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Quick recap

Expectation

Optimization problem li

minimize E G (G ))}
0 cM 1
Model parameters
Structure
Model

e Design prediction model y = fp(x) and loss £
e Learn the model parameters approx. E with data at hand + solve the optimization problem

e Apply model to new data
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Learning paradigms

Supervised
Learning

Unsupervised
Learning

Semi-supervised
Learning

Self-supervised
Learning
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Supervised learning

» Given a labeled dataset of input-output pairs: D = {(x, v:)} ;.
with z;; samples (e.g. images) and y;: labels

» The goal is to learn a predictive function:  fp : X — Y, parameterized by 6 that
maps inputs to their corresponding label.

» Training consists of minimizing a supervised loss over the dataset:
ming 3.0, L(fo(i), )
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Supervised learning

Training data

( Samples Labet’.s\

Final
task

_— Classification

ﬁ «— Llama
y

~- Labels provide the supervisory signal:
they explicitely tell the model what the correct output is.
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Limitations of supervised learning

» Data limitations

— Still Requires labeled data ~ expensive and time-consuming

— Labels may be noisy, inconsistente or ambiguous
» Scalability limitation

— Annotation cost grows linearly with dataset size

— Many domains (medicine, rare events) have inherently limited labeled data
» Generalization limitations

— Poor performance in low data regimes or under distribution shifts
— Models learn task-specific representations ~» do not transfer to other tasks
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Unsupervised learning

» Given an unlabeled dataset: D = {z;}¥,
with z;; samples (e.g. images)

» The goal is to learn a function or representation: fp : X — Z, parameterized by ¢
that captures structure or regularities in the data: clusters, density, etc.

» Unsupervised learning aims to solve: ming L(fy(z), ) or maxy log pp(z), depending on
the model class.

» Unsupervised tasks:

e Density estimation: model pg(z)
e Clustering: group samples by similarity
e Dimensionality reduction: find low-dimensional latent representations
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Unsupervised learning

Training data

Final
task

Clustering,
PCA, etc.

~+ No explicit supervisory signal,
learning is guided by intrinsic properties of the data. 7
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Limitations of unsupervised learning

» Ambiguity of objetives

— Without labels, the model may learn structure that is irrelevant for some tasks
» Weak supervisory signal

— Reconstruction or density estimation do not guarantee discriminative features
» Evauation limitations

— No ground-truth ~ evaluation of the results is often subjective or indirect

» Lack of semantic richness

— Purely unsupervised features often fail to capture semantic concepts (e.g.
object identity)
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Semi-supervised learning

» Given a dataset composed of a small labeled subset, D = {(z;, yi)};iq, and a large
unlabeled subset, D = {z;} ¥, with N, >> N,

» The goal is to learn a predictive function: fy: X — Y, (same as supervised
learning), leveraging both types of data to improve performance.

» Training usually combines:
e Supervised loss on labeled samples:
Lsup = N%, 25\31 L(fo (1), yi)
¢ Unsupervised loss (consistency/regularization) on unlabeled samples:
Lunsup = 7~ Yo R(fa(wi), z2)
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Semi-supervised learning

Training data

7~ Labelled

<« Llama

z‘; « Rabbit

T Ontaelied

Final
task

Classification

~+ Assumption: Unlabeled data can reveal structure aligned with the supervised task

10
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Limitations of semi-supervised learning

» Data limitations
— Requires large amounts of labeled data ~~ expensive and time-consuming
— Labels may be noisy, inconsistente or ambiguous
» Quality of unlabeled data
— Unlabeled data must follow the same distribution as the labeled data
— Unlabeled data can harm performance
» Training instability
— The unsupervised loss needs to be carefully chosen and tuned.
» Limited semantic gains

— They are not better than supervised learning when labeled data is abundant
— Often surpassed by self-supervised strategies

"
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Self-supervised learning

» Given an (usually big) unlabeled dataset: D = {z;}Y,

pretext
3

» We define a pretext task and generate labels from the data itself y

» Now we have a labeled dataset D = {(x;, y"™"*")} ¥, to train f, in a supervised way

on the pretext task.

» The goal is that the pretext task should help fy(z) to capture useful representations
that transfer to downstream tasks.

» Downstream task: the real task of interest (e.g., classification, segmentation, object
detection, etc.)
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Self-supervised learning

Training data

Final
task

Any task!

(classification, segmentation,
object detection, etc)

~+ Use intrinsic structure in the data to create supervision without human labels.
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Why self-supervised learning?

