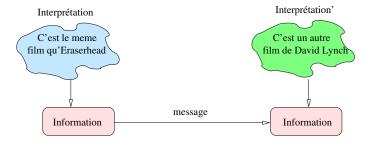


Slide 1

Cours No 4 - Le Web Sémantique

Labyrinth Man


L'information reçue n'est pas suffisante pour son interprétation.

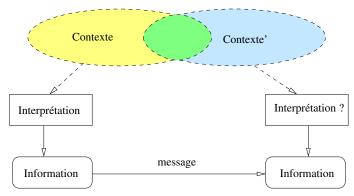
Par exemple, pour bien interpréter l'affiche de gauche, il faut savoir que le film "Labyrinth Man" a déjà été commercialisé sous le nom de "Eraserhead" quelques années aupparavant (le titre du film a été changé à cause du succès du film "Elephant Man").

⇒ Pour comprendre le sens d'une information on a besoin de connaissances supplémentaires.

Intéropérabilité sémantique

Slide 3

On a besoin de modèles pour


- décrire l'information qu'on publie (annotation, métadonnées)
- pour (bien) comprendre l'information qu'on reçoit

Interprétation

L'intérprétation se fait dans un *contexte* défini par la culture, la langue (multi-linguisme) les connaissances, etc. du producteur et du consommateur de l'information.

Slide 4

Comment obtenir un contexte commun

Deux moyens fondamentaux:

- Dialogue:
 - informel: discussion, formation, email
 - formel: protocoles
- Référence sémantique commune :
 - informel: description textuelle, tutorial, ...
 - formelle: métadonnées, ontologies, thésaurus, expressions logiques, ...

On a besoin de modèles formelles pour la représentations de connaissances

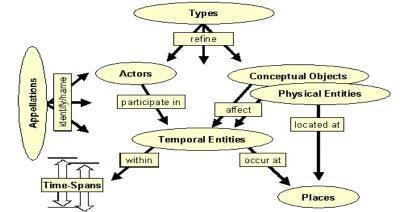
Slide 6

Slide 5

Représentation des connaissances

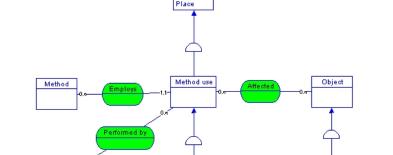
Représentation de connaissances : Ontologie

Ontologies: description formelle de connaissances


- Vocabulaire partagé
- Langage pour l'interprétation et le raisonnement automatique

Types d'ontologies:

- Thésaurus (vocabulaires structurés)
- Graphes conceptuels, "frame-based"
- Logiques de description


Un exemple d'ontologie : ICOM/CIDOC

Slide 9

Représentation conceptuelle

Creation

Manufactured object

Events

Person

Représentation RDF

Représentation logique

 $Objet_Iconographiqe(x):-Peinture(x)\\Objet_Iconographiqe(x):-Sculpture(x)$

 $Peinture(x), Periode(y): -de_la_periode(x,y)$

 $Peinture(x), Literal(y) : -matriaux_utilis(x, z)$

false: -Sculpture(x), Peinture(x)

Slide 12

Slide 11

Construction d'ontologies

Construction d'ontologies : Phases

- 1. Définition de l'objectif et du domaine
- 2. Construction de l'ontologie:
 - Acquisition des connaissances
 - Représentation formelle
 - Intégration
- 3. Vérification et Validation

Construction d'ontologies

Approches:

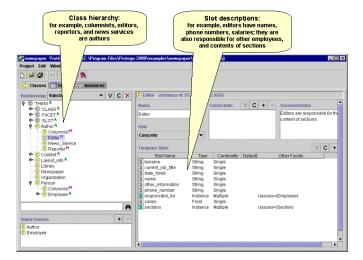
• Standardisation (exemple: ICOM/CIDOC)

Slide 14

Slide 13

• Réutilisation : intégration, spécialisation

• Extraction semi-automatique


Outils:

