On Labeling Schemes for the Semantic Web”

Vassilis Christophides
Dimitris Plexousakis
Institute of Computer Science
FORTH, P.O.Box 1385
GR 711 10, Heraklion, Greece

[christop,dp]@ics.forth.gr

ABSTRACT

This paper focuses on the optimization of the navigation
through voluminous subsumption hierarchies of topics em-
ployed by Portal Catalogs like Netscape Open Directory
(ODP). We advocate for the use of labeling schemes for mod-
eling these hierarchies in order to efficiently answer queries
such as subsumption check, descendants, ancestors or near-
est common ancestor, which usually require costly transitive
closure computations. We first give a qualitative comparison
of three main families of schemes, namely bit vector, prefix
and interval based schemes. We then show that two label-
ing schemes are good candidates for an efficient implemen-
tation of label querying using standard relational DBMS,
namely the Dewey Prefix scheme [6] and an Interval scheme
by Agrawal, Borgida and Jagadish [1]. We compare their
storage and query evaluation performance for the 16 ODP
hierarchies using the PostgreSQL engine.

1. INTRODUCTION

Semantic Web applications such as e-commerce, e-learning,
or e-science portals and sites require advanced tools for man-
aging metadata i.e., descriptions about the meaning, usage,
accessibility or quality of information resources (e.g., data,
documents, services) found on corporate intranets or the In-
ternet. To describe resources, various structured vocabular-
ies (i.e., thesauri) or thematic taxonomies (i.e., conceptual
schemas) are widely employed by different user communi-
ties. Such descriptive schemas represent nowadays an im-
portant part of the hierarchical data available on the Web
[18]. In this context, the Resource Description Framework
(RDF) [4, 16] is increasingly gaining acceptance for meta-
data creation and exchange by providing i) a Standard Rep-
resentation Language for descriptions based on directed la-
beled graphs; ii) a Schema Definition Language (RDFS) [4]
for modeling user thesauri or taxonomies as class/property
subsumption hierarchies (i.e., trees or DAGs); and iii) an
XML syntaz for both schemas and resource descriptions.
For instance, Web Portals such as Netscape Dmoz or Chef-
moz, MusicBrain, CNET, XMLTree! export their catalogs in

9*This work was supported in part by the European Commission
project Mesmuses (IST-2000-26074).

9'See dmoz.org, chefmoz.org, musicbrain.org, home.cnet.com,
www.xmltree.com, respectively.
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RDF/S. In this paper, we are interested in labeling schemes
for such hierarchical data exported by Portals, in order to
optimize complex queries on their catalogs.

A Portal catalog - created according to one or more topic
hierarchies (schemas) - is actually published on the Web as
a set of statically interlinked Html pages®: each page con-
tains the information resources (objects) classified under a
specific topic (class), as well as various kinds of relation-
ships between topics. In particular, the subtopic relation-
ship represents subsumption (isA) between classes. Then,
a Portal schema forms a tree (single isA links) or a DAG
(multiple isA links) of classes (at best semi-lattices), and
assists end-user navigation: for each topic one can navigate
to its subtopics (i.e., subclasses) and eventually discover the
resources which are directly classified under them. In [3,
14, 20] we have studied how declarative query languages for
RDF/S can support dynamic browsing interfaces and per-
sonalization of both Portal schemas and resource descrip-
tions. In this paper, we focus on the optimization of such
queries by avoiding costly transitive closure computations
over voluminous class hierarchies®. More precisely, we are
interested in labeling schemes for RDF/S class (or prop-
erty) hierarchies allowing us to efficiently evaluate descen-
dant/ancestor, adjacent/sibling queries, as well as, finding
nearest common ancestors (nca) by using only the gener-
ated labels. Compared to the transitive closure evaluation
reported in our previous work [14], the performance gains
for these queries are of 2-3 orders of magnitude when us-
ing adequate labeling schemes! Then, starting from a topic
somewhere in the taxonomy, a user can easily and efficiently
access not only its father/children (as in existing Portals)
but also the leaf topics underneath where most of the web
resources are classified, discover sibling topics (where related
web resources may be found) or even continue navigation
from the nca of two topics in the hierarchy.

Several labeling schemes for tree or graph-based data have
been proposed for network routing [12], object programming
[10, 11, 24, 2, 5, 15], knowledge representation systems [1]
and recently XML search engines [9, 26, 17, 13, 8, 7, 21].
However, choosing a labeling scheme for efficiently support-
ing the functionality required by Web Portals is still an open
issue because:

e Portal’s isA hierarchies of classes, may range from sim-

9%Note that RDF is used as an export format for bulk catalog
loading.

9%For example, the catalog of the Open Directory Portal/Dmoz
comprises around 200M of Topics exported in RDF files.



Property
rdfs: http://www.w3.0rg/2000/01/rdf-schema# "q ---+  TypeOf(instance)
rdf: http:/Awww.w3.0rg/1999/02/22-rdf-syntax—ns#, 7 & \\\ —  SubClassOf(isA)

nsl: htlp://www.dmcz.orglschema.rg,ts#ll

Artists

RobiryAugust Regions

IN-de-france
European

French

www.louvre.fr

www.museerodin.fi

Figure 1: RDF Catalog of Open Directory Portal

ple trees to complex DAGs [18] while the ordering of
subclasses is not important (compared to XML search
engines); therefore we need a labeling scheme for trees
that can be easily extended for DAGs with a reasonable
extra storage and querying cost.

e Querying/Browsing Portal schemas heavily relies on
bulk class retrieval using complex filtering conditions
on subsumption relationships (unlike network routing,
object programming or knowledge representation sys-
tems treating two nodes/classes at a time); thus we
need a labeling scheme generating class labels which
can be efficiently processed by a database back-end us-
ing standard index structures (i.e., B-trees).

We are interested in the tradeoff between storage and
query requirements of different labeling schemes for both
trees and DAGs of RDF/S classes (or properties). Our con-
tribution, guided by the efficient implementation of label
querying using standard DBMS technology, is three-fold :

e Section 2 briefly recalls the RDF/S modeling primi-
tives used to represent the ODP Catalog and presents
statistics about the size and the morphology of the
ODP class semi-lattices that are used for our perfor-
mance evaluation of existing labeling schemes.

e Section 3 provides a qualitative analysis of bit-vector,
prefiz, and interval based labeling schemes for tree or
graph-based data exported by Portals like ODP. We
pay particular attention to the expression of the core
query functionality (i.e., descendant /ancestor/leaf, ad-
jacent/sibling, nca) with each labeling scheme.

e Section 4 compares the performance of two represen-
tative labeling schemes, namely the Unicode Dewey
prefiz scheme [6] and the extended postorder interval
scheme by Agrawal, Borgida and Jagadish [1], in terms
of storage requirements and query execution time on
top of an ORDBMS (PostgreSQL). We focus on the ef-
ficient translation of the different types of queries over
class trees (single 1sA) into SQL, as well as, the extra
cost required for DAGs (multiple isA).

2. MOTIVATING EXAMPLE: ODP

Portals aggregate and classify various information resources
for diverse target audiences (e.g., enterprise, professional,

trading). A portal catalog includes descriptive information
about resources found on corporate intranets or the Internet.
The complexity of the semantic descriptions, using thesauri,
taxonomies or more sophisticated ontologies depends on the
scope of the community domain knowledge as well as the
nature of the available resources (sites, documents, etc.).