» Labels are expensive
— Unlabeled data is abundant at (almost) no cost
— Labels require expert knowledge and time

» Supervised learning is limited
— A single label contains very few bits of information, discarding all other
information contained in images
— Does not transfer to other tasks/datasets

» Unsupervised learning does not guarantee semantic features
— Traditional unsupervised methods may capture irrelevant structure

» SSL scales naturally
— SSL objectives operate on raw data at massive scale
— Enables training very large models
— Learns general-purpose, transferable representations
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Evaluation of self-supervised learning

Unlabelled data




o o o o o o o o [ [

Evaluation of self-supervised learning

Unlabelled data

transfer

—>

(Luhm’k'd data

Rabbit

Llama

\-

M

Downstream

task

J
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Evaluation of self-supervised learning

Unlabelled data

,f abelled data Downstream task
:‘ l .ﬂ Evaluation
transfer
) ) R IH bit Llama

R

Downstream
\ task
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Evaluation of self-supervised learning

Unlabelled data

Luhc lled data

transfer l . ﬂ

) Ra IH bit Llama

R

Downstream
\ task

Downstream task
Evaluation

— Pretext task evaluation
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Evaluation of self-supervised learning

Unlabelled data

Luhc lled data

transfer l .ﬂ ae
) Ra IH bit Llama f

Downstream = =
\ task \

Downstream task
Evaluation

— Evaluate the representations

— Pretext task evaluation e Fine-tuning

e Linear probing
e k-NN evaluation 15
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Prior self-supervised learning
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Pretext task: Predict Rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: A model would be able to recognize the correct rotation of an object only if
it has the “visual commonsense” of what the object should look like unperturbed.

Image source: Gidaris et al. 2018
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Pretext task: Predict rotations

> g(X.y=0) - -

Rotate 0 degrees .
Rotated image: X°

e SSL by rotating the in-
o g(X,);=l) —»ﬁiL\ — pUtS
Rotate 90 degrees
e The model learns to pre-
dict the rotation angle

Rotated image: X'

> g(X,y=2) —» % —

Image X Rotate 180 degrees e 4-class classification

Rotated image: X’

- g(X,y=3) HQFL

Rotate 270 degrees

Rotated image: X*
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Pretext task: Predict rotations

[ Objectives: |
| 2 ConvNet Maximize prob. ‘
» g(X,y=0) »> P nodel F() » F(X") |
Rotate 0 degrees R Predict 0 dogrecs rotation (y=0) |
I | e SSL by rotating the in-
_ . ConvNet Maximize prob.
> g(x,y=1) '% ™ model F() > F(xY) \ puts
Rotate 90 degrees . Predict 90 degrees rotation (y=1) |
Rotated image: X'
= 1 e The model learns to pre-
- Comat — dict the rotation angle
, > X .y=2) > model F() > () !
Image X' Rotate 180 degrees , , Predict 180 degrees rotation (y=2) [ e ,4-C la SS C la SSI ﬁ cation
Rotated image: ¥
\
e imi ‘
. ConvNet Maximize prob.
— g(x,y=3) —> L’ model F() ™

P |
Rotate 270 degrees Predict 270 degrees rotation (v=3) |

Rotated image: X*
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Evaluation on semi-supervised learning

100

0 /

80| / 1

. / e Self-supervised learning on Cl-
FAR10 (entire training set)

60
e Conv1 & Conv2 frozen

Test accuracy

or e Learn Conv3 & linear layers with

40 subsets of labeled CIFAR10 data
3or Durs - Semi-supervised ]
= Supervised
20
20 100 400 1000 5000

# Training examples
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Transfer learned features to supervised learning

e Self-supervised learning on ImageNet (entire training set) with AlexNet
e Finetuning on labeled data from Pascal VOC 2007.

Classification Detection ~Segmentation
(%mAP) (%mAP) (%mIoU)

Trained layers | fc6-8  all all all
ImageNet labels | 789 79.9 56.8 48.0
Random 533 434 19.8
Random rescaled Krihenbiihl et al. (2015) | 39.2 56.6 45.6 32.6
Egomotion (Agrawal et al., 2015) 31.0 542 439

Context Encoders (Pathak et al., 2016b) 346 565 44.5 29.7
Tracking (Wang & Gupta, 2015) 556  63.1 474

Context (Doersch et al., 2015) 55.1 65.3 51.1

Colorization (Zhang et al., 2016a) 615 65.6 46.9 35.6
BIGAN (Donahue et al., 2016) 523  60.1 46.9 349
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 653 49.4

Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0
ColorProxy (Larsson et al., 2017) 65.9 38.4
Counting (Noroozi et al., 2017) - 67.7 514 36.6
(Ours) RotNet | 70.87 72.97 544 39.1 19
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Pretext task: Predict relative patch locations

Example:

20

Image source: Doersch et al. 2015
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Pretext task: Solving “jigsaw puzzles”

v

N

w

IS

- L.
-l e[ o @,/7,,@

& ic7  fc8 softmax
-ﬁ——i’ =5 = )

o

Permutation Set

index permutation Reorder patches according to
the selected permutation

~

©

LR T

64 9.4,68325,1,7

©

TIxI1x96  5x5x256  3AX3B4  33x384 K356

Image source: Noroozi & Favaro, 2016.
21
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Transfer learned features

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

22
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Pretext task: Predict missing pixels (inpainting)

B & 4

(1% men

Pathak et al,, “Context encoders: learning by inpainting”, CVPR 2016.

