Introduction to supervized ML

RCP209 courses 1/15 and 2/15

Machine learning

AI: field of computer science that studies or develops "intelligent" software

ML: develop **algorithms** to **solve problems** by **automatically processing data** or "statistical learning"

A **broad field** that emerged from:

- Informatics computational science, data science
- **Applied mathematics** statistics, information theory, optimization
- **Applications** bio-informatics, signal processing, computer vision

A new relationship to data (1/3)

Intro to MI

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

E. P. Wigner

Traditionally: data was made for **experts**

Symmetries and Reflections Indiana University Press, Bloomington, Indiana, 1967, pp. 222-237

• Scientific question \rightarrow Experiments \rightarrow answer to an hypothesis

The IPCC asking "Is global warming due to human activities?"

Mathematical models → Measures → Inversion

Meteorological data → vield forecasting

• Automated classification through expert rules

Algorithmic transcription of "If # petals > 5, then..."

A new relationship to data (2/3)

Current explosion of

Intro to ML

- Available data sensors, measurements, experiments
- Data dimension pixels, monitored genes, sampling rate
- Computing power

Paradigm shift

- Learn models directly from the data
- Gather data first, ask questions later

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

A new relationship to data (3/3)

Expert system

Machine learning

Tools: statistics, informatics, linear algebra, optimization

Notation: supervised dataset

Supervised data appends a labels $\{y_i\}_{i=1}^n \in (\mathcal{Y})^n$ to the sample set $\{x_i\}_{i=1}^n \in (\mathbb{R}^d)^n$

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^{ op} \\ \mathbf{x}_2^{ op} \\ \vdots \\ \mathbf{x}_i^{ op} \\ \vdots \\ \mathbf{x}_n^{ op} \end{bmatrix} \leftarrow i^{ ext{th sample}} \quad ext{is paired with} \quad \mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{ op} \\ \mathbf{y}_2^{ op} \\ \vdots \\ \mathbf{y}_i^{ op} \\ \vdots \\ \mathbf{y}_n^{ op} \end{bmatrix} \leftarrow i^{ ext{th label}}$$

- Classification: $\mathcal{Y} = \{1, \dots, m\}$ and Y stores the class labels
- **Regression**: $\mathcal{Y} = \mathbb{R}^{d'}$ and Y stores the **latent variables** of a relationship $\mathbf{x} = q(\mathbf{y})$

Some examples

Classification

- x is an image (vector stores all values of the pixels)
- y encodes the classes (cat, dog, car, ...)
- **Detection** (classification with 2-classes)
 - $-\mathbf{x}$ contains values of physical constants of a patient
 - $-\mathbf{y}$ is 0 (healthy) or 1 (sick)

Regression

- $-\mathbf{x}$ gathers microphones measurements in a room
- $-\mathbf{y}$ is the position of the acoustic source
- **Prediction** in time series
 - $-\mathbf{x}$ stores values of temperatures over d days
 - $-\mathbf{y}$ stores the values of temperatures in the next d' days

Classification

Intro to MI

> Learn a decision function $f_{\theta}: \mathbb{R}^d \to \mathcal{Y}^1$ from data $\mathbf{X} \in \mathbb{R}^{n \times d}$ with class labels $\mathbf{Y} \in \mathcal{Y}^1$ Attribute classes to new samples $\hat{\mathbf{y}} = f_{\theta}(\mathbf{x})$

"**Learning the model**" is finding θ so that f_{θ} produces the right boundaries

Regression

Intro to MI

We assume an underlying relationship between $measurement \mathbf{x}$ and $hidden variables \mathbf{y}$

$$\mathbf{x} = g(\mathbf{y}) + \text{"noise"}$$

Learn a **regression function** $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^{d'}$ from **data** $\mathbf{X} \in \mathbb{R}^{n \times d}$ to **labels** $\mathbf{Y} \in \mathbb{R}^{n \times d'}$

Attribute estimates to new samples $\hat{\mathbf{y}} = f_{\theta}(\mathbf{x})$

without noise we should find $f_{\theta} \simeq g^{-1}$

Example: fitting a curve

"Models" in ML

A model is a function

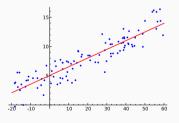
$$f_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d'}$$
 $\mathbf{x} \mapsto \hat{\mathbf{y}} = f_{\theta}(\mathbf{x})$

with tunable set of parameters θ

Example: 1D linear function

$$\hat{y} = ax + b$$

with parameters $\theta = \{a, b\}$



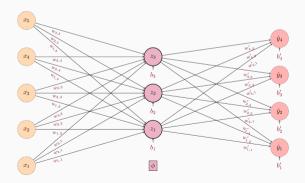
How to chose θ ?