In most Web Portals, resources are classified under large
hierarchies of topics that can be represented and exchanged
using RDF/S. Figure 1 depicts a part of the RDFS schema
employed by Netscape Open Directory (or Dmoz) Portal
(ODP) identified by the namespace ns1*: nodes denote class
names/topics (e.g., Museum) and solid edges denote sub-
sumption relationships between them (e.g., ArtMuseum <
Museum). Note that the roots of all topic hierarchies (e.g.,
Arts, Regional, Reference) specialize the core RDF/S class
Resource. These hierarchies are class semi-lattices and in
the simplest case take the form of trees®. From an appli-
cation viewpoint, they play the role of facets, which can be
combined in order to describe and retrieve Web resources.

Using faceted classification, a resource is described (classi-
fied) using one or more topics from each facet. For example,
in Figure 1 the Web site of Rodin museum in Paris is classi-
fied under both ’Reference/Museum/Art&Entertainment/-
Art-Museum/European/French’ and ’Regional /Europe/Fran-
ce/Regions/Ile-de-France/Paris/Museums’ where the dashed
edges stand for RDF/S instantiation relationships. We can
observe that topic names are composed of different descrip-
tive terms (e.g., Museum, France). The ODP schema de-
signers partially replicate these terms in the various topic
hierarchies in order to denote all the valid combinations of
terms (from different facets). In our example, cultural and
geographical terms (e.g., Museum and France) appear in
both Reference and Regional hierarchies, while the complete
path from the root of these hierarchies is used as a prefix to
distinguish topic names. For simplicity, we hereforth omit
the schema namespaces as well as the prefix paths.

Table 1 lists the complete statistics of 16 ODP hierar-
chies (version of 01/16/2001) comprising 253214 topics un-
der which 1688037 Web resources are classified (fan-in stands
for the fan-in degree of the tree, i.e. the number of direct
subclasses of a given class). Note that the total number of
distinct terms used by all topics is 80795 while 14355 of them
(17,77%) are replicated in more than one topic name. Under
these topics, a total number of 1715225 resources are classi-
fied with 118925 (6,93%) of them multiply classified under
more than one topic. Moreover, due to the partial replica-
tion of terms, ODP topic hierarchies are relatively deep (the
average depth is 7.83 and the maximum is 13) with a vary-
ing fan-in at each level (the maximum fan-in degree is 314
while the average is only 0.9999). Table 1 also illustrates the
depth of classes with the maximum fan-in degree for each
hierarchy. ODP subclass trees are far from complete and
the largest percentage of the classes appears in the upper
half of the respective trees. In addition, the maximum fan-
in degree is in the middle and slightly in the upper half of
the corresponding of ODP trees.

9*http://www.dmoz.org/schema.rdfs. For simplicity, we omit
administrative metadata such as titles, mime-types, modification-
dates, of Web resources represented in ODP by an OCLC Dublin-
Core like schema [23].

9%1t is worth noticing that the effect of multiple isA is partially
captured by terms replication in several hierarchies as well as other
link types defined between topics such as symbolic and related.



Hierarchy Max. Avg Max Avg #Topics | #Terms | #Resources
Depth | Depth | Fan-in | Fan-in
at Depth
netscape.rdf 7 5.75 24/1 0.9948 389 203 27188
news.rdf 7 5.05 51/4 1.0027 721 411 47735
kat.rdf 7 4.84 46/4 1.0026 761 646 7730
home .rdf 8 5.43 53/4 1.0011 1722 1353 26688
health.rdf 9 6.32 52/8,5 1.0006 3202 1728 45519
shopping.rdf 9 5.67 61/2 1.0005 3349 2357 88821
games .rdf 10 6.74 125/3 1.0004 4857 3710 36181
computers.rdf 10 6.4 147/3 1.0003 6010 3259 91597
reference.rdf 13 8.73 154/3 1.0003 6483 3759 75105
business.rdf 11 6.44 52/4,5 1.0002 6833 3630 161877
recreation.rdf 11 6.8 85/3 1.0002 7269 3243 93929
science.rdf 10 8.35 314/6 1.0002 8667 6812 65939
sports.rdf 9 7.14 178/6 1.0001 10625 5927 66280
society.rdf 12 7.9 157/7 1.0001 16250 8678 161433
arts.rdf 11 7.04 267/4 1.0000 25314 16840 214795
regional.rdf 13 8.27 254/7 0.9999 | 150762 32594 587152
| Total | 13 | 783 | 314 ]0.9999 | 253215 | 80795 | 1715225 |

Table 1: Statistics of the ODP Topic Hierarchies

With current Portal interfaces users can either navigate
through the topic hierarchies in order to locate resources of
interest, or issue a full-text query on topic names and the
URIs of the described resources or the text values of at-
tributes like title, description. In the first case, users have
to navigate from the root of each hierarchy down to the
leaves in order to reach the resources of interest, because
most of the resources are classified under the leaf topics.
In the second case, users are forced to manually filter the
topics and URIs returned by the full-text query. Advanced
browsing/querying interfaces aim at simplifying such tasks,
by permitting smooth navigation/filtering on both Portal
schemas and resource descriptions. In order to support such
Portal interfaces we need an efficient evaluation of a num-
ber of basic queries on class (or property) semi-lattices: (a)
find direct subclasses, transitive ancestor/descendant sub-
classes or leaf classes; (b) find sibling (brother) or follow-
ing/preceding (adjacent®) classes; and (c) find the nearest
common ancestor(s) (nca) of two classes. Examples of these
queries in a simplified schema are illustrated in Figure 2.

3. FAMILIES OF LABELING SCHEMES

The labeling schemes proposed in the literature can be
characterized by:

e The structure of the encoded data (trees, graphs, etc.);
e The supported queries (ancestor/descendant/leaf, ad-
jacent/sibling, nca);

e The complexity of the labeling algorithms;

e The maximum or average label size;

e The query evaluation time on the resulting labels;

e The relabeling implications of incremental updates.
In this section, we present a qualitative comparison of

three families of labeling schemes, namely bit-vector, prefix
and interval.

9%Note that adjacent queries do not explore semantic relation-
ships of classes but they have been included in our study for com-
pleteness reasons w.r.t. XML XPath expressions.

3.1 Bit-Vector Schemes

The label of a node is represented by a vector of n bits
where n is the number of nodes, a “1” bit at some position
uniquely identifies the node in a lattice L and each node
inherits the bits identifying its ancestors (or descendants) in
a top-down (or bottom-up) encoding. More formally, in the
algorithm proposed by Wirth [24] (see Figure 2-a), the label
of a node w in L is I(u) = {b1,... ,bn}, by = 1 if the ith
node is either u or an ancestor (alternatively descendant)
v of u. Otherwise b; = 0. Then, using binary OR (|) and
AND (&) on labels, one can check whether a node v is an
ancestor (descendant) of w in L: u < v iff I(u) & I(v) = I(v)
(or I(uw) | I(v) = l(u)). This scheme supports subsumption
checking and Least Upper Bound (LUB) or Greatest Lower
Bound (GLB) operations (i.e., nca/ncd) in constant time
(the time for comparing two bit vectors) while labels can
be constructed in time linear in the size of L. It should be
stressed that all labels have fixed size n bits and the storage
required for the labels of a lattice L is exactly n?.

