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Machine learning

AI: field of computer science that studies or develops “intelligent” software

ML: develop algorithms to solve problems by automatically processing data
or “statistical learning”

A broad field that emerged from:
• Informatics computational science, data science

• Applied mathematics statistics, information theory, optimization

• Applications bio-informatics, signal processing, computer vision
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A new relationship to data (1/3)

Traditionally: data was made for experts

• Scientific question→ Experiments→ answer to an hypothesis
The IPCC asking “Is global warming due to human activities?”

• Mathematical models→ Measures→ Inversion
Meteorological data→ yield forecasting

• Automated classification through expert rules
Algorithmic transcription of “If # petals ≥ 5, then...”

Wigner (Nobel in φ), “The unreasonable effectiveness of mathematics in the natural sciences,” Symmetries and Reflections, 1967. 2
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A new relationship to data (2/3)

Current explosion of
• Available data sensors, measurements, experiments

• Data dimension pixels, monitored genes, sampling rate

• Computing power

Paradigm shift
• Learn models directly from the data
• Gather data first, ask questions later

Halevy, Norvig, & Pereira (Google) “The unreasonable effectiveness of data,” IEEE intelligent systems, 2009
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A new relationship to data (3/3)

Expert system

ResultComputer
Data

Program

Machine learning

ProgramComputer
Data

Results

Tools: statistics, informatics, linear algebra, optimization
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Notation: supervised dataset

Supervised data appends a labels {yi}n
i=1 ∈ (Y)n to the sample set {xi}n

i=1 ∈ (Rd)n

X =



x⊤
1

x⊤
2
...

x⊤
i
...

x⊤
n

← ith sample
is paired with Y =



y⊤
1

y⊤
2
...

y⊤
i
...

y⊤
n

← ith label

• Classification: Y = {1, . . . ,m} and Y stores the class labels

• Regression: Y = Rd′ and Y stores the latent variables of a relationship x = g(y)
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Some examples

• Classification
− x is an image (vector stores all values of the pixels)
− y encodes the classes (cat, dog, car, ...)

• Detection (classification with 2-classes)
− x contains values of physical constants of a patient
− y is 0 (healthy) or 1 (sick)

• Regression
− x gathers microphones measurements in a room
− y is the position of the acoustic source

• Prediction in time series
− x stores values of temperatures over d days
− y stores the values of temperatures in the next d′ days 6
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Classification

Learn a decision function fθ : Rd → Y1 from data X ∈ Rn×d with class labels Y ∈ Y1

Attribute classes to new samples ŷ = fθ(x)

“Learning the model” is finding θ so that fθ produces the right boundaries

7



Intro to ML Perf. metrics Overfitting Choosing models

Regression

We assume an underlying relationship between measurement x and hidden variables y

x = g(y) + “noise”

Learn a regression function fθ : Rd → Rd′ from data X ∈ Rn×d to labels Y ∈ Rn×d′

Attribute estimates to new samples ŷ = fθ(x) without noise we should find fθ ≃ g−1

Example: fitting a curve
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“Models” in ML

A model is a function
fθ : Rd → Rd′

x 7→ ŷ = fθ(x)
with tunable set of parameters θ

Example: 1D linear function
ŷ = ax + b

with parameters θ = {a, b}

How to chose θ?
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Neural networks are models

Multi layer preceptron (MLP):
fθ(x) = ϕout(Woutϕin(Winx + bin) + bout) with θ = {Win, bin,Wout, bout}

ϕ: activation function
e.g., ReLU

Generalizes to more layers

h(k+1) = ϕ(k)(W(k)h(k) + b(k))
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Other neural networks are models suited to some specific data

Signals and Images

• Convolutional neural networks (CNN)
• Vision transformers (ViT)

Data on graphs

• Graph neural networks (GNNs)

Time series

• Residual neural networks (RNN)
• LSTM, GRU
• Transformers

Still, how to chose θ?
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Supervized ML optimization philosophy

minimize
θ ∈ M

E
[
L ( y , f

θ
( x ))

]Optimization problem

Structure

Expectation

Loss

Label Data

Model

Model parameters

• Design prediction model ŷ = fθ(x) and loss L

• Learn the model parameters θ approx. E with data at hand + solve the optimization problem

• Apply model to new data
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Capacity, generalization, over-fitting, ...