• Editeurs d'ontologies : OntoEdit, Protégé

• Serveurs d'ontologies : Ontolingua

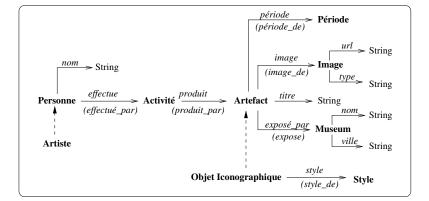
Protégé : Éditeur de Classes

Slide 15

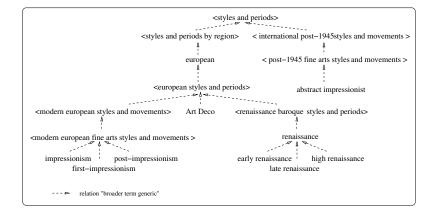
Construction par réutilisation : un exemple

Deux observations:

- Il existe un grand nombre de thésaurus spécialisés (eg. culture, science, administration).
- Slide 16
- Ces thésaurus définissent les termes précis pour décrire des concepts, mais sont limités à un nombre limité de relations sémantiques (générique/spécifique, partie-de, equivalence, relié-à).


ldée:

- Définir une ontologie de haut niveau (graphe conceptuel).
- "Brancher" les thésauri (ou des parties) à des concepts de l'ontologie.


Ontologie

Thésaurus

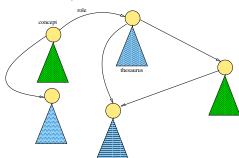
Intégration graphe de concept et thésauri

Relation de connexion:

Slide 19

Term	Concept
impressionism	Style
post-impressionism	Style
abstract impressionisi	m Style
renaissance	Style
early renaissance	Style
first-impressionism	Style
late renaissance	Style
high renaissance	Style

Term	Concept
renaissance	Period
early renaissance	Period
late renaissance	Period
high renaissance	Period



Thésaurus local

On obtient:

- Un graphe de concepts reliés par des rôles sémantiques.
- Chaque concept est relié à un fragment de thésaurus qui "spécialise" le concept.

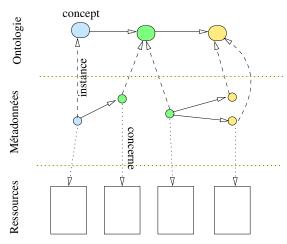
Slide 20

Slide 21

Utilisation des ontologies

Utilisation des ontologies

• Description de ressources : métadonnées sémantiques

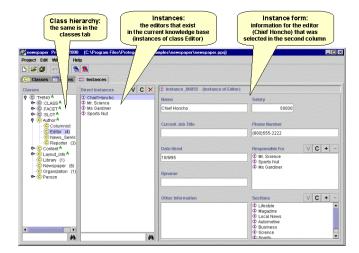

• Integration : vues sémantiques

- Interface d'interrogation
- Extraction de connaissances
- Classification automatique

Description de ressources

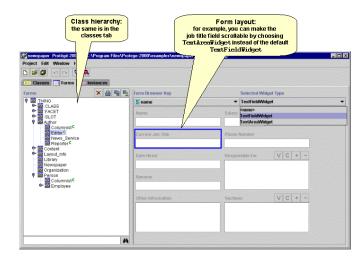
Ontologie = schéma de métadonnées

Slide 23

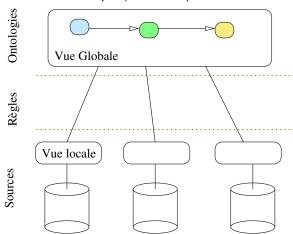


Métadonnées

Représentation RDF/XML:


Protégé: Éditeur d'Instances

Slide 25


Protégé : Formulaires de saisie

Intégration de ressources

Ontologie = vue sémantique (médiateur)

Slide 27

Raisonnement

```
Logique de Description(OWL-DL):
```

On peut conclure que "La Joconde" n'est pas une sculpture.

Comment construire le Web Sémantique

Collaboration de différentes communautés :

- W3C (chercheurs et industriels informatique): normalisation des langages
- Industriels informatique: implantations d'outils
- Juristes, philosophes, linguistes

But final: chercher des bonnes applications et implanter des outils

Prochain cours

Langages d'ontologies du W3C:

- RDF/RDFS
- OWL

Slide 30