More compact variations of bit-vector schemes [2, 5, 15]
use new bit positions only when it is necessary to distinguish
between nodes with common descendants. For instance, the
total size of the bit-vectors produced by the Near Hierarchi-
cal Encoding (NHE) [15] is 2 * n * logn for balanced binary
trees and close to logn when multiple isA is low. However,
the most interesting compact variations do not support all
the queries we need: Caseau’s scheme [5] supports only an-
cestor/descendant checking, while NHE [15] supports only
lattice operations (LUB/GLB). In addition, NHE is able to
encode arbitrary partially-ordered sets rather than lattices
as in Caseau’s algorithm. Ait-Kaci’s scheme [2] supports all
the previous operations but generates labels of size O(logn)
and O(n) in the best and worst case respectively.

The main drawback of bit-vector labeling schemes is that
ancestor/descendent /sibling queries are O(n). No O(logn)
data structure can be used to accelerate the evaluation of
these queries. Additionally, the (fixed) size of the produced
labels heavily depends on the size (and the morphology for
compressed variations) of the input class hierarchies making
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Figure 2: Labeling Schemes: a) Wirth b) Dewey c¢) Dietz d) Agrawal et al e) Li and Moon

these schemes inappropriate for a database implementation
especially in the presence of incremental updates.

3.2 Prefix Schemes

Prefix-based schemes directly encode the father of a node
in a tree, as a prefix of its label using for instance a depth-
first tree traversal. Therefore the labels for a tree T can
be computed in time linear in the number of nodes in T
The simplest algorithm is the Dewey Decimal Coding (DDC)
widely used by librarians [6] (see Figure 2-b): the label of a
node u in T is I(v)I(u) where I(v) is the label of its father v,
I(u) € {0,..,9}". Then, one can check whether a node v is an
ancestor of w in T in practically constant time by checking
whether a string is a prefix of another one: u < v iff [(v) €
prefives(l(u)). The same is true for finding the nca of two
tree nodes. An interesting property of prefix-based labels is
their lexicographic order: the labels of nodes u in a subtree
with root v are greater (smaller) than those of its left (right)
sibling subtrees: prev(l(v)) < l(v) < l(u) < next(l(v))
where next(‘19’) =‘2’ and prev(‘12’) =‘11’. Then, index
structures based on the key’s domain order such as the B-
tree, can be used to speed-up the evaluation of our testbed
queries (i.e., ancestor/descendant/leaf, preceding/following/
sibling and nca). Table 2 gives for each query expressed in
a declarative way (column 1), its corresponding formulation
in terms of the required conditions on the labels for different
schemes. The set of conditions for the prefix-based scheme
is given in column 2. Father/children/sibling queries rely
purely on string matching functions: the father of a node in
T is directly given by the greatest prefix (function mpre fix
returning all but the last character of the input string) of
its label. Nca queries require to find common prefixes (func-
tion prefires) of maximum length (function mlength). Al-
though label conditions involving user-defined functions can
be translated in the recent versions of the SQL standard
(SQL-99), in existing SQL engines such queries do not take
benefit from indices defined on labels (i.e., they can be eval-
uated using only sequential scans).

In DDC, the size of the proper node label (e.g., ‘1, 2’) at

9”Note that the same idea is employed by ODP in order to identify
topics/classes from the root of each hierarchy with user readable
labels, using a vocabulary of distinct terms/words (see Table 1).

each level is exactly one byte and thus the maximum label
size (in bytes) depends only on the maximum depth of 7'
As a matter of fact, DDC consumes per node more bits than
actually required but this extra cost makes easier a string
representation of labels by avoiding the introduction of sepa-
rator characters like ¢.” at each level (e.g., ‘1.2’). For fan-in
degrees greater than 10, larger alphabets should be used to
label each node as, for instance, the Unicode Character Set.
In UTF-8 [25] a variable number of bytes are used to encode
integer codes of different character sets: ASCII characters
are encoded by one byte (from 0x00 to 0x7f) while characters
in other sets (> 0x7f) are encoded as a multibyte sequence
(consisting only of bytes in the range 0x80 to 0xfd) with the
first byte indicating its length (up to 3 bytes long). Since
in Portal schemas (see Table 1) the average fan-in degree is
small (0.9999 compared to the maximum 314), most of the
node labels require one byte per depth (i.e., can be encoded
by ASCII characters). When binary alphabets are used, the
maximum size of prefix-based labels (in bits) depends both
on the maximum depth (d) and fan-in degree (A) of the en-
coded tree T (dlogA). Applications of this scheme to XML
tree data have been proposed in [9, 21]. Several variations
provide more compact labels that minimize either the maxi-
mum size of a label (fixed size representation) or the average
size of a label (variable size representation). See [13] for a
comparative analysis and [12] for a recent survey.

The main advantage of prefix-based labeling schemes is
their dynamicity in the presence of incremental updates.
As long as ordering among descendants is not important
(as in class semi-lattices), one can always add new chil-
dren nodes to the right of existing nodes without having
to relabel them. As a matter of fact, most of the bene-
fits (for updates, compression) of prefix-based schemes are
due to the production of labels with variable size. Unfor-
tunately, the evaluation of queries on variable size labels
relies on (bit) string manipulation functions (especially for
compressed prefix variations), reducing the optimization op-
portunities of existing SQL query engines because the eval-
uation cost of user-defined functions is unknown by the op-
timizers. Finally, prefix-based schemes produce inflationary
labels when extended for DAGs (to cater for multiple isA,
see section 4.2).



| Query | Dewey | Agrawal et al | Li and Moon | Dietz/Zhang et al |
descendants(v) | I(u) < next(l(v)) index(v) <= post(u) pre(v) < pre(u) post(u) < post(v)
{ulu < v} A l(u) > I(v) A post(u) < post(v) A pre(u) + size(u) A pre(v) < pre(u)
<= pre(v) + size(v)
ancestors(v) prefizes(l(v)) index(u) <= post(v) pre(u) > pre(v) post(v) > post(u)
{u|u > v} Apost(u) > post(v) A pre(v) + size(v) A pre(u) > pre(v)
>= pre(u) + size(u)
leaves(v) I(u) < next(l(v)) index(v) <= post(u) pre(v) < pre(u) post(u) < post(v)
{ulu < v Al(u) > l(v) Apost(u) < post(v) A size(u) =1 A pre(v) < pre(u)
A =T A=F' 2 ((u') > U(v) A post(u) = index(u) A pre(u) < A pre(u) =
(v <w A l(u') < next(l(v)) pre(v) + size(v) depth(u) + post(u)
A u' <u)} Al(u') < next(l(u))
Al() > 1(u))
precedings(v) | I(u) <= prev(l(v)) post(u) < index(v) pre(u) + size(u) post(u) < post(v)
{ulu € v} A l(u) > mpre fiz(l(v)) <= pre(v) A pre(u) < pre(v)
followings(v) next(l(u)) >=Il(v) index(u) > post(v) pre(u) >= post(u) > post(v)
{ulv > u} A l(u) < next(mprefiz(l(v))) pre(v) + size(v) A pre(u) > pre(v)
siblings(v) mprefiz(l(u)) = post(father((u)) = pre(u pre(u) =
{ulu < v} mprefiz(l(v)) post( father(v)) pre(father(v)) pre(father(v))
nca(v,w) l(u) € prefizes(l(v)) index(u) <=index(v) | pre(u)> pre(v) post(u) > post(w)
{ulu > v N prefizes(l(w)) Apost(u) > post(w) A pre(w) + size(w) A pre(u) > post(v)
A u>w A mlength(l(u)) A= >=pre(u) + size(u) | A =3 :
A —T (index(v') <= index(v) | A =3’ : (post(u') > post(w)
(v =v A post(u') > post(w) (pre(u') > pre(v) A pre(u') > pre(v)
A v =w A index(u') <= post(u) | A pre(w) + size(w) A pre(u’) > pre(u)
A v <u)} A post(u') < post(u)) >= pr?(u)') + szz?(qj')) A post(u') < post(u))
A size(u') < size(u