Expected performance is evaluated on a training set, does it work on new unseen data ?

Possibility of over-fitting: trade off between the model capacity and generalization
ML literature provides methodologies to properly control this
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In this course

We assume to have several models/techniques at hand

Can theory explain what will happen?

How to validate models individually?

How to compare models properly?

Discuss proper validation methods and best practices

14
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Notation: supervised dataset

Supervised data appends a labels {yi}n
i=1 ∈ (Y)n to the sample set {xi}n

i=1 ∈ (Rp)n

X =


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...
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n

← ith sample
is paired with Y =



y⊤
1

y⊤
2
...

y⊤
i
...

y⊤
n

← ith label

• Classification: Y = {1, . . . ,m} and Y stores the class labels

• One-hot encoding: yi = k “sample xi is in class k” is stored as [0, · · · , 1
kth elt.

, 0, · · · , 0]
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Classification results

fθ is a trained model, and ŷi = fθ(xi) gives a prediction for each sample

Confusion matrix C

• Cqℓ stores the number of samples that are from class q and are predicted as class ℓ
• sometimes normalized per lines to read fractions per classes
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Metrics for classification

Most of them can be constructed constructed from C:

Accuracy: total ratio of correctly classified samples,∑k Ckk/n

Recall (per class): “accuracy per class”, Ckk/
∑

q Cqk

Precision (per class): correct prediction over number of prediction of class k, Ckk/
∑

q Ckq

Balanced accuracy: the (weighted) average of recall obtained on each class

other exist, e.g., F1-score
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Focus on metrics for binary classification (detection)

Probability of detection (PD): TP/(TP+FN)
Probability of false alarm (PFA): FP/(FP+TN)
ROC: PD vs PFA when varying the threshold on the score function
AUC: area of the ROC (1 being optimal) 18
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Worst practice in action

A classical procedure

• Gather a labeled dataset {X,Y}
• Choose and train a model fθ on this dataset optimize θ w.r.t. loss L

• Achieve 99.5% accuracy
• Deliver the model to production with confidence
• After all, what could go wrong?

Caveat

Be careful what you wish for: optimizing one criterion can yield unexpected results
Best performance after training does not means it will translate in practice
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Empirical risk minimization

Expected risk: we aim for generality

minimize
θ

E [L(y, fθ(x))]

Empirical risk: we apply in practice

minimize
θ

n∑
i=1
L(yi, fθ(xi))

There might be issues:
• if n is too low, poor approximation of the expectation
• available samples might be not representative of future ones
• we will see that choosing fθ just to minimize the empirical risk is not enough
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What happens here ?

fθ belongs to a family of fucntion F = {fθ, | θ ∈ Θ}

f∗DN
is the learned function: it minimizes the empirical risk RDN over F

f∗ is the ideal function of F that minimizes the expected risk R

R(f∗DN) = R∗ + [R(f∗)− R∗] + [R(f∗DN)− R(f∗)]

R∗ is the Bayes risk (ideal one)

[R(f∗)− R∗] is the approximation error
≥ 0 because F might not contain the ideal function
= 0 if R∗ can be reached by a function of F

[R(f∗DN
)− R(f∗)] is the estimation error
≥ 0 because f∗DN

is most likely not f∗ 21
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Capacity of a model

Capacity: refers to the literal “capacity” of fθ to produce complex decision boundaries
will be formally defined

Generalization: ability to produce similar results on future (unseen) samples

There is a trade-off regarding capacity

• too large : good performance on learning set, bad generalization
“loss when applied in practice”

• too low: good generalization, but subpar performance
“no loss when applied in practice”

Overfitting: poor generalization happening when the models exactly describes {x}n
i=1

instead of “any expected x”

22
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Capacity and overfitting
LDA MLP α = 10−5 MLP α = 1

Sample 1

Sample 2

Sample 3

Err. train. 14,4% 1,5% 4%
Err. test 9,5% 7% 5,5%
Std. test 0,038 0,026 0,017
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Capacity and overfitting
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Defining capacity