23
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Learning inpainting by reconstruction

Channel-wise
Fully
Connected

—_—————
— =

[ Decoder Features ]

[ Encoder Features ]

Learning to reconstruct the missing pixels using autoencoders.

24
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Learning to inpaint by reconstruction

E(I) = Ereconstruction(x) + Eadversarial(@

25
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Learning to inpaint by reconstruction

/:(I) = Ereconstruction(x) + Eadversarial(@

ﬁreconstruction(l’) = ||M® (.r— Fﬁ(l - M) © 33)”%

with ®: element-wise multiplication and M a masked matrix with 1 if element is masked (else, 0)

25
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Learning to inpaint by reconstruction

/:(I) = Ereconstruction(x) + Eadversarial(@

ﬁreconstruction(l’) = ||M® (.r— Fﬁ(l - M) © 33)”%

with ®: element-wise multiplication and M a masked matrix with 1 if element is masked (else, 0)

Eadversariat(m) = mng[log(D(m)) + 10g(1 — D(F(1-M)© 37)))]
adversarial loss between “real” images and inpainted ones.

25
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Inpainting evaluation

Ours(L2) 7 Ours(Adv)  Ours(L2+Adv)

26




O000000000000m00000

Transfer learned features

Pretraining Method Supervision Pretraining time  Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

e Self-supervised training on ImageNet training set

e Transfer to classification (PASCAL VOC 2007), detection (PASCAL VOC 2007) and
semantic segmentation (PASCAL VOC 2012)

27
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Pretext task: Colorization

Zhang et al,, “Colorful Image Colorization”, ECCV 2016.

28
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Pretext task: Colorization

Lightness L Color ab Lab Image

convl conv2 conv3 conv4 conv5 convé conv7 conv8
atrous / dilated  atrous / dilated

64
L 256 512 512 512 512 ==
n fl J fi f f )

64 32 32 32 32 32 64

7128
(a,b) probability S
distribution 224

313 64 2

29



Introduction Contrastive Learning Self-distillatior Masked modelir Foundation mode
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Pretext task: Colorization

Classification
Regression Classification w/ rebal Ground truth
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Limitations

» Learn task-specific, non-generalizable features
— Many early tasks encourage learning low-level cues (edges, textures, artifacts)
rather than semantic features.
— Representations often do not transfer well to downstream vision tasks.
» Easy to solve via shortcuts
— Models frequently exploit trivial correlations (e.g., border artifacts for jigsaw,
chromatic aberration for colorization).
— The pretext task can be solved without true understanding of objects or scenes.
» Based on intuitions, with no theoretical guarantees

— Pretext tasks (rotation, inpainting, colorization...) were designed based on
heuristics, with no guarantee that solving the task yields useful representations.

31
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Families of self-supervised learning models today

f )
Contrastive Masked Image
Learning Modeling
SimCLR, MoCo MAE, SimMIM, MultiMAE
J \§ J
4 ) ) )
o Canonical correlation
Self-distillation Analysis
BYOL, SiamSiam, DINO y KVICReg, Barlow Twins, SWAV)

Balestriero et al,, “A cookbook of self-supervised learning”, 2023. 32
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Families of self-supervised learning models today

Contrastive Masked Image
Learning Modeling
SimCLR, MoCo y MAE, SimMIM, MultiMAE
4 )
Self-distillation
BYOL, SiamSiam, DINO

J

Balestriero et al,, “A cookbook of self-supervised learning”, 2023. 32
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Contrastive Learning

32
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Contrastive representation learning

Goal: To learn an embedding space in which similar samples are close
to each other while dissimilar ones are far apart.

Negatives

Anchor Negatives Anchor
- 195

‘.I""

Supervised Contrastive

Self Supervised Contrastive
: : : 33
Khosla et al,, “Supervised Contrastive Learning, Neur!PS 2020.
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A more general pretext task?

same object

34
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A more general pretext task?

S
——

same object

34
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Contrastive representation learning

attract

35
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Contrastive representation learning

reference

+

T " positive

T~ negative

35
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A formulation of contrastive learning

We want:

score(f(z), flx+)) >> score(f(z), flz™))

with z: reference sample; zt: positive sample; z~:negative sample.

36
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A formulation of contrastive learning

We want:

score(f(z), flx+)) >> score(f(z), flz™))

with z: reference sample; zt: positive sample; z~:negative sample.

Given a score function we aim to learn a function fthat yields high score for positive
pairs (z,z") and low scores for negative pairs (z,z7)

36
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A formulation of contrastive learning

Loss function given 1 positive sample and (N-1) negative samples

exp (s (f(z), flz7)))
exp (s (f(z), fla+))) + L5 exp(s(f(x), f(z} )

L=-Ex |log

37
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A formulation of contrastive learning

Loss function given 1 positive sample and (N-1) negative samples

exp (s (f(z), flz1)))

L=—-Ex |lo
1 e U@ ) + 20 ep(5(0), A5 ))

38
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A formulation of contrastive learning

Loss function given 1 positive sample and (N-1) negative samples

exp (5 (fla), ("))
exp (s (fz), fla+))) + Tiy exp(s(f(a), fz; )

L= _EX log

Does this look familiar?

