vertex multicut of size ν + 2µ as follows:

• In the gadget of each variable xi, we remove (i.e., select in the multicut)
an edge/a vertex in such a way that there remains a path from xi to
the vertices of Q if and only if xi is false in the STA;

• In the gadget of each clause Cj , we remove two edges/vertices in such
a way that there remains a path from the vertices of Q to a vertex
labelled by a literal true in the STA.
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Conversely, if there exists a multicut of size ν + 2µ, then, necessarily,
there is one removed edge/vertex in each variable gadget and two in each
clause gadget. For each i, we set the variable xi to true if there remains a
path from x̄i to the vertices of Q, and to false otherwise. This way, we obtain
a STA. Indeed, given a clause gadget, one of the three vertices labelled by
literals in the gadget is such that there remains a path from the vertices of
Q to itself. Thus, if this literal is xj (resp. x̄j) for some j, then in the jth
variable gadget there must remain no path from xj (resp. x̄j) to the vertices
of Q. Hence xj is true (resp. false) in the STA, and the clause is satisfied.

This implies the NP-hardness of MinMC whenever we can build vari-
able and clause gadgets satisfying the required properties.

Remark 1. There may actually be additional ways of disconnecting the
intra-gadget net (resp. nets) of a variable (resp. clause) gadget by remov-
ing one edge/vertex (resp. two edges/vertices). These ways are different
from the “mutually exclusive ways” (which are needed anyway), and are not
necessarily mutually exclusive. However, these other ways must be such that:

• in the gadget of variable xi, there remains a path from at least one of
the two vertices xi and x̄i to the vertices of Q;

• in the gadget of clause Cj = x̂a ∨ x̂b ∨ x̂c, there remains a path from
the vertices of Q to at least one of the three vertices x̂a, x̂b and x̂c.

3 Undirected Graphs

In this section, we first prove that, for fixed |N |, EMinMC is polynomial-
time solvable in bounded tree-width graphs, while dropping any of the two
assumptions leads to NP-hardness and even to APX -hardness ([5], [10]).
We use as a basic step the following idea from [5]: EMinMC can be solved

by solving at most

(√
2|N |+1

)2|N|

(√
2|N |+1

)
!

instances of EMinMTC. Indeed, in any

optimal solution for an instance of EMinMC, the 2|N | terminals are clus-
tered in q ≤

√
2|N |+ 1 sets (or clusters), such that si and s′i do not belong

to the same cluster for each i and, for each pair of clusters, there is an i
such that si is in one cluster and s′i is in the other (otherwise, we can merge
the two clusters and still have a valid clustering). Given a clustering, for
each cluster, we add one new vertex (called a cluster vertex) linked by a new
edge (called a cluster edge and having a sufficiently large weight) to every
terminal contained in this cluster in order to transform the instance I of
EMinMC into an instance I ′ of EMinMTC (where the terminals are the
cluster vertices). Clearly, the optimal values of I ′ and I are equal, and any
optimal solution to I ′ is an optimal solution to I. It remains to solve I ′ in
polynomial time: in the general case, this is also an NP-hard problem (the
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authors of [5] introduced this transformation for approximation purposes).
When the graph has bounded tree-width, we show that this is easier.

Theorem 1. If |N | is fixed, EMinMC is polynomial-time solvable in graphs
with bounded tree-width.

Proof. We use the above transformation and the fact that, according to [5],
EMinMTC is polynomial-time solvable in graphs with bounded tree-width,
by standard dynamic programming techniques. Before adding the cluster
vertices and edges, the graph has bounded tree-width by assumption, but
we still have to prove that this remains true after they have been added. We
use the following easy lemma:

Lemma 1. Let G = (V, E) be a connected undirected graph and let G′ be a
graph obtained from G by adding a new vertex ṽ and edges between ṽ and
some vertices of G. Then tw(G′) ≤ tw(G) + 1.

Proof. Given a tree decomposition Θ of G, we construct a tree decomposition
Θ′ for G′ by adding to each bag of Θ the vertex ṽ. It is easy to see that Θ′

is indeed a tree decomposition for G′ and that the width of Θ′ is equal to
the width of Θ plus one. Lemma 1 follows.

Lemma 1 implies that the tree-width of the graph obtained from G by
adding the cluster vertices and edges is at most the tree-width of G plus
the number of cluster vertices, q. Since q ≤

√
2|N | + 1 and |N | is fixed,

Theorem 1 follows.

