
A Data Structure for Sponsored Search
Arnd Christian König, Kenneth Church, Martin Markov

Microsoft Corp.
One Microsoft Way

Redmond, WA 98052
{chrisko, church, mmarkov}@microsoft.com

Abstract— Inverted files have been very successful for docu-
ment retrieval, but sponsored search is different. Inverted files are
designed to find documents that match the query (all the terms
in the query need to be in the document, but not vice versa).
For sponsored search, ads are associated with bids. When a user
issues a search query, bids are typically matched to the query
using broad-match semantics: all the terms in the bid need to be
in the query (but not vice versa). This means that the roles of the
query and the bid/document are reversed in sponsored search,
in turn making standard retrieval techniques based on inverted
indexes ill-suited for sponsored search. This paper proposes novel
index structures and query processing algorithms for sponsored
search. We evaluate these structures using a real corpus of 180
million advertisements.

I. INTRODUCTION

Sponsored search is different from web search and doc-
ument retrieval. In web search and document retrieval, the
algorithm is the challenge. The researcher cannot change the
document collection, which is fixed in advance, but the re-
searcher is encouraged to propose a new ranking algorithm that
improves recall and precision. Sponsored search is different.
Bidding is the challenge. The advertiser cannot change the
ranking algorithm, which is fixed in advance, but is encouraged
to bid the right amount on the right phrases to reach the desired
target audience within certain budget constraints.

Sponsored search uses a number of common matching
algorithms, with the most important being broad match. Broad
match requires all the words in the bid phrase to be in the
query, but not vice versa. Thus, the bid “used books”, for
example, matches the query cheap used books, but not the
queries, books or comic books. Once all matching ads have
been retrieved, additional filters are applied which make use of
a number of secondary criteria: bid price, keyword-exclusion,
clicked-through rate, overlap with advertisements displayed
earlier. . . . The ads that win the auction are then ranked and
displayed.

Broad match is the default matching algorithm in sponsored
search. While there are other matching algorithms such as
exact match and phrase match, the vast majority of advertise-
ments use broad match (in the real-life advertisement corpora
we studied, over 90% of all advertisements enabled broad-
matching). The retrieval problem underlying broad match
is very different from information retrieval for search. The
key operation in information retrieval is the processing of
containment queries. In these, the retrieval task is to return
documents containing a superset of the keywords occurring

in a query from an indexed corpus. In broad-match queries,
the roles of query and corpus are reversed: the indexed corpus
consists of phrases associated with individual advertisements
and the retrieval task is to retrieve all advertisements whose
phrases contain a subset of the keywords in the search query.

A. Opportunities for Improvement

This – in turn – means that the data structures used
elsewhere in IR, e.g., inverted indexes indexing every word
in an advertisement phrase, are not efficient when answering
broad-match queries. To illustrate this, first consider the use
of inverted indexes containing advertisement IDs as postings.
Using them, it is possible to obtain the set of all advertisements
whose phrases overlap with the query by forming the union of
the postings in the inverted indexes corresponding to keywords
in the query. However, at this point it is necessary to filter out
advertisements whose bid phrase contains words not in the
query, which is an operation that is not directly supported
by inverted indexes, but requires either supplemental data
structures or accessing the corresponding bids themselves.

One small modification that enables broad-match processing
using inverted indexes only is to store the total number of
keywords in the corresponding bid phrase together with each
posting. However, the resulting access methods still require
very large lists of postings to be processed for queries that
contain at least one keyword that is frequent in the corpus
of bid phrases, most of which typically are not matches of
the query. We will analyze this phenomenon together with
the described algorithms and their performance in detail later
in the paper. To overcome this, we want to propose a data
structure and query processing algorithm optimized for broad-
match retrieval, which ideally processes a much smaller set of
candidate bids only. For this, we will first describe the relevant
properties of the data distribution found in large advertisement
corpora, which our approach leverages.

B. Properties of Advertisement Corpora

The data distribution underlying the broad match retrieval
task is very different from the ones encountered in traditional
information retrieval. The indexed phrases are typically very
short, with their word-length distribution close to the word-
length distribution of queries itself. An example distribution
from a corpus of 290 million real advertisements is displayed
in Figure 1. Note that the Y-axis is in logarithmic scale,
meaning that the drop-off from the highest point at 3 keywords

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1 3 5 7 9 11 13 15 17 19 21 23 25 28 31

N
u

m
b

e
r

o
f

A
d

v
e

rt
is

e
m

e
n

ts

Number of KeywordsNumber of Keywords

Fig. 1. Bids are short. In a corpus of 290 million advertisements,
most bids (99.8%) are 8 words or less.

is quite rapid: 62% of all phrases have 3 keywords or less, 96%
of them 5 keywords or less and 99.8% 8 keywords or less.

26

52

104

208

416

832

1664

1 4 16 64 256 1024 4096 16384

N
u

m
b

e
r

o
f

a
d

v
e

rt
is

e
m

e
n

ts

Rank of keyword combination

Fig. 2. The number of advertisements for a word-set obeys a Long
Tail (Zipf Law) distribution. This plot is based on a corpus of 1.8
million advertisements.