Table 2: Core Query Expressions for Trees:

3.3 Interval Schemes

The label of a node in a tree T is given in this scheme
by an interval (start,end) such that it is contained in its
father’s interval label. In the original scheme of Dietz [10,
11] (see Figure 2-c) each node is labeled with a pair of its
preorder and postorder numbers in T": the label of a node
is [pre(u), post(u)]. Since an ancestor node v appears before
(after) a descendant node u in the pre-(post)order traver-
sal of T, u < v iff pre(v) < pre(u) and post(v) > post(u).
In addition, the intervals of two sibling nodes w and w are
disjoint. The complete set of conditions for our testbed
queries is given in column 5 of Table 2. Interval labels can
be computed in time linear in the size of T'. Subsumption
checking can be evaluated in constant time (i.e., comparing
four integers) while the storage required for the labels of a
tree T' is O(n) and the label size in bits is exactly 2logn
[22]. The labeling scheme proposed in [26] for XML tree
data is a straightforward extension of Dietz’s scheme with
depth information about tree nodes in order to also com-
pute direct father/children and leaf queries. However, for
sibling queries as well as for an efficient evaluation of fa-
ther/children queries (avoiding the computation of all ances-
tors/descendents) we need to additionally encode the father
of each tree node and therefore depth becomes redundant.

One variation for graphs has been proposed by Agrawal,
Borgida and Jagadish [1] (see Figure 2-d for trees and Fig-
ure 3-a for graphs) and relies on the introduction of a span-
ning tree to distinguish between tree and non-tree edges
connecting class nodes. They propose a hybrid scheme in
which the spanning tree edges fully take advantage of the
interval-based labeling, while the non spanning tree edges
require a replication of the label of their source node up-
wards to their target and its ancestors. Then, subsump-

a) Dewey b) Agrawal et al ¢) Li and Moon d) Dietz/Zhang et al

tion checking for spanning tree edges relies purely on in-
terval inclusion test, while for the remaining edges one has
to also check whether there is a path in the graph. More
precisely, a node u in the spanning tree T of the graph is
labeled with [index(u), post(u)] where post is the postorder
number of u and index is the lowest postorder number of
uw’s descendants (index(u) <= post(u) and for leaf nodes
index(u) = post(u)). Furthermore, a node u can receive
additional labels as follows: if node v is the source of a
non spanning tree edge with target u, then u as well as all
its ancestors in the graph replicate the label of v. Such a
scheme favors efficient subsumption checking (i.e., compar-
ing sets of labels for each class) in the graph while the price
to be paid is the additional storage cost of propagated la-
bels. In the worst case of bipartite graphs, the extra storage
is O(n?), but fortunately this is not the case of class semi-
lattices represented in RDF/S. Table 2, column 3 illustrates
the expression of our testbed queries in this scheme when
the encoded class hierarchies are trees (the case of DAGs
will be addressed in Subsection 4.2). Finally, to support
incremental updates without node relabeling one can leave
gaps between the intervals generated during the bottom-up
tree traversal using some constant factor ¢ in the postorder
numbering, i.e., the label of a node u is [index (u), cxpost(u)].
Other interval computation policies (out of the scope of this
paper) use, for instance, a top-down traversal in order to
encode at each level random or adaptive size gaps for node
intervals w.r.t. to the prediction of future updates

It should be stressed that for trees, Agrawal, Borgida,
Jagadish scheme is equivalent to the scheme proposed by
Li and Moon [17] (see Figure 2-e) for encoding XML data
where the label of a node u is [pre(u), size(u)] (size(u) de-
notes the size of the subtree rooted at u). It is also identical
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Figure 3: Label Compression for Graphs: a)

to the scheme by Schubert et al [19] (with inverse query
conditions) recently studied for XML trees in [21] where
the label of a node u is [pre(u), index(u)] (index(w) is the
highest preorder number of u’s descendants). Compared to
these variations the extended postorder scheme of Agrawal
et al has the following advantages: (a) it requires smaller
index volumes (and update costs) since we need only a B-
tree on the post value of labels (as opposed to Dietz’s la-
bels [10, 11] requiring indices on both pre(uw) and post(u)
values and Zhang’s variation [26] requiring an extra index
on depth); (b) it allows for more efficient query evaluation
by standard SQL engines since the core conditions for the
structural relationships among nodes are simpler (unlike la-
bels in the scheme by Li and Moon involving arithmetic
operations in all queries); (c) it finally exhibits interesting
interval compression opportunities for graphs either by ab-
sorbing subsumed intervals or by merging adjacent intervals
coming from non spanning tree edges.

Consider for example the DAG D illustrated in the left
part of Figure 3. The nodes of D represent classes and
the edges isA links defined between them. The link from
B to A is redundant but such a redundancy is frequent in
RDF'/S schemas found on the Web [18]. Note also that pre-
cedings/followings queries (see Table 2) are meaningless in a
graph setting. In order to label D, the scheme by Agrawal,
Borgida, Jagadish [1] chooses an optimal spanning tree T
w.r.t the number of generated labels, based on the number
of ancestors per node: an edge of D from n to n’ belongs to
T (represented by solid lines) only if n' has the maximum
number of ancestors w.r.t. the other edge target nodes with
source node n. For instance, the edge from B to C belongs
to the spanning tree while the edge from B to A does not
(dashed line). Only non redundant edges belong to the opti-
mal spanning tree. Then (see the right part of Figure 3) for
each non spanning tree edge (e.g., from H to D the interval
of the source node (e.g., [3,3]) is propagated to the tar-
get node (e.g., D) and recursively up to its ancestors (e.g.,
B, C, A). However, when propagated upwards, the intervals
of descendent nodes may be subsumed by those of ancestors
(e.g., [3,3] is subsumed by both C and A intervals). There-
fore they can be absorbed by the label of a node (either from
the spanning tree or propagated) representing their nca. In
addition, adjacent intervals like [1,2] and [3,3] can be
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merged into a new one [1,3] without breaking down the
interval inclusion rule which captures the node ancestor re-
lationship (e.g., after merging B is an ancestor of D and
H). Such interval merging, clearly depends on the order of
edges belonging to the spanning tree [1] while it affects the
identification of nodes based on their postorder number (we
come back on this issue in Subsection 4.2). At the end of
the compression process, the scheme requires only two addi-
tional intervals (for D and F) for the four non spanning tree
edges of our example.