Actually, this result was already proved in [11], but our proof is much
simpler and much shorter. We also need to consider less clusterings than
they do (since they have to enumerate all the clusterings containing at most
2|N | clusters). Now, let us turn to the vertex variants.

In [1], it is shown that UVMinMC is polynomial-time solvable in trees
and NP-hard in unweighted graphs of bounded tree-width and bounded
degree, and that VMinMC is NP-hard in unweighted trees of bounded
path-width and bounded degree. Moreover, recall that UVMinMC admits
a PTAS for unweighted graphs of bounded tree-width. Therefore, one could
wonder whether additional restrictions on the input graph could lead to
polynomial cases more general than trees for UVMinMC.

In the remainder of this section, we show that this is very unlikely to
happen, since the general scheme given in Section 2.2 can be used to show
that UVMinMC is NP-hard in unweighted triangular cacti of bounded
path-width and bounded degree (even when each vertex appears only in
a bounded number of bags of the path decomposition, i.e., even when the
graph has bounded persistence path-width [6]), where a triangular cactus is a
simple graph having no cycle of length 4 or more. The variable and clause
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gadgets needed in the reduction are given in Fig. 1. It can easily be verified
that they satisfy all the required properties.

The family of instances used in the proof is a family of unweighted trian-
gular cacti of maximum degree 3, and, for this family, we can define a simple
tree decomposition as follows: we put every variable gadget and every clause
gadget in a bag (see Fig. 1). For example, B1 is the gadget of variable x1

and B8 is the one of the clause x1 ∨ x̄2 ∨ x3. The tree of this decomposition
is a path B1, . . . , Bj, . . . (so, the path-width is bounded by 7−1 = 6), where
the Bi’s are the bags, and each vertex appears at most 3 times. Hence:

Theorem 2. UVMinMC is NP-hard in unweighted triangular cacti of
bounded persistence path-width and bounded degree.
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Figure 1: Reducing 3SAT to UVMinMC (the intra-gadget nets are in dotted
lines) for the instance (x1∨x̄2∨x3)∧(x̄1∨x2∨x3) (Q = B2∪B4∪B6∪B7∪B9)

4 Directed Graphs

In this section, we study the complexity of DEMinMC in directed
acyclic graphs and in bounded tree-width and bounded degree unweighted
digraphs, and, in particular, we investigate whether the ideas given in [1] for
DEMinMC-SC could be applied to DEMinMC or not. It is worth noticing
that no general polynomial reduction from a problem to the other is known;
therefore none is theoretically “harder” than the other. However, we give
such a reduction for the case where |N | is fixed:

Theorem 3. When the number of terminals pairs |N | is fixed, DEMinMC-
SC polynomially reduces to DEMinMC.

Proof. The idea is that, given any source-sink pair (si, s
′
i), either there re-

mains no path from si to s′i or there remains no path from s′i to si in any
optimal solution for DEMinMC-SC. Hence, one can try both possibilities
for each net; this means that we need to solve 2|N | (i.e., O(1) if |N | is fixed)
instances of DEMinMC to solve the initial instance of DEMinMC-SC.
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One could also wonder whether the following transformation is a poly-
nomial reduction from DEMinMC to DEMinMC-SC: given an instance I
of DEMinMC, add an arc (s′i, si) with a large weight for each i, in order to
obtain an instance I ′ of DEMinMC-SC. Any optimal solution to I ′ is such
that there remains no path from si to s′i for each i (since the arcs (s′i, si)
are too heavy to belong to this solution), and thus is an optimal solution to
Î, the instance of DEMinMC obtained from I by adding the arcs (s′i, si).
However, it should be noticed that Î and I are not equivalent (because of
the arcs (s′i, si), there exist some paths in Î that did not exist in I).

Some properties for DEMinMC are given in [13], where the authors
conjecture that DEMinMC is not significantly simpler in directed acyclic
graphs. Moreover, in [1], it is shown that DEMinMC-SC is NP-hard in
bounded tree-width and bounded degree unweighted digraphs. (Note that
DEMinMC-SC is trivial in directed acyclic graphs, since the optimal value
is always equal to 0.) Here, we first use the general scheme given in Sec-
tion 2.2 to show that DEMinMC remains NP-hard in bounded degree,
unweighted, directed acyclic graphs (i.e., even when the tree-width is 0),
while DEMinMTC is known to be tractable in directed acyclic graphs and
DEMinMC is known to be tractable in directed trees [4].