Interestingly, the number of advertisements for a word-set
(i.e. the set of words in each bid) obeys a Long Tail (Zipf Law)
distribution, which means that most sets of words are associ-
ated with a small number of advertisements, even when the
phrases are short. To illustrate this, we plotted the frequency
distribution for the top 32K most frequent word-combinations
in the advertisement phrases in a corpus of 1.8 million
advertisements in Figure 2. This has the effect that the numbers
of advertisements retrieved by broad-match processing (and
from which the ads to display are are subsequently chosen)
are small for virtually all queries. Therefore, pushing any of
the secondary criteria used to rank/exclude advertisements into
the index (similar how partial scores/impacts are used for early
termination in traditional IR (e.g., [1], [2])) is less likely to
result in noticeable performance improvement for ad retrieval.

Moreover, the eventual ranking of advertisements may take
into account a number of different factors (e.g., the observed
click-through rate for a particular advertisement, matching
terms between bid and query, etc.), some of which are
independent of the query and matching advertisement bid
themselves (e.g., ads previously shown to this particular user,
and additional exclusion phrases that may be specified with
each ad and are used to exclude ads if they match (part of)
the query). This means that many optimizations common in
information retrieval that rely on the total “score” (and in turn
the rank) of an document/advertisement to be a monotonic

function the scores of the matching keywords (e.g., [1], [2],
[3], [4]) cannot be applied.

Finally, the fact that the indexed ad phrases are very short
itself implies that even very large corpora of advertisements
can be indexed in main memory. Consequently, we will
describe solutions that assume all advertisement-data to be
memory-resident subsequently.

C. Processing Broad-Match Queries using Inverted Indexes

To give an idea of how our approach improves the process-
ing of broad-match queries, first consider the processing broad-
match queries using the unmodified inverted indexes discussed
in Section I; here, we first retrieve the union of the ad postings
in the indexes corresponding to the keywords in the query
(we refer to these as candidate advertisements), and then test
if the phrase associated with each of these candidates does
not contain any non-query keywords. The main problem with
this approach is that the single-word indexes don’t filter the
advertisements well: most of the candidate advertisements will
not be part of the final broad-match result, since they contain
additional keywords.

However, because of the broad-match semantics, there is
no need to index all keywords in an advertisement phrase. If
we only index the keyword in each advertisement-phrase that
is most rare (i.e. appears the fewest times in the ad corpus),
the strategy above continues to produce the correct result and
performs much better, as significantly fewer phrases have to be
examined explicitly. Because broad-match queries will retrieve
an advertisement that only contains a subset of the words in the
query, we do not need to index advertisements redundantly (i.e.
having the posting corresponding to a specific advertisement
appear in more than one index). Using this non-redundant
indexing improves the processing of any query that contains
only rare keywords. However, for queries containing words
common in the advertisement corpus (e.g., “cheap movies”),
this is still very inefficient, since again many candidate adver-
tisements will be produced.

Another modification that allows us to process broad match
using the inverted indexes only (without looking up any
phrases explicitly) is to – together with the ID of an advertise-
ment – encode the number of keywords in the corresponding
bid in the inverted index itself. We can then compute the bids
matching a broad-match query by merging all inverted indexes
corresponding to keywords in the query while keeping track
of the number of times each bid has occurred. If this number
is identical to the encoded number of keywords for a bid, we
know that all keywords in the bid occurred in the query as
well, and the corresponding advertisement matches the query.

Unlike the un-modified inverted index, this approach re-
quires no direct access to the advertisement bids themselves;
however, the second issue discussed above remains: for queries
with keywords occurring frequently in the advertisement cor-
pus, large numbers of postings have to be traversed and
intersected/merged, even if nearly all advertisements they
correspond to are not a match, as they contain additional
keywords not contained in the query. We will show this

experimentally in Section VII-A. Retrieval speed, however,
is crucial for advertisement matching, as web search itself
has very tight latency constraints (see e.g., [5]), which are
acerbated by the fact that a significant fraction of this latency
is devoted to cover any network latency.

D. Our Approach

To overcome the issues discussed above, we need to reduce
the number of candidates processed for queries containing
frequent keywords. One approach for this is to index ad-
vertisement phrases not only by single words, but also by
certain multi-word combinations. Multi-word combinations
have advantages and disadvantages. As shown in Figure 2,
there are very few advertisements for most multi-word combi-
nations, which is convenient. Unfortunately, if we index longer
combinations, then – when processing queries – there are also
more combinations to look up (if we index advertisements
non-redundantly, we have to lookup all indexed (sub-)sets of
words in a query, which can be prohibitive for long queries).
One insight we leverage here is that – due to the broad-
match semantics – we can move advertisements to index nodes
corresponding to subsets of the keywords in their bid phrases,
while still ensuring correct match results. This gives us the
freedom to select a specific subset of (all existing) word-
combinations for indexing. One might expect that indexing
on multiple keywords would result in a blow-up of the overall
index size; interestingly, this is not the case due to the fact
that we can index advertisements non-redundantly, i.e. each
bid phrase appears in only a single location in the index.

In the following, we will describe an indexing framework
that balances the number of indexed word-combinations to
look up with the length of the results (candidate advertise-
ments), using a cost-model for main-memory access to trade
off between these two factors. Note that – while we focus
on broad-match semantics – we require that the proposed
structure is capable of indexing for phrase-match and exact-
match retrieval as well.