38
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A formulation of contrastive learning

Loss function given 1 positive sample and (N-1) negative samples

exp (s (f(a), flz"))
exp (5 (fla). flz+))) + 20" exp(s(f(a). (a5 )

Does this look familiar?

L= _EX log

~+  Cross-entropy loss for a N-way softmax classifier!

— learn to find de positive sample among N samples

38
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A formulation of contrastive learning

Loss function given 1 positive sample and (N-1) negative samples

eXp(S(f(m),f(ﬁ)))
exp (s (f(z), fla+))) + L, exp(s(fl2), f(;))

Linfonce = —Ex |log

» Commonly known as InfoNCE loss
» Itisalower bound of the mutualinformation between f(z) and f(z )

MI(f(z); f(z*)) —log N > —Linfonce

van den Oord et al,, “Representation learning with contrastive predictive coding”, 2018.

39
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SimCLR: A simple framework for contrastive learning

» Cosine similarity as the score function:

UT’U

s(u,v) = ———
IZimE

» Use a projection head ¢(-) to project fea-

tures into the space where contrastive

learning is applied

» Generate positive samples through data
augmentation
— random cropping, color distortion, flip,
rotations, gaussian blur, etc.

Maximize agreement

Z; Zj
)] o)
h; <— Representation — h;
@) f@)

Chen et al, “A simple framework for contrastive learning of visual representations”, ICML 2020. 40
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SimCLR: Generating positive samples from data augmentations

(a) Original

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Al
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SimCLR: algorithm

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {zx}}_, do
forallk € {1,...,N} do
draw two augmentation functions t~7, t' ~T
# the first augmentation

Zok—1 = t(xk)

hok—1 = f(@2r-1) # representation

2ok—1 = g(hzk_l) # projection

# the second augmentation

Top = t/(:l)k)

hok = f(x2k) # representation

2ok = g(hak) # projection
end for
forallic {1,...,2N}andj € {1,...,2N} do

si; =z zj/(||zllll=]l) # pairwise similarity
end for

. CN exp(si;/7)
define £(i, j) as £(i,j)=—log —J—EZ’Z. T pe) oxp(si/7)

L=k SN [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

42
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SimCLR: algorithm

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {zx}}_, do
forallk € {1,..., N} do
draw two augmentation functions t~ 7, t' ~T
# the first augmentation

Zor—1 = t(xk)

ho—1 = f(@ar-1) # representation

22k—1 = !](hzk_l) # projection

# the second augmentation

Top = t’(a:k)

hok = f(@2k) # representation

2ok = g(hak) # projection
end for
forallic {1,...,2N}andj € {1,...,2N} do

Sij = ziTz]/(HleHz]”) # pairwise similarity
end for

exp(si,;/T)

define £(i, j) as £(i, j) =—log ST T gy xp(5i /)
L =55 SN [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

42
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SimCLR: algorithm

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {zx}_, do
forallk € {1,...,N} do

draw two augmentation functions t~ 7, t' ~T

# the first augmentation

Zok—1 = t(xk)

hok—1 = f(@T2k—1) # representation

29k—1 = g(h’Zk—l) = pI'U»]L‘L'lH\H

# the second augmentation

Top = t/(:l:k)

haor = f(xak) # representation
2ok = g(hag) # projection
end for
foralli e {1,...,2N}andj € {1,...,2N} do
si; = 2 zj/(||zillllZ]) # pairwise similarity
end for
exp(8i,;/7)

define £(i, j) as | £(i, j) = —log s
k

c=1 L (ki) eXP(8i,k/T)
L= 55 SN [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

42



00000000000mO00000000

Evaluation: Training linear classifier on SimCLR features

% Supervised -k SIMCLR (4x)
gl _*SimCLR (2x)
g . oCPCv2-L
8 70F 4o
*SimCLR MoCo (4x) . . .
g oPRL2SCMC ¢ "y » SSLtraining on ImageNet (entire training
< AMDIM
[ e SpiRL-engMoC0 (2 set)
(o] s o
%60 *,\P/:E(';O oBigBIGAN » Freeze feature encoder, train a linear
@ LA classifier on top with labeled data.
@
£ I eRotation
55 e|nstDisc
25 30 700 200 400 626

Number of Parameters (Millions)

43
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Evaluation: Semi-supervised learning on SimCLR features

Label fraction
Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 48.4 80.4
Methods using other label-propagation:

Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 47.0 83.4
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 57.2 83.8
CPCv2 ResNet-161(x) 71.9 91.2
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 912
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

» SSL training on ImageNet (entire training
set)

» Fine-tuning with small subset of the
training labels

44
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Some design choices: the projection head

Maximize agreement

Zi Zj
a0)] a)
h; +— Representation —» h;
ﬂg g-)
£ > - T

45
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Some design choices: the projection head

Maximize agreement

hi <— Representation —» h;
o o Projections heads improve the representations
Possible explanation:
7 7 — Contrastive learning discards useful information
for downstream tasks in the last layers
0 — Representation space z is trained to be invariant

40 | === Non-linear
- None
30 ==

= = Linear
formation in h

” I II |I to data transformation
—
2 M| — The projection head g allows to preserve more in-

10“%

PrOJectlon output dlmensmnallty 45
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Some design choices: large batch size

70.0

6

~
5

6

u
o

62.

