Apprentissage, réseaux de neurones et modèles graphiques
(RCP209)
Neural Networks and Deep Learning

Nicolas Thome
Prenom.Nom@cnam.fr
http://cedric.cnam.fr/vertigo/Cours/ml2/

Département Informatique
Conservatoire National des Arts et Métiers (Cnam)
8 Weeks on Deep Learning and Structured Prediction

- Week 1-5: Deep Learning
- Week 6-8: Structured Prediction and Applications
Outline

1. Context
2. Neural Networks
3. Training Deep Neural Networks
Big Data

- Superabundance of data: images, videos, audio, text, use traces, etc

- Obvious need to access, search, or classify these data: **Recognition**

- Huge number of applications: mobile visual search, robotics, autonomous driving, augmented reality, medical imaging etc

- Leading track in major ML/CV conferences during the last decade
Recognition and classification

- Classification: assign a given data to a given set of pre-defined classes
- Recognition much more general than classification, e.g.
 - Object Localization in images
 - Ranking for document indexing
 - Sequence prediction for text, speech, audio, etc
- Many tasks can be cast as classification problems
 \(\Rightarrow \) importance of classification
Focus on Visual Recognition: Perceiving Visual World

- Visual Recognition: archetype of low-level signal understanding
- Supposed to be a master class problem in the early 80’s
- Certainly the most impacted topic by deep learning

- Scene categorization
- Object localization
- Context & Attribute recognition
- Rough 3D layout, depth ordering
- Rich description of scene, e.g. sentences
Recognition of low-level signals

Challenge: filling the semantic gap

What we perceive vs What a computer sees

- Illumination variations
- View-point variations
- Deformable objects
- Intra-class variance
- etc

⇒ How to design "good" intermediate representation?
Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Before DL: handcrafted intermediate representations for each task
 - Needs expertise (PhD level) in each field
 - Weak level of semantics in the representation

VISION

SPEECH

@Kokkinos
Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Since DL: automatically **learning intermediate representations**
 - ⊕ Outstanding experimental performances >> handcrafted features
 - ⊕ Able to learn high level intermediate representations
 - ⊕ Common learning methodology ⇒ field independent, no expertise

@Kokkinos
Deep Learning (DL) & Representation Learning

- DL: breakthrough for representation learning
 - Automatically learning intermediate levels of representation

- Ex: Natural language Processing (NLP)

@Kokkinos

@Socher
Outline

1. Context
2. Neural Networks
3. Training Deep Neural Networks
The Formal Neuron: 1943 [MP43]

- Basis of Neural Networks
- Input: vector $x \in \mathbb{R}^m$, i.e. $x = \{x_i\}_{i \in \{1, 2, \ldots, m\}}$
- Neuron output $\hat{y} \in \mathbb{R}$: scalar
The Formal Neuron: 1943 [MP43]

- Mapping from \(x \) to \(\hat{y} \):
 1. Linear (affine) mapping: \(s = w^T x + b \)
 2. Non-linear activation function: \(f: \hat{y} = f(s) \)
The Formal Neuron: Linear Mapping

- Linear (affine) mapping: $s = \mathbf{w}^\top \mathbf{x} + b = \sum_{i=1}^{m} w_i x_i + b$
 - \mathbf{w}: normal vector to an hyperplane in $\mathbb{R}^m \Rightarrow$ linear boundary
 - b: bias, shift the hyperplane position

2D hyperplane: line

$w^\top x + b = 0$

3D hyperplane: plane
The Formal Neuron: Activation Function

- $\hat{y} = f(w^T x + b)$, f activation function
 - Popular f choices: step, sigmoid, tanh

- Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{otherwise} \end{cases}$
Step function: Connection to Biological Neurons

- Formal neuron, step activation H: $\hat{y} = H(w^Tx + b)$
 - $\hat{y} = 1$ (activated) $\iff w^Tx \geq -b$
 - $\hat{y} = 0$ (unactivated) $\iff w^Tx < -b$

- Biological Neurons: output activated
 \iff input weighted by synaptic weight \geq threshold
Sigmoid Activation Function

- Neuron output \(\hat{y} = f(\mathbf{w}^\top \mathbf{x} + b) \), \(f \) activation function
- Sigmoid: \(\sigma(z) = \frac{1}{1 + e^{-az}} \)

- \(a \uparrow \): more similar to step function (step: \(a \to \infty \))
- Sigmoid: linear and saturating regimes
The Formal neuron: Application to Binary Classification

- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid: $\hat{y} = \frac{1}{1 + e^{-a(w^T x + b)}}$
- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1/x)$
 - Input x classified as 1 if $P(1/x) > 0.5 \iff w^T x + b > 0$
 - Input x classified as 0 if $P(1/x) < 0.5 \iff w^T x + b < 0$
 $\Rightarrow \text{sign}(w^T x + b)$: linear boundary decision in input space!