E. Contributions

In the remainder of this paper, we will make the following
contributions:
(I) We will describe a simple hash-based scheme for indexing
and processing of broad-match queries. We will focus on
broad-match performance in this paper, but the structure is
capable of also handling other forms of matching used in ad
retrieval such as exact-match and phrase-match.
(II) The main challenge with broad-match indexing is to trade
off the number of keyword-sets we index (indexing more sets
increases the number of lookups required against the index)
and the number of candidate advertisements retrieved for
which we have to explicitly check phrases. We will describe
a hash-remapping scheme that leverages properties of the
distribution of phrases in advertisement corpora and a cost
model for main-memory access to trade off these factors
explicitly and reduce the the overhead of long queries.
(III) We will show how to adapt the structure to (statistical

information on) a query workload, resulting in significantly
higher throughput overall.
(IV) We will briefly describe how to compress the resulting
structure, trading off compression against access time by using
a modification of the model introduced for finding the optimal
re-mapping.
(V) We will provide an experimental evaluation using real-life
advertisement and query datasets.

The remainder of this paper is organized as follows. Sec-
tion II surveys related work. Section III defines broad-match
semantics formally and outlines the basic architecture for
broad-match processing. Section IV describes considerations
in memory-resident retrieval processing. Section V describes
optimizing the in-memory structure for a particular query
workload. Extensions of our work are outlined in Section VI,
followed by an evaluation on real advertisement data in
Section VII, and conclusions in Section VIII.

II. RELATED WORK

The information retrieval literature has studied inverted
files in considerable depth, but there is relatively little work
on broad match, as subset-matching is typically not very
meaningful for text documents. Similar comments hold for the
database literature, as well, where there is a considerable body
of work on set-similarity (e.g., [6], [7]) and set-containment
joins (e.g., [8], [9]), that join independent relations on the
basis of the overlap in their set-valued attributes. However,
these techniques are generally targeted at much larger sets of
words/values and – in case of similarity joins – at constraints
on the minimal overlap between sets, as opposed to subset-
constraints found in broad-matches, making them impractical
for our application.

The implementation of a retrieval framework for contextual
advertisements in described in [3]; there the retrieval of
advertisements is divided into both a semantic as well as a
syntactic matching component. This solution uses a variant
of the WAND algorithm [10], which is a document-at-a-
time algorithm [11] that uses a branch-and-bound approach
to derive efficient moves for cursors associated with posting
lists. However, this approach relies on the final score of a
match being a function that is monotonic with respect to the
matching terms (and their scores) which – as we explained
in Section I-B – is not the case for the classes of ranking
functions we are concerned with.

The work that is most closely related to our approach has
been proposed in the context of publish/subscribe systems.
In a publish/subscribe framework, each query can be cast as
an event compromised of the keywords it contains, where
each advertisement is a subscription that is triggered by the
set of keywords present in its bid phrase. The most closely
related paper in this domain is [12]. This work is similar to
our approach in that it models the underlying problem as a
task of laying out the optimal in-memory indexing/processing
structure, formulating this task as computing a structure that
minimizes the expected access cost using a cost model of the
in-memory latency.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

d
is

ti
n

ct
 P

h
ra

se
s

Number of KeywordsNumber of Keywords

Fig. 3. Machine Translation (MT) phrases have a very different
distribution than bids. Although both distributions peak at 3 words,
MT phrases from the NIST competition fall off slower. MT has
relatively more long phrases.

Our approach is different in a number of important ways,
however. For one, we have knowledge of statistical properties
of the underlying distribution of bids, which our approach
leverages. Moreover, our approach does not only take sharing
of predicates (= words) in ad bids into account when comput-
ing which index layout to use, but is able to leverage workload
information derived from a stream of observed queries. We
precisely characterize the hardness of the underlying optimiza-
tion problem, and – for faster approximations – are able to
give worst-case bounds on the quality of the resulting solution.
Finally, the data structure we eventually use is very different
from the ones best suited for pub/sub systems.

One different area where similar indexing problems have
been studied is statistical machine translation (MT). MT sys-
tems construct large rule sets, often derived from even larger
parallel corpora, which are bodies of text that are available
in both languages. A sentence is translated by looking up
each sub-phrase of an input sentence in the index, scoring
the resulting rules and using a combination of the top-scoring
results as the translation (e.g., [13], [14]). However, translation
is different from sponsored search. Bids tend to be shorter
than translation rules (using phrases of length up to 7 or more
is common in settings where translation quality is essential).
Figure 3 plots the distribution of translation rule lengths
(up to 7) from the parallel corpus used in this year’s NIST
competition [15]. When comparing this to the left side of
Figure 1, we can see that both distributions peak at length
3, but the drop-off is much more gradual for the NIST data.

In addition to the differences in length, MT raises some
additional challenges for indexing. In MT, each translation
sentence-pair may contribute to multiple rules of different
lengths, meaning we cannot leverage a non-redundant indexing
scheme; because of this, the indexing of such rules is often
based on index structures used for longer bodies of text, such
as suffix-trees or suffix arrays [16]; both of these structures
are less effective in the context of broad-match queries, as a
suffix-tree would increase the size of the index structure very
significantly over the current solution, whereas a suffix array
would result in all constant-time lookup operations into the
index becoming logarithmic in the size of the corpus. However,

our main ideas are applicable to tree-like structures as well,
something we discuss in Section III-B.

III. PROCESSING BROAD-MATCH QUERIES

A. Notation

In the following, we denote the corpus of all advertisements
as A = {A1, . . . , An}, where each Ai corresponds to an
advertisement. For each Ai, we use phrase(Ai) to denote the
phrase/bid associated with the advertisement Ai, and info(Ai)
to denote the associated meta-data (e.g., listing ID, campaign
ID, bid price, information on competitive exclusion, etc.).
We will use the terms bid and ad phrase interchangeably
throughout the paper.