N
5

260.0

57.

<
w

5

o
o

52.

N
5

5
o

.0

‘ EEEEE EEEEE

100 200 300 400 500 600 700 800 900
Training epochs

256
512
1024
2048
4096
8192

1000

Large training batch size is crucial
for SimCLR!

46
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Some design choices: large batch size

70.0

6

65.
62.
—
260.0
= Batch size
57. . 256
. 512
55. mmm 1024
2048
52. w4096
w8192
50.0 EEEREE EEEEE

100 200 300 400 500 600 700 800 900 1000
Training epochs

~
5

vl
=}

N
5

<
w

o
o

N
5

o

Large training batch size is crucial
for SimCLR!
However:

— Large batch sizes causes large memory
usage

— Requires distributed training on GPUS

MI(f(z); f(z")) — log N > —Linfonce

46
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Momentum Contrastive Learning (MoCo)

. Key differences to SimCLR:
contrastive loss

A No gradicnt] » Keep a running queue of keys (neg-
( > similarity 4/‘/ ative samples)
q ko kv ke » Compute gradients and update the
0 h1 h2 ... encoder only through the queries
T queue T » Decouple mini-batch size with the
number of keys — can support large

encoder m:rrgﬁr;glrm number of negative samples
A ) A » The encoder is slowly progressing
“ ‘ updated with EMA:
ke ke ke
gauery zy”Y 1Y Ty ..

O <= mb + (1 — m)f,

He et al,, “Momentum contrast for unsupervised visual representation learning”, CVPR 2020. &4



MoCo algorithm
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

der networks for query and key
tionary as a queue of K keys (CxK)

# t: temperature

f_k.params = f_qg.params # initialize
for x in loader: # load a minib
x_q = aug(x) #
x_k = aug(x) #

q = f_g.forward(x_q) # quer
k = f _k.forward(x_k) # keys:
k = k.detach() # no gradien
# positive logits: Nxl

1_pos = bmm(qg.view(N,1,C), k.view(N,C,1))

# negative logits: NxK
1_neg = mm(g.view(N,C), queue.view(C,K))

# logits: Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)
# co tive loss, Egn. (1)

labels zeros (N) # tives are the 0-tt
loss = CrossEntropyLoss(logits/t, labels)

# SGD update: query network
loss.backward()
update (f_qg.params)

# momentum update: key network
f_k.params = mxf_k.params+ (1-m)*f_g.params

# update dictionary 48
enqueue (queue, k) # ¢ the current minibatch
dequeue (queue) # dequ earliest minibatch
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MoCov2

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A mix of ideas from SimCLR and MoCo:

— From SimCLR: non-linear projection head and strong data augmen-
tation

— From MoCo: momentum-updated queues that allow training on a
large number of negative samples
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MoCo vs. SimCLR vs. MoCov2

unsup. pre-train ImageNet VOC detection |y i i

case | MLP e ot | e | Ape s » Non-linear projection head and strong
supervised IR data augmentation are crucial for con-
MoCo v1 200 60.6 81.5 559 62.6 . .

(a) v 200 ‘ 66.2 82.0 56.4 62.6 trast|ve lea rnin g

(b) v 200 63.4 822 56.8 63.2

(c) v v 200 67.3 82,5 572 639

() v v v 200 67.5 824 57.0 63.6

(e) v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+":
with extra blur augmentation; “cos”: cosine learning rate schedule.
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MoCo vs. SimCLR vs. MoCov2

000000000000000000mO

unsup. pre-train ImageNet . . .
case MLP _augs cos cpochs baich | acc. » Non-linear projection head and strong
MoCo v1 [6] 200 256 60.6 2 9
SmCLR[2] | v v v 200 25 | 619 data augmentation are crucial for con-
SimCLR [2] v v v 200 8192 66.6 0 0
MoCo v2 v v v 20 26| 615 trastive learning

results of longer unsupervised training follow:
SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

» Decoupling batch size with negative
sample size allows MoCoV2 to outper-
form simCLR with smaller batches

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).
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MoCo vs. SimCLR vs. MoCov2

» Non-linear projection head and strong
data augmentation are crucial for con-

mechanism batch memory/GPU  time / 200-ep. H H
—— = e trastive learning
end-to-end 256 74G 65 hrs 9 o 2 9
end-to-end 4096 93.0G1 wa » Decoupling batch size with negative
Table 3. Memory and time cost in 8 V100 16G GPUs, imple- sam p[e size allows MoCoV2 to outper-

mented in PyTorch. f: based on our estimation.