bias b only changes the position of the riff
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2 \), \(x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^T x + b \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: $m = 2$, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]
- Linear mapping: $w = [1; 1]$ and $b = -2$
- Result of linear mapping: $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = \left(1 + e^{-a(w^T x + b)}\right)^{-1}$, $a = 10$
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^T x + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(w^T x + b)}\right)^{-1}, \ a = 1 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^T \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^T \mathbf{x} + b)}\right)^{-1}, \ a = 0.1 \)
From Formal Neuron to Neural Networks

- **Formal Neuron:**
 1. A single scalar output
 2. Linear decision boundary for binary classification

- **Single scalar output:** limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR
Perceptron and Multi-Class Classification

- **Formal Neuron**: limited to binary classification
- **Multi-Class Classification**: use several output neurons instead of a single one ! ⇒ **Perceptron**
- **Input** x in \mathbb{R}^m
- **Output neuron** \hat{y}_1 is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: $\hat{y}_1 = f(s_1)$
- **Linear mapping parameters**:
 - $w_1 = \{w_{11}, \ldots, w_{m1}\} \in \mathbb{R}^m$
 - $b_1 \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m
- Output neuron \hat{y}_k is a formal neuron:
 - Linear (affine) mapping: $s_k = w_k^T x + b_k$
 - Non-linear activation function: f:
 $\hat{y}_k = f(s_k)$
- Linear mapping parameters:
 - $w_k = \{w_{1k}, ..., w_{mk}\} \in \mathbb{R}^m$
 - $b_k \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m ($1 \times m$), output \hat{y}: concatenation of K formal neurons
- Linear (affine) mapping \sim matrix multiplication: $s = xW + b$
 - W matrix of size $m \times K$ - columns are w_k
 - b: bias vector - size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$
Perceptron and Multi-Class Classification

- **Soft-max Activation:**
 \[
 \hat{y}_k = f(s_k) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}}
 \]

- **Probabilistic interpretation for multi-class classification:**
 - Each output neuron \(\Leftrightarrow\) class
 - \(\hat{y}_k \sim P(k|x, w)\)

\[\Rightarrow\] **Logistic Regression (LR) Model!**
2d Toy Example for Multi-Class Classification

- \(x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \), \(\hat{y} \): 3 outputs (classes)

Linear mapping for each class:
\[
s_k = w_k^\top x + b_k
\]

Soft-max output:
\[
P(k/x, W)
\]

- \(w_1 = [1; 1], \ b_1 = -2 \)
- \(w_2 = [0; -1], \ b_2 = 1 \)
- \(w_3 = [1; -0.5], \ b_3 = 10 \)
2d Toy Example for Multi-Class Classification

- $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$, \hat{y}: 3 outputs (classes)

Soft-max output: $P(k|x, W)$

Class Prediction:
$$k^* = \arg \max_k P(k|x, W)$$
Beyond Linear Classification

X-OR Problem

- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- X-OR: NOT 1 and 2 OR NOT 2 AND 1
 - X-OR: Non linear decision function
Beyond Linear Classification

- LR: limited to linear boundaries
- **Solution**: add a layer!

- Input x in \mathbb{R}^m, e.g. $m = 4$
- Output \hat{y} in \mathbb{R}^K (K # classes), e.g. $K = 2$
- **Hidden layer** h in \mathbb{R}^L
Multi-Layer Perceptron

- **Hidden layer** h: x projection to a new space \mathbb{R}^L

- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)

- h: intermediate representations of x for classification \hat{y}: $h = f(xW + b)$

- Mapping from x to \hat{y}: non-linear boundary \Rightarrow activation f crucial!
Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h^l projects layer h^{l-1} into a new space
- Gradually learning intermediate representations useful for the task
Conclusion

- Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- Visualize prediction from fixed model parameters
- Reverse problem: **Supervised Learning**
Outline

1. Context
2. Neural Networks
3. Training Deep Neural Networks
Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized model $x \Rightarrow y$: $f_w(x_i) = \hat{y}_i$
- Supervised context: training set $A = \{(x_i, y^*_i)\}_{i \in \{1,2,...,N\}}$
 - A loss function $\ell(\hat{y}_i, y^*_i)$ for each annotated pair (x_i, y^*_i)
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_w = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss \mathcal{L}
MLP Training

- Gradient descent algorithm:
 - Initialize parameters \(w \)
 - Update: \(w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \)
 - Until convergence, e.g. \(\| \nabla w \|^2 \approx 0 \)
Gradient Descent

Update rule: \[w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \] \(\eta \) learning rate