We use the notation size(Ai) to denote the in-memory
storage required for Ai in bytes; similarly, we use
size(phrase(Ai)) and size(info(Ai)) to denote the size
requirements of Ai’s subcomponents. For each phrase(Ai) =
w1 ◦ ′ ′ ◦w2 . . . ◦ ′ ′ ◦wk (with ◦ denoting the concatination
operator), we define words(Ai) = {w1, . . . , wk} as the set
containing all words in the corresponding phrase; words(p)
for a phrase p is defined in the same way. We useW to denote
the set of all words in the corpus and 2W as its power-set.
Because – for purposes of broad-match processing – word
order is irrelevant, we model a search query Q as a set of
words from W .

Broad-Match Semantics: The semantics of broad-match
queries are defined as follows: given a query Q =
{w1, . . . wq} ⊆ W , retrieve all advertisements Ai ∈ A for
which words(Ai) ⊆ Q.

B. A Framework for Broad-Match Processing

A simple approach to process broad-match queries is now
to index the set of words in each ad phrase using a hash table
(or a similar associative data structure) and to process queries
by retrieving the entries associated with all subsets of words in
a query. Because the distribution of search queries is skewed
towards short queries, a large fraction of these queries will
result in only a small number of lookups against the hash-
table; however, the number of word-subsets in a query grows
exponentially with the number of words it contains, leading to
poor performance for longer queries. The following discussion
starts with this simple approach, we will address the issue of
long queries in Section IV-B.

To hash sets of words, we define a hash function
wordhash : 2W 7→ N. We use a hash table H to index each
advertisement Ai, using wordhash(words(Ai)) as the hash
key; as the hashed value we use a pointer (or an encoding of an
offset) to a variable-length node storing all phrases mapped to
this hash key as well as their meta-data (see Figure 4); we refer
to these as data nodes. We use the notation H[words(Ai)]
(dropping the wordhash function, which is implicit) as a
shortcut to denote the data node that contains the metadata
of Ai; we refer to the set words(Ai) as the node locator for
this data node.

Within a data node, we keep all phrases ordered by the
number of words they contain (this optimization will become
important later). Note that it is necessary to represent the
phrases themselves due to the possibility of hash collisions
between different sets of words in the ad corpus; also, they are
required to process phrase-match and exact-match queries. In
case that advertisement metadata is shared between many ads
and/or requires significant amount of space, it is also possible
– instead of storing the metadata in the data nodes – to store
a pointer to the shared metadata there.

{“cheap” “books”}

{“cheap”,”used”,”books”}

{“new”, ”books”}

2 [phrase length in words]

“Cheap books” [phrase]

Info(A1) [metadata]

Info(A4) [metadata]

3 [phrase length in words]

“Cheap used books” [phrase]

Info(A3) [metadata]

2 [phrase length in words]

“New books” [phrase]

Info(A2) [metadata]

Data Nodes:

Advertisement Corpus:

Hash Table:

Fig. 4. The in-memory realization of the example ad corpus: sets
of words are indexed via a hash-table and all advertisements sharing
the same word-set are organized in a data node.

Now, to process a broad-match query Q, we generate the
hash-value wordhash(q′) for all subsets q′ ⊆ Q and – using
the hash table – visit the corresponding nodes and return all
listings in them associated with ads A for which words(A) ⊆
Q. For very short queries, this scheme will perform well, as
there are only few hash-lookups required. However, for longer
queries the number of lookups against the hash table grows
exponentially with the number of words in the query. We will
address this issue in Section IV-B.
Processing other query types: Because the structure retains
information about the precise phrase associated with an ad
listing, it can trivially also be used to process other match-
types used in sponsored search, such as exact-match queries
or phrase-match queries in which the order of words in the
phrase/query has to be observed as well; the lookups against
the hash table can proceed as before, only the logic to match
the query against the phrase stored in the data node has to be
modified.

A special case for broad-match is posed by phrases/queries
that contain multiple occurrences of the same query term.
As search query users tend to issue short, non-redundant
queries, multiple occurrences of the same word typically carry
meaning. For example, the string ”Talk Talk” likely refers to
a pop band of the same name and should not be matched to
a bid containing only ”Talk”; hence, the correct semantics for
multiple word occurrences in broad-matches is defined to be
that any word occurring multiple times should occur with the
same frequency in both the query and the ad phrase. Hence,
we treat multiple occurrences of a word as a special single
word (e.g., two occurrences of the word ”Talk” become a

single word ”Talk Talk”) in both bids as well as queries for the
purpose for broad-match processing. This way, the semantics
we have described above carry through directly.
Tree-structured lookup tables: Note that it is possible to use
the same re-mapping scheme in cases where the associative
data structure used is a tree as opposed to a hash-table,
provided it supports variable sized data at the nodes (or via
pointer indirection) themselves.

IV. MAIN-MEMORY RETRIEVAL

In order to optimize data structures and processing algo-
rithms, we need to model memory access cost. The cost
model distinguishes between sequential and random memory
accesses, since this difference is important in practice. Note
that the broad-match retrieval problem is also almost entirely
constrained by main memory latency in practice; the compu-
tation that is performed to match phrases is straight-forward.