The same label propagation can be also applied to other
interval based schemes such as the one by Li and Moon [17].
However, the compression rate is significantly reduced: in-
terval merging is not possible while interval subsumption
(w.r.t the subsumption checking conditions of Table 2) is
limited (e.g., [7,1] is subsumed by [6,3]). The Dewey
prefix-based scheme [6] can similarily be exended with ad-
ditional labels in the case of DAGs. We rely, as previously,
on the same spanning tree choice but the propagation of
labels is now performed downwards i.e., from the target of
non spanning tree edges (e.g., A) to the source node (e.g., B
and its descendants (e.g., D, G, H and I). The only possible
compression in this scheme is the absorption of a label when
it already appears as a prefix of another; for instance, ’1°’
is absorbed by ’111°, 11111’ etc. As illustrated in Fig-
ure 3, in our simple example Dewey’s scheme requires six
additional labels (for G, H and I).

In summary, bit-vector based schemes do not efficiently
support all our testbed queries when implemented by SQL
engines. Prefix-based schemes provide simple expressions for
ancestor/descendant queries based on string matching oper-
ators and allow for simple incremental updates. However, in
this scheme the optimization opportunities of existing SQL
engines are reduced for some of our testbed queries. Among
the interval-based schemes, the extended postorder interval
scheme proposed by Agrawal, Borgida, Jagadish (referred
to as PInterval) presents several advantages among which
compactness for DAG hierarchies and efficient query eval-
uation by standard SQL engines are noteworthy. The ex-
perimental study presented in the next section compares its
performance with that of the Unicode Dewey prefix scheme
(referred to as UPrefiz) in terms of storage volumes and
query evaluation time.



4. EVALUATION OF LABELING SCHEMES

In this section, we compare the storage and query perfor-
mance of two labeling schemes when implemented with an
SQL engine, namely the Unicode Dewey prefix-based scheme
(UPrefiz) and the extended postorder interval-based scheme
by Agrawal, Borgida and Jagadish (PInterval). We use as a
testbed for our evaluation the RDF dump of the ODP Cata-
log (version of 16-01-2001). We successively study the case of
subclass trees (i.e., the ODP hierarchies with single isA) and
DAGs (i.e., the ODP hierarchies are augmented with syn-
thetically generated multiple isA links). Experiments were
carried out on a Sun-Blade-1000, with an UltraSPARC-III
750MHz processor and 512 MB of main memory, using Post-
greSQL (Version 7.2.1) with Unicode configuration. 1000
buffers (8KB) were used for data loading, index creation
and querying. 16 ODP class hierarchies (see Table 1) with
a total number of 253215 topics were loaded. Indices on the
generated labels were constructed after file sorting on the
index key in order to use packed B-trees.

4.1 The Case of Trees

We first choose a relational representation of UPrefix
and PInterval labels in order to compare the resulting data-
base size. The performance of the testbed queries (see Ta-
ble 2) is then compared when implemented with the Post-
greSQL engine.

4.1.1 Database Representation and Sze

The RDF/S class (or property) hierarchy of a Portal Cat-
alog like ODP, can be represented by one table with two at-
tributes: the name of the class (primary key) and the name
of its father class. Because in ODP the class names are
large variable size strings (path from root including names-
pace and path prefix) we choose the following normalized

relational database schema:
Class(id : intd, name : varchar(256))

SubClass(id : intd, father : intd)
where id is a class identifier, name is its name, and father is
the father class identifier.

Since the labels produced by UPrefixz or PInterval are
unique, they can be used (or a part of them) as identifiers of
classes in the tree. In the following, we evaluate the database
and index size of the following tables replacing SubClass
respectively by:

UPrefiz(label : varchar(15), father : varchar(15))
PlInterval(index : int4, post : intd, father : intd)
where father respectively stores the father’s string label or

post-number value.

Two remarks are noteworthy. First the string type of at-
tribute label in UPrefix is determined by the maximum
depth of the ODP class hierarchy (see Table 1) plus one
(for the root class Resource) while the type of the post (and
index) attribute in PInterval by the total number of the
ODP classes. Second, in both cases we utilize the father at-
tribute in order to reconstruct the class hierarchy in RDF/S
from the database as well as to efficiently support direct par-
ent/children/sibling queries. This choice is justified by the
significant evaluation cost of these queries in SQL engines
with user-defined functions like prefiz in UPrefix or ad-
ditional information on node labels like depth in PInterval
(otherwise finding the direct children of Resource requires a
complete scan of the ODP hierarchy!).

Figure 4-a displays the size of the database (tables U Pre fiz
and Plnterval) and the size of the index (respectively on

attributes label and post) while Figure 4-b displays the con-
struction time when the 16 ODP hierarchies (see Table 1)
are loaded in decreasing order of their number of classes.
More precisely, the size of table UPrefix is 16376 Kb and
the size of PInterval is 12902 Kb both containing 253215
tuples (i.e., classes) on 2073 and 1613 disk pages respec-
tively. Equivalently, to store the label of a class as well as
the label of its superclass (i.e., a tuple) we need 52,17 bytes
with PInterval and 66.22 bytes with UPrefix. Compared
to the PInterval 12 bytes expected from the schema, the
extra storage cost per tuple is due to an id (40 bytes) gen-
erated by PostgreSQL to identify the physical location of
a tuple within its table (block number, tuple index within
block). In addition, the PostgreSQL storage requirement
for string types is 4 bytes plus the actual string size. For
these reason we need on the average® 13.11 bytes for storing
the class label in UPrefiz. It should also be emphasized
that only 0.133% of the encoded classes in U Pre fir require
labels with Unicode characters exceeding the two bytes (2
classes have a fan-in degree > 256 with 336 subclasses).

Table UPrefiz is 21.2% bigger than PInterval, while
the size of the index on attribute label is 29.8% larger (1001
disk pages) than that of post (697 disk pages). On the other
hand, data loading (index construction) time of UPrefiz is
34,75% (32,21%) larger than of PInterval. Slightly smaller
size and time have been obtained for the indices on attribute
father in both tables (due to the indexing of smaller ranges
of values). Clearly, the extra storage cost of PInterval is
due to a significant overhead for storing and indexing strings
in the PostgreSQL DBMS.

4.1.2 CoreQuery Evaluation

In this subsection, we are interested in the efficient imple-
mentation of the Portal query functionality for both prefix
and interval labeling schemes using standard SQL engines.
Most query expressions (see Table 2) can be directly trans-
lated into SQL, using the relational schema of the previous
section. The only queries for UPrefix needing to be im-
plemented by SQL stored procedures are ancestors (func-
tion prefizes) and nca (functions prefirzes and mlength).
Stored procedures are also employed to implement the sub-
sumption checking on two class labels for both schemes.
It should be stressed that for optimization reasons queries
such as leaves for UPrefix and followings for PInterval
need to be rewritten.