Take n points {xi}n
i=1 ∈ Rd → there are 2N possible partitions in 2 sets

Définition: the family F of functions f : Rp → {−1, 1} shatters {xi}1≤i≤N if all 2N

partitions can be constructed with functions from F

Définition (Vapnik-Chervonenkis): F is of VC-dimension h if it shatters at least a set
of h points but no sets of h + 1 points

Exemple: the VC-dimension of hyperplmanes of Rp is h = p + 1
In R2 lines can shatter triplets but not quadruplets of points
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Linking capacity to generalization

VC-dimension measures the capacity in some way

It allows to bound the difference between empirical and expected risk

Theorem: let RDN(f) be the empirical risk defined by L01(x, y, f) = 1f(x) ̸=y; if F has
VC-dimension h <∞, then ∀f ∈ F , with probability > 1− δ (0 < δ < 1), we have

R(f) ≤ RDN(f) +
√

h(log 2n
h +1)−log δ

4
N

B(n,F)

for n > h

B(N,F) decreases when n ↑, h ↓, and δ ↑
B(N,F) does not depends on the number of variables
B(N,F) does not depend on the underlying law

The actual value is not useful in practice, but provides an interesting intuition!
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Intuition gained from the bound

R(f∗DN) = R∗ + [R(f∗)− R∗]

approx. error

+ [R(f∗DN
)− R(f∗)]

estim. error

and R(f) ≤ RDN(f) +
√

h(log 2n
h +1)−log δ

4
N

B(n,F)

F has low capacity e.g., linear model
⇒ B(N,F) low, but RDN(f) large⇒ no interesting guarantee for R(f)

F has large capacity e.g., MLP α = 10−5

⇒ RDN(f) low but B(N,F) large⇒ no interesting guarantee for R(f)

F has “adequate” capacity e.g., MLP α = 1

⇒ RDN(f) low, B(N,F) low⇒ interesting guarantee for R(f)!
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Parameters vs hyper-parameters

minimize
θ∈Θ

n∑
i=1
L(yi, fθ(xi)) + λρ(θ)

Parameters are denoted theta θ: what is optimized at training

Hyper-parameters are choices around this

• Choice of the model family and architecture e.g. number of parameters

• Regularization parameter λ
• Choices of losses L and regularization penalty ρ

These do not move at training

However these have a direct impact on the model capacity
27
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Controlling capacity

In practice neural networks can be too expressive, we can control the capacity by:

• Regularization: avoids fluctuation of the parameters

minimize
θ∈Θ

n∑
i=1
L(yi, fθ(xi)) + λρ(θ)

e.g., ρ(θ) = ||θ||2

• Sequentially increase capacity e.g. number of layers or neurons in MLP

We need to tune hyper-parameters (architecture and loss)

Different models correspond to different optimization problems

−→ Comparing loss values is not relevant

−→ How to properly compare models after the learning step ?
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Splitting

Comparison procedure:
Split the training data in a training and validation sets (non overlapping)
Train different models (methods and/or parameters) on the training set
Evaluate performance on the validation set

ideally, averaged on several splits (K-fold cross-validation)

Hyperparameter selection:
Selecting hyper-parameters to maximize score on test set is cheating!
Create a sub-split for validation from the training set
Test hyperparameters on a grid cf. GridSearchCV in scikit-learn 29
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Different splittings

Creating multiple data splits
K-folds: n samples split into K, training on K− 1, evaluation on last one

  

Shuffle-and-split: validation set selected at random, K times

Special cases requiring attention
Unbalanced classes: use stratification to preserve proportions
Non-independence of observations

groups of observations: test set should not contain samples correlated with train
time series: split should be done by sequences

StratifiedKFold, StratifiedShuffleSplit, TimeSeriesSplit is scikitlearn 30
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Evidencing overfitting in training

31
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Conclusion

Supervised ML requires labeled datasets

We need to get the best metrics, while ensuring generalization

Estimating the generalization cannot be done from training only

There is a trade-off between capacity and generalization

Given a set of possible models (different hyper-parameters): test a grid methodically!
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Last warnings

Best performance (number, value, criterion, ...) does not mean that the model is better

Caraful when defining what we want: “AI” is dumb and performs malicious compliance

Example1: A model that returns “true” has the best detection probability (100%)

Example2: predictions will shift in accordance with results the majority class
as it counts more into the standard average

Can completely render some classes invisible (inducing biases and unfairness)
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