A. The Cost of Memory Access

Explicit modeling of the latency of random data access
has typically been done in the context of disk resident data
(e.g. in database systems), where the disk seek overhead and
the rotational delay result in a several orders-of-magnitude
difference in cost between random and sequential data access.
However, similar tradeoffs exist for data stored in main mem-
ory, especially if – as in our scenario – the vast majority of
data is not cache-resident. Random access into memory may
incur latency because of a number of factors such as: (a) L1
and L2 cache misses, (b) misses in the translation lookaside
buffer (TLB) which maps virtual memory addresses to physical
ones and (c) – in DRAM architectures – the fact that random
accesses cannot use the burst-read mode of DRAMs. We also
found that the new structures proposed affect the number of
branch mispredictions by the processor. We will describe an
evaluation of these factors in our experiments in Section VII.

In order to assess the expected access latency of a data-
structure without actually executing a query workload on it,
we use a simplified cost model to approximate these factors.
Here, we do not explicitly model the effect of cache misses,
as these depend on the memory locations accessed previously.
We do model the remaining factors by assigning the “cost”
CostRandom to a random access and a “cost” CostScan(m)
to a sequential access of m bytes, once the random access to
the start of the sequence has been performed.

The precise nature of the cost function depends on the
processor architecture and memory chips used (see [17] for
examples) and – given that e.g., the latency induced by TLB
misses can vary significantly – will only be an approximation
of the real behavior. Still, as we will demonstrate in Sec-
tion VII, using this cost model will allow us to optimize the
data structures used in broad-match processing sufficiently to
obtain significant improvement in throughput when measured
experimentally. Our approach is independent of the precise
formulation of CostScan(m); we only require that it returns
positive values and is monotonically increasing in m (i.e.
m′ < m′′ ⇒ CostScan(m′) ≤ CostScan(m′′)).

B. Reducing Latency
Because the actual computation required for broad-match

processing itself is negligible, the main bottleneck of this
method is the latency of main memory access, especially
random access. We can reduce this latency by either (a)
traversing fewer data nodes or by (b) fewer hash-lookups
against the hash-table itself.

{“cheap” “books”}

{“new”, ”books”}

2 [phrase length in words]

“Cheap books” [phrase]

Info(A1) [metadata]

Info(A4) [metadata]

3 [phrase length in words]

“Cheap used books” [phrase]

Info(A3) [metadata]

2 [phrase length in words]

“New books” [phrase]

Info(A2) [metadata]

Data Nodes:

Hash Table:

Fig. 5. The data structure from Figure 4 after A3 has been re-mapped
to the data node containing A1 and A4.

Reducing the number of data nodes traversed: Broad match
considers all subsets of a query Q. Thus, there is an op-
portunity for sharing if we have two ads, A and A′, where
set of words in the phrase associated with A′ is a subset
of the words in the phrase associated with A: words(A′) ⊂
words(A). Now, if we remove the data of ad A from the
node at H[words(A)] and store this data at H[words(A′)]
instead, then the result of the broad-match query will remain
unchanged. Figures 4 and 5 illustrate this: moving cheap used
books under cheap books saves space by eliminating an entry
in the hash table. The re-mapping also takes advantage of
sequential memory accesses by moving the values for the
superset, cheap used books, to appear immediately after the
subset, cheap books. Any query that accesses the superset,
cheap used books, will by default also have to access all
subsets including cheap books, due to broad-match semantics.

We refer to this as re-mapping data nodes. Now, if we
remove all advertisements from the data node associated with
words(A) and distribute them to one (or more) different
existing nodes in this manner, we will (i) save a random access
when processing any query Q with words(A′) ⊆ Q and (ii)
reduce the number of entries in the hash-table by one, in turn
saving space and potentially increasing access locality.

Re-mapping reduces the number of random accesses at the
cost of additional sequential data reads at the nodes we have
moved data to. Hence we require the cost model described
in Section IV-A and some notion of the relative frequency at
which different phrases are queried to quantify this tradeoff.
Reducing the number of hash lookups: In the worst case,
the number of hash lookups grows exponentially with query
length, which would be prohibitive for long queries. However,
if we re-map all long phrases to data nodes with node-locators
of length no more than k, then in the worst case, for a query of
length q, the number of hash lookups is bounded by

∑k
i=1

(
q
i

)
,

as opposed to 2q − 1. This is a big improvement in practice

since
∑k

i=1

(
q
i

)
� 2q − 1, though realistically, we will still

need to a heuristic cutoff for extremely long queries because
even

∑k
i=1

(
q
i

)
is prohibitive, when q is very large. We know

that the number of long bid phrases is small, which means
that re-mapping all such ads to data nodes with shorter node
locators will not force us to have any very large data nodes, if
we chose the re-mapping destinations well. In the following,
we will refer to the parameter denoting the maximum number
of keywords that a phrase may have without being re-mapped
to a shorter node-locator as max words.

V. OPTIMIZING THE INDEX STRUCTURE

As described in Section IV-B, the reduction in the number
of data nodes (and number of random accesses) comes at
the cost of increasing the average amount of data we have
to access per data node visited. To find the optimal tradeoff
between these factors, we need to leverage both the cost
model introduced above as well as information on which data
nodes are frequently co-accessed by the same query (merging
data nodes that are always co-accessed will not introduce any
redundant memory access, merging data nodes that are rarely
co-accessed likely will). To obtain co-access information, we
leverage (a sample of) the query workload. In the following,
we will give a definition of the resulting optimization problem,
discuss its complexity and approximation algorithms.
Characterization of the Query Workload: To obtain a
characterization of the overall workload, we can observe a
stream of queries for an interval of time and treat it as a sample
from the overall (unseen) workload. Because search query
frequencies are known to follow a power-law distribution,
the top most frequent queries can be identified robustly from
even a small sample. These queries in turn are of most
importance to the optimization problem, as any re-mapping
decision involving the respective data nodes will have a much
bigger impact on the overall throughput compared to other
data nodes. Formally, we define a query workload as a set
WL = {Q1, . . . , Qh} of queries. We use the function frq(Qi)
to denote the respective frequency to each query Qi in WL.