- **Convergence ensured?** \(\Rightarrow \) provided a "well chosen" learning rate \(\eta \)
Gradient Descent

Update rule: \[w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \]

- **Global minimum ?**
 \[\Rightarrow \text{convex a) vs non convex b) loss } L(w) \]

Convex

\[w^* \]

- **Global cost minimum**

Non convex

\[\text{Local minima} \]

\[\text{Starting pt.} \]

\[\text{Global minima} \]
Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
 \[s_i = x_i W + b \]
- Soft-Max (SM): \(\hat{y}_k \sim P(k/x_i, W, b) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}} \)
- Supervised loss function: \(\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*) \)

1. \(y \in \{1; 2; \ldots; K\} \)
2. \(\hat{y}_i = \arg \max_k P(k/x_i, W, b) \)
3. \(\ell_{0/1}(\hat{y}_i, y_i^*) = \begin{cases}
1 & \text{if } \hat{y}_i \neq y_i^* \\
0 & \text{otherwise}
\end{cases} : 0/1 \text{ loss} \)
Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y_i^*
- One hot-encoding for y_i^*:

$$y_{c,i}^* = \begin{cases} 1 & \text{if } c \text{ is the ground truth class for } x_i \\ 0 & \text{otherwise} \end{cases}$$
Logistic Regression Training Formulation

- Loss function: multi-class Cross-Entropy (CE) \(\ell_{CE} \)
- \(\ell_{CE} \): Kullback-Leiber divergence between \(y_i^* \) and \(\hat{y}_i \)

\[
\ell_{CE}(y_i, y_i^*) = KL(y_i^*, y_i) = - \sum_{c=1}^{K} y_{c,i}^* \log(\hat{y}_{c,i}) = -\log(\hat{y}_{c^*,i})
\]

- \(B \) KL asymmetric: \(KL(y_i, y_i^*) \neq KL(y_i^*, y_i) \) \(B \)

\[
KL(y_i^*, \hat{y}_i) = -\log(\hat{y}_{c^*,i}) = -\log(0.8) \approx 0.22
\]
Logistic Regression Training

- \(\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}^*_i) \)

- \(\ell_{CE} \) smooth convex upper bound of \(\ell_{0/1} \)
 \(\Rightarrow \) gradient descent optimization

- Gradient descent: \(W^{(t+1)} = W^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial W} \)
 \(b^{(t+1)} = b^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial b} \)

- **MAIN CHALLENGE:** computing \(\frac{\partial \mathcal{L}_{CE}}{\partial W} \) ?

 \(\Rightarrow \) Key Property: chain rule \(\frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \)

 \(\Rightarrow \) Backpropagation of gradient error!
Chain Rule

\[
\frac{\partial l}{\partial x} = \frac{\partial l}{\partial y} \cdot \frac{\partial y}{\partial x}
\]

- Logistic regression:
 \[
 \frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial s_i} \cdot \frac{\partial s_i}{\partial W}
 \]
Logistic Regression Training: Backpropagation

\[\frac{\partial \ell_{CE}}{\partial W} = \frac{\partial \ell_{CE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_i} \frac{\partial s_i}{\partial W}, \ell_{CE}(\hat{y}_i, y_i^*) = -\log(\hat{y}_{c^*}, i) \Rightarrow \text{Update for 1 example:} \]

1. \[\frac{\partial \ell_{CE}}{\partial \hat{y}_i} = \frac{-1}{\hat{y}_{c^*}, i} = \frac{-1}{\hat{y}_i} \odot \delta_{c,c^*} \]

2. \[\frac{\partial \ell_{CE}}{\partial s_i} = \hat{y}_i - y_i^* = \delta_i^y \]

3. \[\frac{\partial \ell_{CE}}{\partial W} = x_i^T \delta_i^y \]
Logistic Regression Training: Backpropagation

- Whole dataset: data matrix $\mathbf{X} (N \times m)$, label matrix $\mathbf{Y}, \mathbf{Y}^* (N \times K)$

- $\mathcal{L}_{CE}(\mathbf{W}, \mathbf{b}) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c*,i}), \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{S}} \frac{\partial \mathbf{S}}{\partial \mathbf{W}}$

- $\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{S}} = \mathbf{Y} - \mathbf{Y}^* = \Delta y$

- $\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} = \mathbf{X}^T \Delta y$
Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

\Rightarrow computing

$$\frac{\partial L_{CE}}{\partial W^y} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W^y}$$

and

$$\frac{\partial L_{CE}}{\partial W^h} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W^h}$$

- Last hidden layer \sim Logistic Regression
- First hidden layer: $\frac{\partial L_{CE}}{\partial W^h} = x_i^T \frac{\partial \ell_{CE}}{\partial u_i} \Rightarrow$ computing $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i$
Perceptron Training: Backpropagation