form simCLR with smaller batches

» Much smaller memory footprint!
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Contrastive learning: takeaways

— A general formulation of contrastive learning:
score(f(z), flz*)) >> score(f(z), fl"))

— InfoNCE loss: N-way classification among positive and negative samples

exp (s (), f(ﬂ«*)))
exp (s (fl2), fz+))) + L0 exp(s(f(a), iz )

— Lower bound of the mutual information between f(z) and f(z")

Linfonce = —Ex |log

MI(f(z); f(z*)) — log N > —Linfonce
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Self-distillation
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Self-distillation

What is distillation?
In machine learning, knowledge distillation or model distillation is the process of
transferring knowledge from a large model to a smaller one.

Teacher Model

52
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DINO: Self-distillation with no labels

Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron'?>  Hugo Touvron'®  Ishan Misra! ~ Hervé Jegou!
Julien Mairal?  Piotr Bojanowski! ~ Armand Joulin!

! Facebook AI Research 2 Inria* 3 Sorbonne University

= -0/

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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» Teacher-student framework

loss: — Student: trained by gradient descent

@ -pzlogp @ — Teacher: updated as an EMA of the student (no
backprop)
softmax . b dl .
» View-based learnin

. s |

— Different augmentations of the same image are
student gg, |~ | teacher gy fed to student and teacher
e e » Student trained to match teacher’s predictions

— Outputs are probability distributions
° — Loss:  cross-entropy between student and
teacher predictions

Caron et al,, “Emerging properties in self-supervised vision transformers”, ICCV 2021. 5
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DINO: the algorithm

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt.params = gs.params

for x in loader: # load a minibatch x with n samples
x1, x2 = augment (x), au 1t (x) # random views

sl, s2 = gs(x1l), gs(x2) # student output n-by-K
tl, t2 = gt(x1l), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl1)/2
loss.backward() # back-propagate

#-student,

update(qs) #_SGD
gt.params = lxgt.params + (1l-1)*gs.params
C = m*C + (I-m)*cat((tl, tZ]) .mean (dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen

return - (t * log(s)).sum(dim=1) .mean() 55
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Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.
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Masked Image Modeling

56



Oom0O0000000

Masked AutoEncoders (MAE)

Learning to reconstruct the image from a very corrupted input

masked reconstruction reconstruction + visible original

- -

s

50% masking ratio

T\

75% masking ratio

He et al.,, “Masked Autoencoders Are Scalable Vision Learners”, CVPR 2022.
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MAE: architecture

encoder - decoder

>
=
v
AY
B
R

~ ViT-based encoder-decoder architecture
58



MAE: how does it work?

0oomO000oo0

-
BEYDEWL.=A
-
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=
8
o
[}
&)

v

decoder

Split image into patches (like in ViT)

Mask a very large proportion (e.g. 75%) of
these patches

— Hight masking ratio makes de task chal-
lenging and meaningful

A ViT encodes only unmasked patches
— less data allows for bigger encoder

Masked & unmasked patches are decoded
using a smaller ViT

Reconstruction error is measured on masked

patches only
59



MAE encoder

» Receives only the visible (unmasked) patches, typi-
cally ~ 25% of the input

» Maps patches to tokens using a linear embedding
and positional encodings

» Applies a stack of transformer blocks to produce la-
tent representations

» The reduced sequence length allows using a large
encoder with limited computational cost

0ooOmooo0o0

PENEN. =4
- | -
| |

encoder

60



ooooOm00oo0

MAE decoder

» Concatenates the encoder outputs with learned
mask tokens

» Applies transformer blocks followed by a linear pro- =5gg*

jection to reconstruct pixel (or patch) values > _,l..‘.ﬁ

. A1 ] 1

» Smaller and lighter than the encoder HEREN
target

» Discarded after pretraining; only the encoder is
used for downstream tasks

61
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Reconstruction

e MSE (Mean Squared Error) in the pixel space, between input image and
reconstructed image.

e This loss is computed on masked patches only:
Luse = 7 3 Iloa— P
MAE M . 8 A1)
eM
with z; the i-éme patch, i; its reconstructed version, M the set of patches and
M= |M]|
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Design choices and ablation studies

So many modeling and hyperparameters choices!