A. Problem Statement

Formally, the task is now to define a mapping of all
advertisements in A such that the expected cost of executing
the workload WL is minimized. Here, we define a mapping
M : A 7→ 2W as an assignment of advertisements Ai to
the node locator they have been mapped to, i.e. the data
for advertisement Ai is located at the data node H[M(Ai)].
For the purpose of modeling the problem, we will ignore
the issue of hash collisions induced through the wordhash-
function, as these are very rare and complicate the formulation
unnecessarily. In order to preserve the correctness of broad-
match queries, we only consider mappings M for which all
advertisements Ai are mapped to sets to words that are subsets
of the words occurring in the phrase associated with Ai,
i.e. M(Ai) ⊆ words(Ai). Furthermore, we require that all
advertisements that share the same set of words(Ai) have to
be mapped to the same data node, as this allows for effective

early termination of the lookup algorithm. As noted above,
the mapping also has to obey the constraint that all “long”
phrases are mapped to “short” node locators, i.e. ∀Ai ∈ A :
|M(Ai)| ≤ max words. For ease of exposition we assume
in the following discussion that for each “long” phrase in the
ad corpus at least one ad with a corresponding “short” phrase
exists in the corpus (if this is not the case, such additional
node-locators can be inserted easily).

We model the cost of executing a query Q under a mapping
M as follows: we assume that looking up the address of a data
node via the hash-table H requires a single random access and
reads mem hash bytes; accessing a data node indexed via the
hash table itself requires another random access. As described
in Section III-A, all advertisements are ordered by the number
of words in their phrases in a data node; this means, whenever
we encounter a phrase containing more words than Q in a data
node, the remainder of this node is irrelevant for this query.
The cost of executing Q is now simply the cost of the resulting
random and sequential main memory accesses.

Under these assumptions, we define the cost of executing
a workload WL given the data structure resulting from a
mapping M of advertisements as the sum of the costs of all
queries. We split this total cost into two components: first, we
define the cost of accessing the hash table H that retains all
pointers to the data nodes as

CostHash(WL, M) =

∑
Q∈WL

frq(Q) ·
(# lookups on H required by Q︷ ︸︸ ︷

min{2|Q| − 1, (|Q|
max words)} ·CostRandom

+ CostScan(mem hash)
)

.

Second, we model the cost of accessing the data nodes
themselves as

CostNode(WL, M) =

∑
Q∈WL

frq(Q) ·
(Cost of reading metadata︷ ︸︸ ︷∑
Ai∈A:M(Ai)⊆Q

|words(Ai)|≤|Q|

CostScan(size(info(Ai)))

+

Cost of reading phrases︷ ︸︸ ︷∑
p∈

⋃
Ai∈A:M(Ai)⊆Q

phrase(Ai)

|words(p)|≤|Q|

CostScan(size(p)) +

Cost of random access to data node︷ ︸︸ ︷
CostRandom

)
.

The total cost then is the sum of the components:

Cost(WL, M) = CostHash(WL, M) + CostNode(WL, M).

We define CostNode(WL, M, N) as the cost of accessing data
at the node with node locator N ⊆ W only; if no ad is mapped
to the corresponding node, then CostNode(WL, M, N) = 0.
The problem of minimizing latency can now be formulated as:
Given a workload WL and costs CostRandom and
CostScan(m), find a mapping M such that Cost(WL, M)
is minimal:

argmin
M

Cost(WL, M). (1)

We will now describe how this problem can be cast as an
instance of the weighted set cover problem. Subsequently we
will describe the algorithms and data structures we leverage
to solve the resulting optimization task. In the following, we
will assume that the workload is structured in such a way that
each advertisement in the corpus is accessed at least once.

First, note that we can express a mapping M of A to h
distinct data nodes via a set SM = {S1, . . . Sh}, where each
Si corresponds to a subset of A containing all ads that are
mapped to the same data node. In order to result in a valid
mapping, SM has to satisfy the requirements for mappings we
have set up before:

(I) All ads must be mapped to (at least) one data node:
∀A′ ∈ A : ∃S ∈ SM : A′ ∈ S.

(II) No ad may be mapped to more than one node: ∀S′, S′′ ∈
SM : S′ 6= S′′ ⇒ S′ ∩ S′′ = ∅

(III) Ads may only be mapped to an existing node, whose
node locator is a subset of the words the ads contain:
∀S′ ∈ SM : ∃A′ ∈ S′ : ∀A′′ ∈ S′ : words(A′) ⊆
words(A′′)

(IV) All ads containing identical sets of words are mapped
to the same data node:∀A′, A′′ ∈ A : if words(A′) =
words(A′′), then A′ ∈ S ⇒ A′′ ∈ S.