Neural networks are models

Multi layer preceptron (MLP):

$$f_{\theta}(\mathbf{x}) = \phi_{\text{out}}(\mathbf{W}^{\text{out}}\phi_{\text{in}}(\mathbf{W}^{\text{in}}\mathbf{x} + \mathbf{b}^{\text{in}}) + \mathbf{b}^{\text{out}})$$

with $\theta = \{\mathbf{W}^{\text{in}}, \mathbf{b}^{\text{in}}, \mathbf{W}^{\text{out}}, \mathbf{b}^{\text{out}}\}$



ϕ : activation function

e.g., ReLU

Generalizes to more layers

$$\mathbf{h}^{(k+1)} = \phi^{(k)}(\mathbf{W}^{(k)}\mathbf{h}^{(k)} + \mathbf{b}^{(k)})$$

Other neural networks are models suited to some specific data

Signals and Images

- Convolutional neural networks (CNN)
- Vision transformers (ViT)

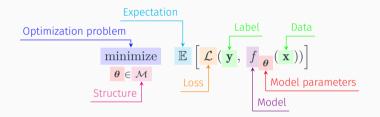
Data on graphs

• Graph neural networks (GNNs)

Time series

- Residual neural networks (RNN)
- LSTM, GRU
- Transformers

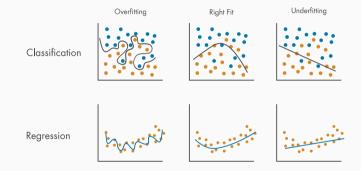
Supervized ML optimization philosophy



- **Design** prediction model $\hat{\mathbf{y}} = f_{\boldsymbol{\theta}}(\mathbf{x})$ and loss \mathcal{L}
- ullet Learn the model parameters heta approx. ${\mathbb E}$ with data at hand + solve the optimization problem
- Apply model to new data

Capacity, generalization, over-fitting, ...

Expected performance is evaluated on a training set, does it work on **new unseen data**?



Possibility of over-fitting: trade off between the model capacity and generalization

ML literature provides methodologies to properly control this

In this course

We assume to have several models/techniques at hand

Can theory explain what will happen?

How to **validate models** individually?

How to **compare models** properly?

Discuss proper validation methods and best practices

Notation: supervised dataset

Supervised data appends a labels $\{y_i\}_{i=1}^n \in (\mathcal{Y})^n$ to the sample set $\{x_i\}_{i=1}^n \in (\mathbb{R}^p)^n$

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^{ op} \\ \mathbf{x}_2^{ op} \\ \vdots \\ \mathbf{x}_i^{ op} \\ \vdots \\ \mathbf{x}_n^{ op} \end{bmatrix} \leftarrow i^{ ext{th sample}} \quad ext{is paired with} \quad \mathbf{Y} = egin{bmatrix} \mathbf{y}_1^{ op} \\ \mathbf{y}_2^{ op} \\ \vdots \\ \mathbf{y}_i^{ op} \\ \vdots \\ \mathbf{y}_n^{ op} \end{bmatrix} \leftarrow i^{ ext{th label}}$$

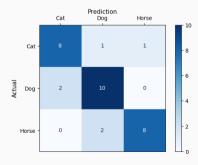
- Classification: $\mathcal{Y} = \{1, \dots, m\}$ and Y stores the class labels
- One-hot encoding: $\mathbf{y}_i = k$ "sample \mathbf{x}_i is in class k" is stored as $[0, \cdots, \frac{1}{kth}]$, $[0, \cdots, 0]$

Classification results

 f_{θ} is a trained model, and $\hat{\mathbf{y}}_i = f_{\theta}(\mathbf{x}_i)$ gives a prediction for each sample

Confusion matrix C

- ullet $C_{q\ell}$ stores the number of samples that are from class q and are predicted as class ℓ
- sometimes normalized per lines to read fractions per classes



Metrics for classification

Most of them can be constructed constructed from **C**:

Accuracy: total ratio of correctly classified samples, $\sum_k C_{kk}/n$

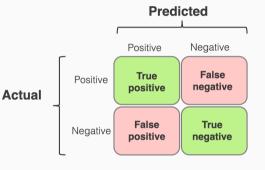
Recall (per class): "accuracy per class", $C_{kk}/\sum_q C_{qk}$

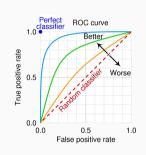
Precision (per class): correct prediction over number of prediction of class k, $C_{kk}/\sum_q C_{kq}$

Balanced accuracy: the (weighted) average of recall obtained on each class

other exist, e.g., F1-score

Focus on metrics for binary classification (detection)





Probability of detection (PD): TP/(TP+FN)

Probability of false alarm (PFA): FP/(FP+TN)

ROC: PD vs PFA when varying the threshold on the score function

AUC: area of the ROC (1 being optimal)

Worst practice in action

A classical procedure

- Gather a labeled dataset {X, Y}
- ullet Choose and train a model $f_{ heta}$ on this dataset optimize heta w.r.t. loss $\mathcal L$
- Achieve 99.5% accuracy
- Deliver the model to production with confidence
- After all, what could go wrong?