85k fine-tuning w7 M9 80 s s s
. . s4r
e Masking ratio m2 Bt T
mlO 2‘0 3‘0 40 50 60 7‘0 80 90
masking ratio (%)
e Decoder depth —_— e T8 TS
) 70 670 - 66.1
e Decoder width ol ss
546
e Mask token (use it or not in encoder) Yo m  w @ w @ m wm

masking ratio (%)

e Reconstruction target

e Data augmentation

e Mask sampling method

63

random 75% block 50% grid 75%
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Design choices and ablation studies

So many modeling and hyperparameters choices!

blocks ft lin dim ft lin case ft lin FLOPs
1 84.8 65.5 128 84.9 69.1 encoderw/ [M] 842 59.6  3.3x
2 84.9 70.0 256 84.8 71.3 encoder w/o [M] 849 73.5 1x
4 84.9 71.9 512 84.9 73.5
8 84.9 73.5 768 84.4 73.1
12 84.4 733 1024 843 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar- (c) Mask token. An encoder without mask to-
prove linear probing accuracy. rower than the encoder (1024-d). kens is more accurate and faster (Table 2).
case ft lin case ft lin case ratio ft lin
pixel (w/o norm) 84.9 73.5 none 84.0 65.7 random 75 849 735
pixel (w/ norm) 854 73.9 crop, fixed size 84.7 73.1 block 50 839 723
PCA 84.6 72.3 crop, rand size 84.9 73.5 block 75 82.8 639
dVAE token 853 71.6 crop + color jit 843 71.9 grid 75 84.0 66.0
(d) Reconstruction target. Pixels as recon- (e) Data augmentation. Our MAE works with (f) Mask sampling. Random sampling works
struction targets are effective. minimal or no augmentation. the best. See Figure 6 for visualizations.
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Results

method pre-traindata ViT-B  ViT-L ViT-H ViT-Hysg
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] IN1K 82.8 - - -
MoCo v3 [9] IN1IK 83.2 84.1 - -
BEIT [2] INIK+DALLE =~ 83.2 852 - -
MAE IN1IK 83.6 859 86.9 87.8

Table 3. Comparisons with previous results on ImageNet-

Comparisons with other SSL methods

Reconstruction results 65
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Foundation Models
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What are Foundation Models?

Tasks

Question 9
ﬁb Answering .

Data 4 Sentiment
%Eb ' Analysis

(%

Text . 7
L‘J -

) D &
(' <L [ Information
J/ Images ‘W' g“p Extraction .
" Traini e Adaptation
speech ’Wu\} raining Foundation <. Image
Model %’; Captioning \\‘/
. Structured
Data
P Object
3D Signals é %3?» ‘ Recognition
Instruction

r%%.\' Following ..

Bommasani et al,, “On the opportunities and risks of foundation models”, 2021. 66
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Foundation Models

Goal: One model to rule them all! % %
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Foundation Models

Goal: One model to rule them all! % %

Afoundation model is any model that is trained on broad data (generally
using self-supervision at scale) that can be adapted (e.g, fine-tuned) to
a wide range of downstream tasks.
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Foundation Models

Goal: One model to rule them all! % %

Afoundation model is any model that is trained on broad data (generally
using self-supervision at scale) that can be adapted (e.g, fine-tuned) to
a wide range of downstream tasks.

Key ingredients:
— Large scale training data
— Self-supervised pre-training
— Transfer learning

— (Ideally) can integrate multiple modalities
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Foundation Models

Goal: One model to rule them all! % %

Afoundation model is any model that is trained on broad data (generally
using self-supervision at scale) that can be adapted (e.g, fine-tuned) to

a wide range of downstream tasks.

Key ingredients:
— Large scale training data
— Self-supervised pre-training
— Transfer learning
— (Ideally) can integrate multiple modalities (e.g. images
& text) 67



What are Vision & Language models?
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Goal: Learn image and text embeddings
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Goal: Learn image and text embeddings

'm

Allama
chewinga

leafy stem

69
Radford et al, “Learning transferable visual models from natural language supervision, ICML 2021.
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Goal: Learn image and text embeddings

» Matching images and texts are close, and
H non-matching pairs are pushed apart.
Hng .

S11m

Allama
chewinga

leafy stem

69
Radford et al, “Learning transferable visual models from natural language supervision, ICML 2021.
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Goal: Learn image and text embeddings

» Matching images and texts are close, and
H non-matching pairs are pushed apart.

» Uses contrastive learning (InfoNCE loss)
Hng .

S11m

exp Sim(z,2}0s)
Linfonce = B 21 ~p(z,2) |log ZTM
g Zreg~(Z))
Ztext

Radford et al, “Learning transferable visual models from natural language supervision, ICML 2021.

Allama
chewinga

leafy stem
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Goal: Learn image and text embeddings

» Matching images and texts are close, and
non-matching pairs are pushed apart.
» Uses contrastive learning (InfoNCE loss)
lIIlg . exp SiM(z,2p55)

Linfonce = B, 1 ~p(z,7) |108 Ty S SIM(2r770g)
Zheg~P(Z)
g ~ CLIP has the ability to match images
Liext with natural language concepts.

69

Allama
chewinga

leafy stem

Radford et al, “Learning transferable visual models from natural language supervision, ICML 2021.
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Goal: Learn image and text embeddings

How it works?