If all these conditions are met, it is straight-forward to
construct the corresponding mapping M from SM . Using
this notation, we now describe the problem of computing
the set SM that corresponds to the mapping minimizing the
value of Cost(WL, M). For this purpose, we ignore the
component CostHash(WL, M) in Cost(WL, M), as its value
is independent of M , and only consider the contribution of
CostNode(WL, M).

Now, we can cast the problem of finding the optimal
mapping M as the task of finding the corresponding set-
representation SM as a subset of a base set SBase containing
all possible combinations of ads that can be mapped to one
data-note. We first define SBase as the set of all subsets of W
for which the conditions (III) and condition (IV) defined above
hold. For each S ∈ Sbase we define weight(S) as the corre-
sponding value of CostNode(WL, M, NS), i.e. the contribu-
tion of the node corresponding to S to CostNode(WL, M):

weight(S) = (2)∑
Q∈WL

frq(Q) ·
(∑

Ai∈S:|words(Ai)|≤|Q|

CostScan(size(info(Ai)))

+
∑

p∈
⋃

Ai∈S
phrase(Ai)

|words(p)|≤|Q|

CostScan(size(p)) + CostRandom

)
.

Now, computing the ’optimal’ mapping corresponds to picking
the subset Smin ⊆ SBase such that

⋃
S∈Smin

S = A and∑
S∈Smin

weight(S) is minimal among all subsets of SBase that

cover A, which is an instance of the the weighted set covering
problem. To show this equivalence, we will have to show that

(i) any such set Smin is indeed a valid mapping and (ii) there
is no valid mapping that results in lower CostNode(WL, M).

To show that Smin is a valid mapping requires that it obeys
the 4 conditions outlined above. Conditions (III) and (IV)
follow directly from the fact that they hold for all sets in
SBase. Condition (I) follows from the fact that

⋃
S∈Smin

= A.
Finally, to show condition (II), first note that S′ ⊆ S′′ implies
that weight(S′) < weight(S′′), as equation (2) contains two
summations over all (distinct) members of a set S and we
assume that each ad is accessed at least once. Now, if there
were a violation of condition (II), i.e. there is an advertisement
Aduplicate s.t. there are two sets S1 ∈ Smin and S2 ∈ Smin,
both of which contain Aduplicate, we will show that this
implies that Smin is not a minimal set covering, leading to
a contradiction. Here, we need to differentiate between two
cases:
Case 1: Aduplicate does not correspond to the node locator in
either S1 or S2 (or both). Then we can create sets S′1 and S′2
by removing Aduplicate (and all advertisements A′ for which
words(Aduplicate) = words(A′)) from one of the sets where
Aduplicate does not correspond to the node locator. Now, we
create S ′min where we replace S1, S2 by S′1, S

′
2 (unless the

set we created by removing ads is empty, in which case we
ignore it). S′1, S

′
2 (unless empty) must be in Sbase and together

cover the same sets advertisements as S1 and S2 (due to
the construction of Sbase, all removed ads must be in both
sets). Hence S ′min is also a covering. However, because of the
subset-condition outlined above, it has lower weight, leading
to a contradiction.
Case 2: If Aduplicate corresponds to the node-locator in both
nodes, then any query q ∈ WL which accesses one of the
corresponding nodes must also access the other. Hence, we
can construct a S ′min by removing S1 and S2 from Smin and
adding a set S12 = S1 ∪S2. This mapping must consequently
cover all ads and also have a lower weight than S1 and
S2 combined (as we “save” a random access for any query
accessing S12). Again, this implies that Smin is not minimal,
leading to a contradiction. Consequently, condition (II) must
hold.

To show that there is no valid mapping M ′ that results
in lower cost than the mapping M constructed from Smin,
consider such a mapping M ′. Now, we can construct the
corresponding set-representation S ′M by starting with an empty
set and adding all subsets of W that correspond to the sets of
advertisements mapped to a single node by M ′:

S ′M =
⋃

N⊂W
{
⋃

Ai∈A
M ′(Ai) = N}.

We assign weight(S) to every subset of S ∈ S ′M as before.
Now, it holds that every S ∈ S ′M is also in SBase, as –
since M ′ is a valid mapping – conditions (III) and (IV)
must be satisfied for all members of S ′M . For the same
reason, S ′M covers A. However, then

∑
S∈S′M

weight(S) <∑
S∈Smin

weight(S), which is a contradiction to the fact that
Smin is the minimum-weight set cover. Hence no such set S ′M
and thus no such mapping M ′ can exist.

B. Approximating the Optimal Mapping

Unfortunately, the fact that computing the optimal mapping
corresponds to weighted set cover does not help us with
regards to proposing a fast algorithm to determine this map-
ping. Solving the general set cover problem is known to be
NP-hard, and no polynomial-time algorithm can achieve an
approximation factor of better than O(ln |Sbase|) for general
set-cover [18].

However, it is possible to leverage an observation on the
subsets in SBase that may become part of the final mapping
to come up with a fast approximation algorithm with tighter
bounds. The key insight here is that the size (in terms of
number of advertisements) of any member of SBase that
can be part of the optimal mapping is constrained: any time
a node contains a set of bids S such that there exists an
advertisement Ai ∈ S, words(Ai) ≤ k for which the cost of
scanning the data associated with Ai for advertisements that
are stored “later” in the node which are not supersets of Ai

is more than the cost of a random access (i.e. weight(S) >
weight(S − {Ai}) + weight(Ai)), S cannot be part of the
optimal solution. Because the difference in latency between
random and sequential access in main memory is much less
pronounced than it is for disk-resident data (even when ag-
gravating factors such as TLB misses are taken into account),
this – for typical weight-distributions – limits the size of a
data node to a small number of advertisements.