Caveat

Be careful what you wish for: optimizing one criterion can yield unexpected results Best performance after training does not means it will translate in practice

Empirical risk minimization

Expected risk: we aim for generality

$$\underset{\theta}{\text{minimize}} \quad \mathbb{E}\left[\mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x}))\right]$$

Empirical risk: we apply in practice

$$\underset{\theta}{\text{minimize}} \quad \sum_{i=1}^{n} \mathcal{L}(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i}))$$

There might be issues:

- if *n* is too low, poor approximation of the expectation
- available samples might be not representative of future ones
- ullet we will see that choosing $f_{ heta}$ just to minimize the empirical risk is not enough

What happens here?

 f_{θ} belongs to a family of function $\mathcal{F} = \{f_{\theta}, \mid \theta \in \Theta\}$

 $f_{\mathcal{D}_N}^*$ is the learned function: it minimizes the empirical risk $R_{\mathcal{D}_N}$ over \mathcal{F}

 f^* is the ideal function of \mathcal{F} that minimizes the expected risk R

$$R(f_{\mathcal{D}_N}^*) = R^* + [R(f^*) - R^*] + [R(f_{\mathcal{D}_N}^*) - R(f^*)]$$

R* is the Bayes risk (ideal one)

 $[R(f^*) - R^*]$ is the approximation error

 ≥ 0 because ${\cal F}$ might not contain the ideal function

=0 if R^* can be reached by a function of \mathcal{F}

 $[R(f_{\mathcal{D}_N}^*) - R(f^*)]$ is the estimation error

 ≥ 0 because $f_{\mathcal{D}_{N}}^{*}$ is most likely not f^{*}

Capacity of a model

Capacity: refers to the literal "capacity" of f_{θ} to produce complex decision boundaries

will be formally defined

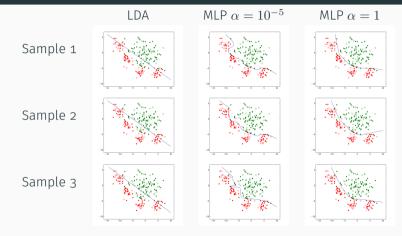
Generalization: ability to produce similar results on future (unseen) samples

There is a **trade-off** regarding capacity

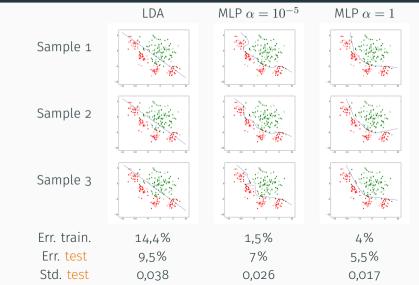
- **too large** : good performance on learning set, bad generalization "loss when applied in practice"
- **too low**: good generalization, but subpar performance "no loss when applied in practice"

Overfitting: poor generalization happening when the models exactly describes $\{\mathbf{x}\}_{i=1}^n$ instead of "any expected \mathbf{x} "

Capacity and overfitting



Capacity and overfitting



Defining capacity

Take n points $\{\mathbf x_i\}_{i=1}^n \in \mathbb R^d o$ there are 2^N possible partitions in 2 sets

Définition: the family \mathcal{F} of functions $f: \mathbb{R}^p \to \{-1, 1\}$ shatters $\{\mathbf{x}_i\}_{1 \leq i \leq N}$ if all 2^N partitions can be constructed with functions from \mathcal{F}

Définition (Vapnik-Chervonenkis): \mathcal{F} is of VC-dimension h if it shatters at least a set of h points but no sets of h+1 points

Exemple: the VC-dimension of hyperplmanes of \mathbb{R}^p is h=p+1 In \mathbb{R}^2 lines can shatter triplets but not quadruplets of points

Linking capacity to generalization

VC-dimension measures the capacity in some way

It allows to bound the difference between empirical and expected risk

Theorem: let $R_{\mathcal{D}_N}(f)$ be the empirical risk defined by $L_{01}(\mathbf{x}, y, f) = \mathbf{1}_{f(\mathbf{x}) \neq y}$; if \mathcal{F} has VC-dimension $h < \infty$, then $\forall f \in \mathcal{F}$, with probability $> 1 - \delta$ (0 $< \delta < 1$), we have

$$R(f) \le R_{\mathcal{D}_N}(f) + \underbrace{\sqrt{\frac{h(\log \frac{2n}{h} + 1) - \log \frac{\delta}{4}}{N}}}_{B(n,\mathcal{F})} \quad \text{for} \quad n > h$$

 $B(N,\mathcal{F})$ decreases when $n\uparrow$, $h\downarrow$, and $\delta\uparrow$

 $B(N,\mathcal{F})$ does not depends on the number of variables

 $\mathit{B}(\mathit{N},\mathcal{F})$ does not depend on the underlying law

The actual value is not useful in practice, but provides an interesting intuition!