To use this scheme, the main issue is to build directed gadgets having
the required properties. The variable and clause gadgets that are needed in
the proof are given in Fig. 2. It is easy to check that these directed acyclic
gadgets satisfy the required properties (thanks to Remark 1). (Note that
only the bold arcs are involved in “mutually exclusive ways”, and so these
arcs are the important ones.) This implies the following theorem:

Theorem 4. DEMinMC is NP-hard in directed acyclic graphs.

Note that the directed acyclic graph used in our reduction is unweighted
and has maximum degree 3. Moreover, the underlying undirected graph is
a bipartite cactus, i.e., any edge belongs to at most one (even) cycle.

Also note that, if the maximum degree is 2, then the underlying undi-
rected graph is the disjoint union of cycles and chains; therefore DEMinMC
is tractable in this case (even if the directed graph is not acyclic) since it is
tractable in paths and in rings [4].

Furthermore, if |N | is fixed and if the graph is unweighted and of maxi-
mum degree d (for fixed d), then DEMinMC is tractable. Indeed, a feasible
solution can be obtained by selecting the arcs adjacent to the terminals
(there are at most d|N | such arcs): hence, the value (and thus the size) of
any optimal solution is bounded by d|N |, and so we can compute an opti-
mal solution by enumerating all the solutions with at most d|N | arcs and
keeping the best feasible solution found.

Eventually, if the underlying undirected graph is bipartite (the biparti-
tion being given by (V1, V2)), and if all the arcs are directed from V1 to V2

(i.e., if for any arc (u, v) of the graph, we have u ∈ V1 and v ∈ V2), then,
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Figure 2: Reducing 3SAT to DEMinMC (the intra-gadget nets are in dotted
lines) for the instance C1∧C2, with C1 = x1∨ x̄2∨x3 and C2 = x̄1∨x2∨x3

obviously, DEMinMC is tractable. Indeed, in this case, there is at most
one arc linking si to s′i for each i.

Actually, these graphs are a special case of the layered digraphs [13]: a
layered digraph D = (V, A) is a digraph whose vertex set V can be parti-
tioned into q ≥ 2 sets V1, . . . , Vq such that, for each arc a = (u, v) ∈ A, we
have u ∈ Vi and v ∈ Vi+1 for some i ∈ {1, . . . , q − 1}. (Let the Vi’s be the
layers of D and let p = maxi |Vi|.) Obviously, these graphs form a subclass
of the directed acyclic graphs, and, for q = 2, we obtain the previous special
case. Interestingly, solving DEMinMC in layered digraphs is in fact equiva-
lent to solving it in directed acyclic graphs. Indeed, given a directed acyclic
graph, we first compute a particular ordering on the vertices such that, for
each arc (vi, vj), we have i < j (this is called a topological order); then, we
replace any arc (vi, vj) such that j > i + 1 by a path of length j − i (all the
arcs of this path having the same weight as the initial arc (vi, vj)).

Hence, Theorem 4 implies that DEMinMC is NP-hard in layered di-
graphs. The proof of this theorem can even be easily adapted to show that
DEMinMC remains NP-hard in layered digraphs where either q ≥ 16 is a
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fixed integer (by contracting the path Q into a single vertex), or p ≥ 11 is
a fixed integer (this case generalizes the paths, where p = 1). (Note that
the case where both p and q are fixed is trivial, since this implies that |V | is
fixed.) An interesting open problem would be to determine whether DEM-
inMC is tractable or not in layered digraphs, and hence in directed acyclic
graphs, when |N | is fixed. We now study a more special case: we show that,
when both p and |N | are fixed, DEMinMC can be solved in polynomial
time by a simple dynamic programming algorithm.

The optimization function is the following: given i ∈ {1, . . . , q} and |N |
sets V 1

i ⊆ Vi, . . . , V
|N |
i ⊆ Vi, fi(V 1

i , . . . , V
|N |
i ) is equal to the value of a

minimum weight set of arcs whose removal leaves (i) no path from sj to s′j
for each j such that s′j ∈ Vi′ for some i′ ≤ i, (ii) (at least) a path from sj

to any vertex in V j
i for each j, and (iii) no path from sj to any vertex in

Vi \ V j
i for each j; this is equal to +∞ if such a set of arcs does not exist.