More precisely, the main performance limitation of SQL
queries for UPrefixz is due to the presence of user-defined
functions (next, prev and mprefiz) in the selection condi-
tions involving the attribute label. Such queries are eval-
uated by the SQL engine without taking into account the
existence of an index defined on label. To solve this lim-
itation, when possible user-defined functions are evaluated
prior to the execution of the SQL query. For instance, the
query descendants of the root class Resource uses the con-
dition label > 1’ A label < next(’1’). Since function next
is applied to the input node of the query (e.g., the label ’1’
of Resource) the condition can be replaced by *1° A label <
’2? (next(’l’) =’2’) where next has been pre-evaluated.
However, this rewriting is not always possible, as in query
leaves where the function next is used in the nested sub-
query over the labels returned by the outer block:

98Note that the average depth of ODP class hierarchies including
the root Resource is 8.83 (see Table 1).
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select label
from UPrefix
where label > ’1’ and label <’1n’ and
not exists (select *
from  UPrefiz v’
where u’.label > label and

u’.label < next(label))

For this reason, the previous query was rewritten so as to
involve only string operations and not functions on label:

select label
from UPrefix
where label > ’1’ and label < '1’ || 'xFF’ and
not exists (select *
from UPrefix
where u’.label > label and

u’.label’ < label || 'xFF’)

The string operator || concatenates the Unicode char-
acter 'xFF’ (“all-ones” byte) to the value of attribute label.
The resulting string is the maximal string inferior to next(label)®.
Then the index can be used during the evaluation of the
nested query. Other rewritings were experimented with (e.g.,
using structural information represented by attribute father)
but the previous solution exhibited the best performance.

The only problem for the interval based scheme is related
to the followings query. It relies on the values of the at-
tribute index for which no index was constructed. In order
to use only the available index on post, we rewrite the query
as follows:

select post
from PlInterval
where  post > p and index > §

The selection condition is equivalent to the original one
index > p (in PInterval following nodes have always greater
postorder and index numbers'®) and query evaluation can
be optimized with the use of the B-tree defined on post.

Except for the two previous rewritings, the evaluation of
the core queries with the two labeling schemes strictly uses
the conditions stated in Table 2. Each query was run sev-
eral times: one initially to warm up the database buffers and

9°Note that label «F'F is an imaginary rightmost child (xFF’
cannot actually be used in a valid UTF-8 encoding) for the node
with label label whose immediate right following node has the label
next(label).

9%The second condition is used to eliminate ancestors.

then nine times to get the average execution time of a query.
Recall that 1000 buffers of size 8KB and thus the indices of
attributes label (1001 disk pages) and post (697 disk pages)
can fit entirely in main memory. Table 3 gives the result-
ing execution time in seconds (using PostgreSQL Explain
Analyze facility) for both schemes and for up to three dif-
ferent cases per query: each case corresponds to a different
choice of input node and therefore of query selectivity.

The main observation is that the query performance of
the two labeling schemes is comparable. The leaves query
is penalized in UPrefix by the use of nested queries. Com-
pared to PInterval, ancestors and nca run with the former
scheme in practically constant time. In all other queries,
PlInterval exhibits slightly smaller execution times than
UPrefix since for the same number of returned tuples a
smaller number of disk pages need to be accessed. Finally,
PostgreSQL (cost-based) query optimizer seems to favor in-
dex scans on tables UPrefirz and PInterval although se-
quential scans should be more efficient (e.g., in queries with
50% selectivity!). This is due to inaccurate selectivity es-
timations (higher) of query predicates especially for string
comparisons in UPrefix. The same plans and compara-
ble execution times for all queries have been observed when
augmenting the number of buffers from 1000 to 10000.

In Q1 each case corresponds to the choice of a differ-
ent node for which the descendants are computed: (a) in
Case 1 the root (i.e., Resource) (b) in Case 2 a node with a
medium number of descendants (i.e., Arts) and (c) in Case
3 a node with a minimum number of descendants. In Cases
2 and 3, the node label appears in the middle of the post
or label intervals of values. PostgreSQL optimizer chooses
for both labeling schemes a sequential scan for the first case
and index scans for the other two. Since the interval query is
based exclusively on post (e.g., i+ <= post < p) or label (e.g.,
I < label < 1') index scan is beneficial: the optimizer uses
the index to access the tuple satisfying the lower bound con-
dition and since the examined index keys are sorted, it stops
sequential scan of tuples when the upper bound is reached.

The three cases of input nodes for Q2 correspond to (a)
the leftmost (b) a middle and (c) the rightmost leaf of the
ODP subclass tree. The response time is significantly bet-
ter for the Prefix scheme in the first two cases. PostgreSQL
optimizer chooses for PInterval (for UPrefix stored proce-
dures are used) a sequential scan for Case 1 and index scans
for Cases 2 and 3. The interval query is based now on differ-



Query PlInterval UPrefix
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
%Select %Select %Select %Select %Select %Select
subsumption check 0,00018 0,00018 0,00017 0,00017 0,00017 0,00017
Q1 2,869392 | 0,429730 0,00027 3,296126 0,57702 0,00027
descendants 100% 10% 0,0004% 100% 10% 0,0004%
Q2 1,18904 1,54799 0,00027 0,00163 0,00178 0,00167
ancestors 0,002% | 0,00158% | 0,00355% 0,002% 0,00158% | 0,00355%
Q3 2,957039 | 0,493230 0,00027 25,54267 16,51963 0,00055
leaves 75,13% 8,46% 0,0004% 75,13% 8,46% 0,0004%
Q4 2,629188 2,34529 0,00024 2,874457 126623 0,0005
precedings 100% 50% 0% 100% 50% 0%
Q5 2,9721 2,48579 0,00024 3,37825 2,566292 0,0005
followings 100% 50% 0% 100% 50% 0%
Q6 0,00863 0,00054 0,00047 0,00961 0,00056 0,00049
siblings 0,1236% 0,002% 0,0004% 0,1236% 0,002% 0,0004%
Q7 3,22742 0,00041 0,000438 0,0003945 | 0,0003945 | 0,0003945
nca 0,0004% 0,0004% 0,0004% 0,0004% 0,0004% 0,0004%

Table 3: Execution Time of Core Queries for the ODP Subclass Tree

ent attributes namely post and index (index <= pAp < post
since for leaves index = post) and all values returned by the
index scan (on post) have to be scanned to check the first
condition (on index). The wrong selectivity estimation for
the conjunction leads the optimizer to favor in Case 2 an in-
dex scan (on the half interval) which turns out to be much
more costly than a sequential one (on the entire interval)!

Q3 is evaluated with the same input nodes as Q1. Thus,
for PInterval, the PostgreSQL optimizer chooses the same
plans in the three cases. The slightly higher execution times
compared to Q1 are due to the evaluation of the extra con-
dition for leaves (index = post) given that the number of ac-
cessed disk pages are the same. On the other hand, UPrefix
is significantly penalized by the use of the nested query: in-
dex scans are used for the nested query in all cases while a
sequential scan should be used at least for Case 1.

Queries Q4 and Q5 employ the same input nodes as Q2
and the three cases for precedings and followings have
inverse selectivities. The execution times for queries with
zero selectivities (Case 3) give us an indication about the
lookup cost of indices defined on attributes post and label.