Pepper the Toxt

aussie pup |||—> gl l l l l
T [ T, [ T3 . V TN
in LTy | 1Ty | 1Ty RN
I l31|‘l3Tz I T3 TN
IN | INTy | INT2 | Iy T;’ Vl.\ Tn

. . - 70
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.



ooooOomo0oo

Goal: Learn image and text embeddings

How it works?

jivientundg || NN 11 ] » Take a batch of image-text pairs and en-
A A I I code them
I l:l,‘llrz 1Ty LTy
In INTy [ INTy 1.\"’;’ Vl.\TN

. . - 70
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.
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Goal: Learn image and text embeddings

How it works?

mveate pon ||[—>] ol 11 ] » Take a batch of image-text pairs and en-
A I S I code them
] Tl oems [ems |- o » Compute a similarity matrix between all
image-text combinations in the batch.
In INTy [ INTy 1.\"’37 Vl.\TN

. . - 70
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.
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Goal: Learn image and text embeddings

How it works?

Pepper the

svesie pop ||[[—| gt 11 ] » Take a batch of image-text pairs and en-
A I S I code them
T B e | T » Compute a similarity matrix between all
image-text combinations in the batch.
@—‘ Encoter b | e | e » The true pair should have the highest
' e similarity.

. . - 70
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.



ooooOomo0oo

Goal: Learn image and text embeddings

How it works?

Pepper the

svesie pop ||[[—| gt 11 ] » Take a batch of image-text pairs and en-
A I S I code them
T B e | T » Compute a similarity matrix between all
image-text combinations in the batch.
@—‘ Encoder b BT '\':"x'xi“\ » The true pair should have the highest
' e similarity.

» Optimize a symmetric Linfonce

. . - 70
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.
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CLIP was a change of paradigm

(2) Create dataset classifier from label text

CLIP enabled:

» Zero-shot classification on any label set
— By using prompts like “A photo of a [class]"

> Open_vocabUIary recognltlon (3) Use for zero-shot prediction
— Detect or segment categories never seen during &

training. l E'y’)";%:f — Ly | 1Ty [Ty

» Text-image and image-text retrieval

Iy

Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.
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CLIP was a change of paradigm

(2) Create dataset classifier from label text

CLIP enabled:

» Zero-shot classification on any label set
— By using prompts like “A photo of a [class]"

> Open_vocabUIary recognltlon (3) Use for zero-shot prediction
— Detect or segment categories never seen during &

training. l E'y’)";%:f — Ly | 1Ty [Ty

» Text-image and image-text retrieval

Iy

~~ CLIP enabled flexible, language-driven image understanding

71
Radford et al,, “Learning transferable visual models from natural language supervision, ICML 2021.
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CLIP results

StanfordCars

FGVCAircraft
RESISC45
Flowers102

DTD
CLEVRCounts
GTSRB
PatchCamelyon

KITTI Distance
Euroé}AT . . .

-30 =20 -10 O 10 20 30 40

A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-

vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP

classifier outperforms a fully supervised linear classifier fitted on 7
ResNet-50 features on 16 datasets, including ImageNet.



CLIP results

StanfordCars

Country211

Food101

Kinetics700
SST.

FGVCAircraft
RESISC45
Flowers102
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CLEVRCounts
GTSRB
PatchCamelyon

KITTI Distance
Euroé}AT . . .
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A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

Linear Probe CLIP

65 1{Zero-Shot

BiT-M (I Net-21K
& cLip iT-M (ImageNe

o
o

ResNet5

Average Score (%)
& B w w
o w o w

w
vl

30

01 2 4 8 16
# of labeled training examples per class

Figure 6. Zero-shot CLIP outperforms few-shot linear probes.

Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.
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Many flavors of VLMs

=)

Stage2:Multi-task Stage3: Sup_ervised

Stagel: Pretraining Pretraining Finetuning

» Different training strategies:
— Contrastive
— Masked modeling
> Generative

[ QwenLM ] [ QwenLM &] [ QwenLM&]

I L e I L et T
el p— oy o 4] o
o : - . =
[ vird] ViT 4 ViT
a o

[> P B o ree
Mult-task and Chat Interleaved
Image-Text Pairs Interleaved VL Data VLData

Qwen-VL

» Many applications!!
73
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Final words

» Self-supervised learning changed how we build models
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Final words

» Self-supervised learning changed how we build models
— We no longer train models for a single task, but to learn representations from
data itself
— Pretraining becomes the central step; downstream tasks become adaptations

» Foundation models are the natural next step
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Final words

» Self-supervised learning changed how we build models
— We no longer train models for a single task, but to learn representations from
data itself
— Pretraining becomes the central step; downstream tasks become adaptations

» Foundation models are the natural next step
— Large-scale self-supervised training on diverse data
— One model - many tasks, domains, and modalities
— Vision, language, and multimodal models now share a common paradigm
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Final words

» Self-supervised learning changed how we build models
— We no longer train models for a single task, but to learn representations from
data itself
— Pretraining becomes the central step; downstream tasks become adaptations

» Foundation models are the natural next step
— Large-scale self-supervised training on diverse data
— One model - many tasks, domains, and modalities
— Vision, language, and multimodal models now share a common paradigm

~+  The goal is no longer to solve one task, but to learn a reusable foundation.

Th
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