We initialize the computation of the fi’s by setting f1(V 1
1 , . . . , V

|N |
1 ) equal

to 0 if V j
1 = {sj} (if sj ∈ V1) or V j

1 = ∅ (if sj /∈ V1) for each j, and to
+∞ otherwise. Note that, for each i, the number of possible combinations
V 1

i , . . . , V
|N |
i (i.e., the number of values fi(·)) is O(2p|N |). Our algorithm

proceeds by computing the values fi+1(·) from fi(·) for each i, and returns
min

(V 1
q ,...,V

|N|
q )

fq(V 1
q , . . . , V

|N |
q ).

For each i < q, let Ai,i+1 be the set of arcs between Vi and Vi+1, and,
given B ⊆ Ai,i+1, let w(B̄) be the sum of the weights of the arcs in Ai,i+1\B.
Moreover, given two integers i > 0 and j > 0 and two sets B ⊆ Ai,i+1

and V j
i ⊆ Vi, we define V j

i . B = {sj} if sj ∈ Vi+1 and V j
i . B = {v ∈

Vi+1 such that there is an arc (u, v) ∈ B with u ∈ V j
i } otherwise. (Note

that, if sj /∈ Vi+1, then V j
i . B = ∅ when either V j

i = ∅ or B = ∅.)
The relationship between the fi+1(·)’s and the fi(·)’s can then be de-

scribed as follows. Given (V 1
i+1, . . . , V

|N |
i+1 ) and an integer i > 0, if there exist

(V 1
i , . . . , V

|N |
i , B) such that ∀j, V j

i . B = V j
i+1, and if, in addition, s′j /∈ V j

i+1

for each j, then we have:

fi+1(V 1
i+1, . . . , V

|N |
i+1 ) = min

(V 1
i ,...,V

|N|
i ,B) | ∀j, V j

i .B=V j
i+1

(
fi(V 1

i , . . . , V
|N |
i ) + w(B̄)

)

Otherwise, we have fi+1(V 1
i+1, . . . , V

|N |
i+1 ) = +∞. The number of combi-

nations (V 1
i , . . . , V

|N |
i , B) is at most O(2p|N |2p2

) (since |Ai,i+1| ≤ |Vi||Vi+1| ≤
p2), and we keep only O(2p|N |) of them (since there are at most O(2p|N |)
distinct vectors (V 1

i . B, . . . , V
|N |
i . B)), so the fi’s can be computed in

O(2p(|N |+p)) time for each i. Thus, our algorithm is FPT [7] with re-
spect to the pair of parameters (p, |N |), because the overall complexity is
O(2p(|N |+p)q). Actually, when p and |N | are fixed, its running time is even
linear in q (i.e., in the size of the graph).
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Now, what about the PTAS for DEMinMC-SC in bounded tree-width
and bounded degree unweighted digraphs? Unfortunately, it cannot be
adapted for DEMinMC, since, when proving that the dynamic program-
ming algorithm does provide a feasible solution (i.e., that it outputs a valid
multicut), a key argument (see [1, p. 348]) uses the fact that any directed
cycle starts and ends in the same set Wr, since it starts and ends at the
same vertex. Clearly, such an argument cannot be applied to our variant,
since we deal with paths (the two endpoints of a path can belong to any sets
Wr and Ws) instead of directed cycles.

Actually, we show that DEMinMC is APX -hard in bounded tree-width
and bounded degree unweighted digraphs (while the undirected case ad-
mits a PTAS), implying that DEMinMC-SC is easier than DEMinMC
even in this special case (since there exists a PTAS). To do this, we present
an approximation-preserving reduction from Vertex Cover in bounded-
degree graphs, which is known to be APX -hard [16]. Our result matches
the best inapproximability result known for DEMinMC in unrestricted di-
graphs that is based on the assumption that P 6= NP (the Ω

(
log n

log log n

)
inap-

proximability bound of Chuzhoy and Khanna [3] being based on a stronger
complexity assumption, and the Ω(1) inapproximability bound of Chawla et
al. [2] being based on a different one, the Unique Games Conjecture).