Q6 is evaluated with input nodes having the maximum, a
medium and the minimum fan-in degrees of ODP subclass
trees. It involves a nested loop join over two index scans:
one to find the father of a node and the other to find its
direct siblings using equality predicates on attributes post
or label and father.

Finally, Q7 takes as an input a pair of nodes (using the
same leaves as in Q2): in Case 1 the leftmost-rightmost
leaves, in case 2 the leftmost-middle leaf and in Case 3 the
middle-rightmost leaves. For UPrefixz a stored procedure
is executed, while for PInterval a nested query is evaluated
using index scans for both the inner and outer blocks in the
three cases. In Case 1 the resulting time for the interval
based scheme is significant. However as aforementioned, a
sequential scan should be chosen. For Cases 2 and 3 the
response times are comparable.

4.2 The Case of DAGs

In this section we first present the relational represen-
tation of UPrefiz and PInterval labels in the case of a
subclass DAG and evaluate the extra storage cost for both
labeling schemes. We then show, as for the case of trees,
how subsumption check, descendant, ancestor, leaves,

siblings and nca queries (preceding and following queries
are not defined on DAGs) can be expressed on the label rep-
resentation of the hierarchy and translated into SQL queries.
We end up our study by a performance comparison of the
two schemes in terms of query response time.

4.2.1 Database Representation and Sze

In each labeling scheme, two tables are now necessary for
representing the class hierarchy, apart from table Class with
attributes id and name. The first table in both schemes
is the same as in the case of trees (UPrefix, PInterval).
The only modification is that for DAGs, tuples in these ta-
bles represent both kinds of edges (spanning-tree or non-
spanning-tree edges). The rationale behind this choice is
that siblings (and father/children) queries can be easily
evaluated on tables U Pre fix and PInterval using the father
attribute (as in the case of trees). This choice implies the
extension of both tables key in order to include the father
attribute, as follows:

UPrefiz(label : varchar(15), father : varchar(15))
PlInterval(index : intd, post : intd, father : intd)

It should be stressed that when label compression in PIn—
terval also considers the merging of adjacent intervals, DAG
nodes are not anymore identified using their postorder num-
ber. For instance, in Figure 3 both nodes C and G have as a
post value 5. As shown in the following, the total label com-
pression gains from merging is less than 0.6% and therefore
we do not consider this compression in the following.

The second table is respectively called DUPrefiz and
DPInterval in the two schemes where D stands for DAG.
In the former table, tuple (label, ancestor) indicates that the
node with label ancestor propagates downwards its label to
the node identified by label. In the latter, tuple (indez,
post, ancestor) indicates that the node with label [index,
post] propagates its label upwards to the node identified by
the post value ancestor. Keys are not mandatory for these
tables because they are not accessed independently from
the primary table (indices have been defined on attributes
ancestor and label or post).

DU Prefiz(label : varchar(15), ancsestor : varchar(15))
DPInterval(index : int4, post : int4, ancsestor : intd)
Looking at Figure 3, left, the label [6,3] of G is propa-

gated up only to B since it is absorbed by A. Then DPInterval
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Figure 5: Label Propagation and Compression for ODP Subclass DAGs

includes one tuple (3,5, 2) where 3,5 account for the index
and post values of G and 2 for the post value of B (i.e., its
id). Similarily the DU Prefix table includes the two tuples
(1121, 111"), and ('11212’, 111") that account for the prop-
agation of B’s label down to its descendants G, and I (for H,
B’s label is absorbed by the propagated label ’1111’ of D).
Note the redundancy of the attribute ¢ndex, since any node
is identified by its post value. This redundancy allows for a
faster SQL execution of the descendants query. It should
be stressed that when label compression is not considered in
both schemes, table DUPrefixz (DPInterval) essentially
materializes the result of descendents (ancestors) query
involving DAG edges.

Let us now evaluate the extra storage cost for labeling
DAGs with the two schemes. Since in both cases the tables
UPrefiz and PInterval hold all the edges of the DAG (to
enable reconstruction in RDF/S), the extra storage space is
exactly the size of tables DUPrefix and DPInterval: for
each scheme we only need to measure the number of propa-
gated labels. This (downwards or upwards) propagation de-
pends on the position of the source and target nodes of the
non spanning tree edges in the DAG or more precisely the
number of descendants (ancestors) of source (target) nodes.
The DAG testbed uses the ODP hierarchies (see Table 1)
augmented with synthetically generated multiple isA links.
The original ODP classes are decomposed into three sets
according to their depth in the tree: a) near to the root
(denoted R); b) near to the leaves (denoted L); and c) in
between (denoted B). Then, picking at random the source
and target edge classes, additional edges are equally dis-
tributed in nine groups: RR, RL, RB, etc. In addition, the
maximum fan-out degree of classes is fixed to 2 (a typical
upper bound of multiple isA links as observed in [18]).

The total number of label propagations is displayed in
Figure 5 versus the percentage of additional edges. The ex-
periment was conducted incrementally until the number of
original ODP tree edges is doubled (100% percentage of ad-
ditional edges): for every 5% generated edges, we execute
the two labeling algorithms. Note that the spanning tree
computed (for both algorithms) is different at each incre-
ment step. The main observation from Figure 5 is that the
number of label compressions in PInterval is proportional
to the number of additional edges, regardless of their posi-
tioning in the DAG, which is not the case for UPrefix. For
this reason, the number of label propagations for PInterval

is stabilized between 125000-200000, while for UPrefiz it
seems to depend on the actual number of descendants of the
source class of each additional edge. Clearly, when a sig-
nificant number of edges has been added (e.g., 65%) label
propagation in the two schemes diverges significantly. In
this case (e.g., 656%), the number of adjacent label merg-
ing in PInterval is less than 22% of the total number of
compressions. Practically speaking, for 253214 additional
edges (i.e., 100%) DUPrefiz will contain 253214 tuples
while PInterval 151869. Ignoring the merging of adjacent
labels in PInterval (in order to maintain postorder num-
bers as class identifiers) implies only 1000 additional tuples
(i-e., less than 0.6%). This DAG testbed will be used in
the sequel for evaluating the query performance of both la-
beling schemes. When label compression is completely ig-
nored, the size of tables DU Pre fixz and DPInterval is two
or three times bigger (depending on the number of added
DAG edges).

4.2.2 CoreQuery Evaluation

In Table 4, we provide, for both labeling schemes, a declar-
ative formulation of the five testbed queries expressed in
terms of the query expressions defined for the tree case.
We denote by Propdown(u) in DUPrefiz the set of de-
scendant nodes of u to which u’s label is propagated and
by Propansc(v) the set of ancestors u of v such that v €
Propdown(u). Similarily, Propup(u) in DPInterval is the
set of ancestor nodes of u to which the label of u is prop-
agated as an additional label and Propdesc(v) is the set of
descendants u of v such that v € Propup(u). Subsumption
checking for two DAG nodes u and v evaluates to true in
DUPrefix (DPInterval) iff the subsumption(u,v) condi-
tion given in the case of trees (see Table 2 columns 2,3) is
true or u € Propansc(v) (v € Propup(u)). In the sequel, we
provide the SQL translation of the declarative expressions
for Ddescendants, Dancestors and Dleaves. Clearly, label
compression result to more complicated query expressions
because the paths connecting two DAG nodes involving non
spanning tree edges are not completely materialized in ta-
bles DU Prefix and DPInterval.