- Computing $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i \Rightarrow$ use chain rule: $\frac{\partial \ell_{CE}}{\partial u_i} = \frac{\partial \ell_{CE}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i}$
- ... Leading to: $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i = \delta^y_i \cdot \sigma'(h_i) = \delta^y_i \cdot \mathbf{W}^y \odot (h_i \odot (1 - h_i))$
Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- Backpropagation update ~ Perceptron: assuming $\frac{\partial L}{\partial u_{l+1}} = \Delta^{l+1}$ known

\[
\frac{\partial L}{\partial w^{l+1}} = H_l^T \Delta^{l+1}
\]

Computing $\frac{\partial L}{\partial u_l} = \Delta^l$ ($= \Delta^{l+1}^T w^{l+1} \odot H_l \odot (1 - H_l)$ sigmoid)

\[
\frac{\partial L}{\partial w^l} = H_{l-1}^T \Delta^h_l
\]
Neural Network Training: Optimization Issues

- Classification loss over training set (vectorized \mathbf{w}, \mathbf{b} ignored):

$$
\mathcal{L}_{CE}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*}, i)
$$

- Gradient descent optimization:

$$
\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{w}}(\mathbf{w}^{(t)}) = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}}^{(t)}
$$

- Gradient $\nabla_{\mathbf{w}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial \mathbf{w}}(\mathbf{w}^{(t)})$ linearly scales wrt:
 - \mathbf{w} dimension
 - Training set size

\Rightarrow Too slow even for moderate dimensionality & dataset size!
Stochastic Gradient Descent

- **Solution**: approximate \(\nabla_w^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right) \) with subset of examples

\[\Rightarrow \text{Stochastic Gradient Descent (SGD)} \]

- Use a single example (online):

\[\nabla_w^{(t)} \approx \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right) \]

- Mini-batch: use \(B < N \) examples:

\[\nabla_w^{(t)} \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right) \]
Stochastic Gradient Descent

- **SGD**: approximation of the true Gradient ∇_w!
 - Noisy gradient can lead to bad direction, increase loss
 - **BUT**: much more parameter updates: online $\times N$, mini-batch $\frac{N}{B}$
 - **Faster convergence**, at the core of Deep Learning for large scale datasets

Full gradient SGD (online) SGD (mini-batch)
Optimization: Learning Rate Decay

- Gradient descent optimization: $w^{(t+1)} = w^{(t)} - \eta \nabla w^{(t)}$
- η setup ? \Rightarrow open question
- Learning Rate Decay: decrease η during training progress
 - Inverse (time-based) decay: $\eta_t = \frac{\eta_0}{1 + r \cdot t}$, r decay rate
 - Exponential decay: $\eta_t = \eta_0 \cdot e^{-\lambda t}$
 - Step Decay $\eta_t = \eta_0 \cdot r^{t/t_u}$...

Exponential Decay ($\eta_0 = 0.1$, $\lambda = 0.1s$)

Step Decay ($\eta_0 = 0.1$, $r = 0.5$, $t_u = 10$)
Generalization and Overfitting

- **Learning:** minimizing classification loss \mathcal{L}_{CE} over training set
 - Training set: sample representing data vs labels distributions
 - **Ultimate goal:** train a prediction function with low prediction error on the \textbf{true} (unknown) data distribution

\[
\mathcal{L}_{\text{train}} = 4, \quad \mathcal{L}_{\text{train}} = 9 \\
\mathcal{L}_{\text{test}} = 15, \quad \mathcal{L}_{\text{test}} = 13
\]

⇒ **Optimization ≠ Machine Learning!**
⇒ **Generalization / Overfitting!**
Regularization

- **Regularization**: improving generalization, *i.e.* test (≠ *train*) performances
- Structural regularization: add *Prior* $R(w)$ in training objective:

$$L(w) = L_{CE}(w) + \alpha R(w)$$

- L^2 regularization: *weight decay*, $R(w) = ||w||^2$
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible $R(w)$: L^1 regularization, dropout, *etc*
Regularization and hyper-parameters

- **Neural networks**: hyper-parameters to tune:
 - **Training parameters**: learning rate, weight decay, learning rate decay, # epochs, *etc*
 - **Architectural parameters**: number of layers, number neurones, non-linearity type, *etc*

- **Hyper-parameters tuning**: ⇒ improve generalization: estimate performances on a validation set
Neural networks: Conclusion

- Training issues at several levels: optimization, generalization, cross-validation
- Limits of fully connected layers and Convolutional Neural Nets? ⇒ next course!
Warren S McCulloch and Walter Pitts, *A logical calculus of the ideas immanent in nervous activity*, The bulletin of mathematical biophysics 5 (1943), no. 4, 115–133.