Assume we are given an undirected graph G with n vertices and bounded
maximum degree. A vertex cover of G is a set of vertices C of G such that
for each edge e = (u, v) of G, either u ∈ C or v ∈ C. We orient G as follows:
we arbitrarily number the n vertices v1, . . . , vn, and then we transform each
edge (vi, vj) into an arc (vi, vj) (if i < j) or an arc (vj , vi) (if j < i). This way,
v1, v2, . . . , vn defines a topological ordering of the vertices, and the directed
graph D we obtain is acyclic (and, therefore, has tree-width 0). Moreover,
the vertex covers in G are the (unrestricted) vertex multiterminal cuts in D
(any vertex being a terminal), and thus the transformation applied so far
proves that DUVMinMTC is APX -hard in directed acyclic graphs (while
DEMinMTC is tractable in this case [4]). Now, let us use D to obtain a
DEMinMC instance. We add n new vertices t1, t2, . . . , tn, and, for each i,
we link vi and ti by a gadget with five arcs (see Fig. 3: for an i, we add two
new vertices ai and bi, and the five arcs are (vi, ai), (bi, vi), (ai, bi), (ti, ai)
and (bi, ti)). This way, we obtain a new graph H. Then, it is easy to see
that we have a vertex multiterminal cut of size S in D (and thus a vertex
cover of size S in G) if and only if we have an arc multicut of size S in H,
where the nets are (ti, tj) for each arc (vi, vj) of D. Indeed, given a vertex
cover C of size S for G, we can construct an arc multicut of size S in H as
follows: for each i, pick (ai, bi) in the cut if and only if vi ∈ C. Conversely,
given an arc multicut of size S for H, either only arcs of the form (ai, bi)
are in the cut, or we can transform this cut into a new cut of size at most S
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containing only such arcs: if an arc (vi, vj) is cut, then replace it by (ai, bi);
if an arc of the gadget linking vi and ti is cut, then also replace it by (ai, bi).
We can now define a vertex cover of size S in G by including all the vi’s such
that (ai, bi) is in the arc multicut for H. This completes the description of
the approximation-preserving reduction.

It is easily seen that H is unweighted and has bounded in- and out-
degrees (since G has bounded degree). It remains to show that H has
bounded tree-width. We construct an arboreal decomposition Θ for H as
follows. The rooted tree of the decomposition is a directed path with n
vertices. The set Wr associated with the rth vertex of this path is Wr =
{vr, ar, br, tr} (W1 being the root). Moreover, the sets Xe associated with
the arcs of this path are empty. Then, the Wr’s do define a partition of the
vertices of H. Assume all the vertices v1, v2, . . . , vn of D lie on a horizontal
line in this order: then, by the way we constructed D, any arc between two
vi’s will be oriented from left to right. Hence, it is easy to see that, for any
r, any path that goes from a vertex in Wr1 with r1 ≥ r to a vertex in Wr2

with r2 ≥ r1 does not use any vertex contained in a set lying on the left of r
(i.e., in a set Wr

′ with r
′
< r). Thus, Θ is indeed an arboreal decomposition

of H. Moreover, its width is 4− 1 = 3. This implies:

Theorem 5. DEMinMC is APX -hard in bounded tree-width and bounded
degree unweighted digraphs.
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Figure 3: Transforming a graph G (here, a path with 3 vertices v1, v2, v3) into
H (the nets are in dotted lines), to reduce Vertex Cover to DEMinMC

To conclude, we provide a table summarizing the main complexity (and
inapproximability) results known for MinMC (and all its variants) in graphs
and digraphs of bounded tree-width.
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Problem Bounded tree-width Bounded degree Unweighted Fixed |N | Result
EMinMC X X APX -hard in stars [10]
MinMC X X APX -hard [5]

EMinMTC X Polynomial [5]
EMinMC X X Polynomial

UVMinMC X X PTAS [1]
UVMinMC X X X NP-hard in

series-parallel graphs [1]
UVMinMC X X Polynomial in trees [1]
UVMinMC X X X NP-hard even in cacti

of bounded path-width

DEMinMC X Polynomial in ditrees [4]
DEMinMTC X Polynomial in DAG [4]
DEMinMC X X X NP-hard in DAG

(directed cacti)

DEMinMC X X Polynomial in
layered digraphs if
fixed-sized layers

EMinMC X X X PTAS & NP-hard
(APX -hard if weighted

or arbitrary degree
or tree-width) [1]

DEMinMC-SC X X X As above
(D)UVMinMTC X X X APX -hard even

in DAG

DEMinMC X X X APX -hard

Table 1: Summary of the various complexity results known for MinMC (the
results proved in the present paper are indicated in bold letters)
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