Query Ddescendants(v) uses the descendants(v) expres-
sion given for the case of a tree (see Table 2, columns 2,3). In
both schemes, it also finds the descendants related to prop-
agated labels of v, respectively given by Propdown(v) and
Propdesc(v). In the absence of compression, the expression
Propdown(v) would be expressed by the following simple



| Query | DUPrefix | DPInterval
Ddescendants(v) | descendants(v) U Propdown(v) descendants(v) U U, ¢ propdesc(v) descendants(w)
Dancestors(v) ancestors(v) U Uy e propanse(v) ancestors(w) ancestors(v) U Propup(v)
Dleaves(v) {u | u € Ddescendants(v) A Propdown(u) = 0 {u | v € Ddescendants(v) A Propdesc(u) = ()
Au' | v € Ddescendants(u) A Propdown(u') = 0} Au' | v' € Ddescendants(u) A Propdown(u') = 0}
Dsiblings(v) siblings(v) siblings(v)
Dnca(v, w) {u | u € Dancestors(v) A u € Dancestors(w)A {u | u € Dancestors(v) A u € Dancestors(w)A
Au' | v € Dancestors(v) Au' € Dancestors(w) Au' | v € Dancestors(v) Au' € Dancestors(w)
Au' € Ddescendants(u)} A’ € Ddescendants(u)}

Table 4: Core Query Expressions for DAGs: a) DUPrefix b) DPInterval

SQL query, where 1’ denotes the label of v (UPrefiz):

select label from DU Pre fix where ancestor= "1’
Because of the label compression the corresponding SQL

query employs also a nested query on UPrefiz for finding

the descendants in paths involving DAG edges:
select w.label

from DUPrefizx w,
(select wu.label as label
from UPrefiz u
where u.label >="'1’ and
wlabel <1 || xFF’) v
where  w.ancestor = u’.label

Denoting the label of v by [i,p] (PInterval) the union
subquery on Propdesc(v) is translated into SQL as follows:
select u.post

from PlInterval u, DPInterval w
where  w.ancestor = p and u.post >= w.index
and u.post <= w.post

The query Dancestors(v) relies in turn on the ancestors(v)
expression given for the case of a tree. In both schemes, it
also considers the ancestors related to propagated labels of v
which are given respectively by the expressions Propansc(v)
and Propup(v). The SQL translation of Propup(v) for DP-

Interval with label compression is given below:
select w.post

from PlInterval w, DPInterval v,
(select wu.post as post
from PlInterval u
where w.inder <= i and u.post >=p) v’
where w.inder <= v.ancestor and w.post >=v.ancestor

and v.post = u’.post

The query Dancestors(v) for DUPrefiz is translated
into a stored procedure which employs an intermediate SQL
query to compute the expression Propansc(v):
select ancestor from DU Prefix where label= "1’

For query Dleaves(v) we obtain the following SQL trans-
lation in DPInterval (for DUPrefizx, the SQL query is
similar and uses the SQL translation of Ddescendants):

select u.post
from PlInterval u
where u.post < p and u.post >= i and u.post = u.index
and not exists (select *
from  DPinterval u’
where u’.ancestor = u.post)
Union
select u.post
from PlInterval u, DPInterval w
where  w.ancestor = p and u.post >= w.index

and u.post <= w.post
and not exists (select *
from  DPinterval v’
where u’.ancestor = u.post)

Dsiblings(v) has exactly the same expression as for the
tree case. Due to space limitations, we do not give the full
expressions on labels for Dnca(v, w) but we use Dancestors
as a short-hand notation. Similarly, its SQL translation uses
nested subqueries in DPInterval as the above expression for
Dancestors. In DU Pre fix however the expression is much
simpler since it relies on the string functions prefires and
mlength (see Table 2).

Table 5 shows the execution times of the testbed queries
for the synthetically generated ODP DAGs (100% of Fig-
ure 5) using the same input nodes as in the case of trees
(see Table 3). Due to the additional non spanning tree edges
(on the same ODP nodes) the size of tables UPrefiz and
PlInterval is practically doubled and the query selectivities
are accordingly decreased. The main observation is that
queries for DPInterval are up to five times more costly than
in the ODP tree case, depending on the size of intermediate
results (nested queries) and the extra cost of label’s sorting
and duplicate elimination in unions (the same labels can be
returned by both queries on the tree edges and the DAG
ones). Furthermore, DPInterval outperforms DUPrefix
up to six times for descendants and leaves queries. In
particular, leaves in DU Pre fix is severely penalized by the
use of two nested queries (one for Propdown() = @ test and
the other coming for the tree case) in each uinon subquery.
On the other hand, compared to DPInterval, ancestors
and nca for DUPrefizx run in practically constant time.

In summary, a number of interesting conclusions can be
drawn from the conducted experiments. A first conclusion is
that, for voluminous class subsumption hierarchies, labeling
schemes bring significant performance gains in query eval-
uation as compared to transitive closure computations over
these schemas [14]. Secondly, this gain comes with no sig-
nificant increase in storage requirements for the case of tree-
shaped hierarchies especially for interval based labels while
the query performances for both schemes are comparable.
For DAG-shaped hierarchies, the relational representation of
the encoded schemas yields an extra storage space (roughly
double). This is an effect of label propagation induced by the
presence of non spanning tree edges in the DAG. As a mat-
ter of fact, both schemes are equally sensitive to non span-
ning tree edge additions for the cases that are most likely
to arise in practice (i.e., small percentage of added edges)
while divergent behavior is observed when the percentage
of added edges increases substantially. Thirdly, for DAGs,
some queries on prefix schemes are up to six times more
costly than on interval schemes. Most importantly though,
when label compression is considered, the SQL translation
of our testbed queries is significantly complicated. Our fu-
ture work consists on studying the tradeoff of storage versus
query performances when DAG paths between nodes are
fully materialized (i.e., no label compression).
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Query DPInterval DUPrefix

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
%Select %Select %Select %Select %Select %Select

Q1 15,14564 0,82362 0,00076 110,953 22,511 20,587
descendants 50% 5,051% 0,0004% 50% 5,051% 0,0004%
Q2 4,7625 2,63378 3,2137 0,00626 0,00478 0,00488
ancestors 0,033% 0,00454% | 0,00276% 0,033% | 0,00454% | 0,00276%
Q3 17,251 1,6439 0,00101 125,9434 52,6224 51,6713
leaves 21,55% 2,211% 0,0002% 21,55% 2,211% 0,0002%
Q4 0,010461 | 0,00136 0,00092 0,010465 | 0,00212 0,00095
siblings 0,0626% | 0,0008% 0,0004% 0,0626% | 0,0008% 0,0004%
Q5 5,0838 3,3825 4,8851 0,00054 0,00055 0,00052
nca 0,0002% | 0,0002% 0,0002% 0,0002% | 0,0002% 0,0002%

Table 5: Execution Time of Core Queries for the ODP Subclass DAG
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