Intuition gained from the bound

$$R(f_{\mathcal{D}_N}^*) = R^* + \underbrace{\left[R(f^*) - R^*\right]}_{\text{approx. error}} + \underbrace{\left[R(f_{\mathcal{D}_N}^*) - R(f^*)\right]}_{\text{estim. error}} \quad \text{and} \quad R(f) \leq R_{\mathcal{D}_N}(f) + \underbrace{\sqrt{\frac{h\left(\log\frac{2n}{h}+1\right) - \log\frac{\delta}{4}}{N}}}_{B(n,\mathcal{F})}$$

 \mathcal{F} has low capacity e.g., linear model

$$\Rightarrow$$
 $B(N,\mathcal{F})$ low, but $R_{\mathcal{D}_N}(f)$ large \Rightarrow no interesting guarantee for $R(f)$

 \mathcal{F} has large capacity e.g., MLP $\alpha = 10^{-5}$

$$\Rightarrow R_{\mathcal{D}_N}(f)$$
 low but $B(N,\mathcal{F})$ large \Rightarrow no interesting guarantee for $R(f)$

 \mathcal{F} has "adequate" capacity e.g., MLP $\alpha=1$

 $\Rightarrow R_{\mathcal{D}_N}(f)$ low, $B(N, \mathcal{F})$ low \Rightarrow interesting guarantee for R(f)!

Parameters vs hyper-parameters

$$\underset{\theta \in \Theta}{\text{minimize}} \quad \sum_{i=1}^{n} \mathcal{L}(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i})) + \lambda \rho(\theta)$$

Parameters are denoted theta θ : what is optimized at training

Hyper-parameters are choices around this

- Choice of the model family and architecture e.g. number of parameters
- ullet Regularization parameter λ
- ullet Choices of losses ${\cal L}$ and regularization penalty ho

These do not move at training

However these have a direct impact on the **model capacity**

Controlling capacity

In practice neural networks can be too expressive, we can **control the capacity** by:

• Regularization: avoids fluctuation of the parameters

$$\underset{\theta \in \Theta}{\text{minimize}} \quad \sum_{i=1}^{n} \mathcal{L}(\mathbf{y}_{i}, f_{\theta}(\mathbf{x}_{i})) + \lambda \rho(\theta)$$

e.g., $\rho(\theta) = ||\theta||^2$

• Sequentially increase capacity e.g. number of layers or neurons in MLP

We need to tune **hyper-parameters** (architecture and loss)

Different models correspond to different optimization problems

- → Comparing loss values is not relevant
- \longrightarrow How to *properly* compare models after the learning step?

o to ML Perf. metrics Overfitting **Choosing models**00000000000 0000 00000 □□■□□□□□

Splitting

Comparison procedure:

Split the training data in a training and validation sets (non overlapping)

Train different models (methods and/or parameters) on the training set

Evaluate performance on the validation set

ideally, averaged on several splits (K-fold cross-validation)

Hyperparameter selection:

Selecting hyper-parameters to maximize score on test set is cheating!

Create a sub-split for validation from the training set

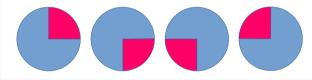
Test hyperparameters on a grid cf. GridSearchCV in scikit-learn

tro to ML Perf. metrics Overfitting
000000000000 000000

Different splittings

Creating multiple data splits

K-folds: n samples split into K, training on K-1, evaluation on last one



Shuffle-and-split: validation set selected at random, *K* times

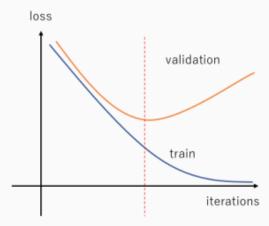
Special cases requiring attention

Unbalanced classes: use stratification to preserve proportions

Non-independence of observations

groups of observations: test set should not contain samples correlated with train time series: split should be done by sequences Choosing models

Evidencing overfitting in training



Conclusion

Supervised ML requires labeled datasets

We need to get the best metrics, while ensuring generalization

Estimating the generalization cannot be done from training only

There is a trade-off between **capacity** and **generalization**

Given a set of possible models (different hyper-parameters): test a grid methodically!

Choosing models

Last warnings

Best performance (number, value, criterion, ...) does not mean that the model is better

Caraful when defining what we want: "AI" is dumb and performs malicious compliance

Example1: A model that returns "true" has the best detection probability (100%)

Example2: predictions will shift in accordance with results the majority class

as it counts more into the standard average

Can completely render some classes invisible (inducing biases and unfairness)