Let k be the maximum number of advertisements that
we can group in a single data node without violating the
above constraint. Now, in cases where the set-size for a set-
cover problem is limited by k, it is well known [19] that
a simple greedy algorithm is a Hk-approximation algorithm
for the weighted set cover, where Hk =

∑k
i=1

1
i is the k-

th harmonic number, in turn giving us a simple and fast
algorithm with a much tighter approximation bound than the
aforementioned O(ln |Sbase|). In fact, given that we require
that all advertisements for which words(Ai) are identical to
be mapped to the same data node, they can be considered
a single element in the set (since they always co-occur in
sets of SBase), meaning the approximation guarantee becomes
Hk′ , where k′ is the maximum number of distinct words(Ai)-
combinations in a data node. Finally, it can be shown that
through the use of “withdrawal steps” this approximation-
factor can be reduced further [20].

VI. EXTENSIONS

Compression: The proposed structure is very amenable to
compression; we differentiate between the compression of the
data nodes and the compression of the hash-lookup table.
Data-Node compression: The re-mapping techniques de-
scribed earlier group together phrases in data nodes which
have at least one and often multiple words in common, and are
always accessed sequentially (within the node). This makes it
possible to compress the phrases (in addition to any character-
encoding) by representing them relative to phrases stored be-
fore them in the same data node, yielding further reduction in
required storage space and access costs. In addition, sequences

of bid-prices may be compressed using delta-compression.
Because any such gains are limited to a data node, they
can be integrated easily with the cost model we use for
the optimization problem of Section V-A by modifying the
weight(S) function to account for any compression.

2 [phrase length in words]

“Cheap books” [phrase]

Info(A1) [metadata]

Info(A4) [metadata]

3 [phrase length in words]

“Cheap used books” [phrase]

Info(A3) [metadata]

2 [phrase length in words]

“New books” [phrase]

Info(A2) [metadata]

Data Nodes:

wordhash({“cheap”, “books”}) = 011001

wordhash({“new”, “books”}) = 110010

s bits

0

1

1

0

0

…

Bsig

1

0

0

0

0

0

…

1

0

0

Boff

select1(Boff,rank1(Bsig,010))

select1(Boff,rank1(Bsig,001))

Fig. 6. Using compressed bit-arrays for lookup.

Compression of the hash-lookup table: For this purpose, it
is possible to leverage compressed binary sequences, which
have been studied in the context of compressed full-text
indexes [21]; these encode compressed binary strings B while
allowing a number of operations in asymptotically optimal
time – the operations we require are:
• B[i]⇔ Returns the value of the i-th bit of B.
• rankb(B, i) ⇔ Returns the number of bits b ∈ {0, 1} in

the i-bit prefix of B.
• selectb(B, j)⇔ Returns the position i of the j-th occur-

rence of bit b ∈ {0, 1}.
The compressed representation of a bit-array B of length
n containing k 1-bits requires space of nH0(B) + o(k) +
O(log log n) bits [21] (with H0(B) denoting the zero-order
empirical entropy of B), which is close to the optimal bound
(see [22]). The structures can be used to encode a compressed
representation of H as follows.

First, we use a compressed bit-array Bsig of length 2s to
describe all wordhash() signatures for which we are storing
data nodes; we set bits in Bsig as follows: the i-th bit is set to
1 if there exists a data node with node-locator W s.t. the s-bit
suffix of wordhash(W) is equal to i; otherwise, the bit is
0. We store the corresponding data nodes in main memory in
order of the s-bit suffix of the hash value of their node locator;
data nodes with identical suffixes are merged, similarly to the
merging of data nodes discussed previously.

We encode the position of data nodes in memory using a
second compressed bit-array Boff: let Dsize be the size of
all data nodes in memory (in byte) and Doff

i denote the byte-
position (relative to the start of the data node storage) at which
the i-th data node “starts” in memory. Now, we set the j-th
bit in Boff to 1 if ∃i : Doff

i = j, 0 otherwise. The resulting
data structure is shown in Figure 6.

We can then use these bit-arrays to achieve the functionality
of H as follows: if we want to look up the data node associated
with a node-locator W , we first compute sw, the s-bit suffix
of wordhash(W); now, if Bsig[sw] = 1 we know that there

exists a data note whose node-locator has the identical suffix.
To locate this data node, we now compute its offset as offset =
select1(Boff, rank1(Bsig, sw)) and access the data node at this
location. To see that this computation will give us the correct
offset, consider that rank1(Bsel, sw) will return the rank of the
data node with hash-suffix sw (according to the order of hash-
suffixes) (i.e. the number of data nodes with a smaller suffix
plus 1); now, for a given rank r, select(Boff, r) will give the
offset in memory of the start of r-th data node, which in turn
corresponded to the r-th hash suffix (because of the ordering
of the data nodes).
Selecting the suffix-size s: Selection of s for large bit-arrays
involves an optimization task related to the one described in
Section V-A: a shorter suffix causes more collisions between
suffixes, in turn requiring larger data nodes to be read on
average. In turn, they also result in a smaller bitmap Bsig

and fewer 1-bits in Boff, reducing their size (in case of Boff

after compression). We can use a cost-model similar to the
one used earlier to model the data access latency, with the
difference being that (a) we cannot control collisions/merges
on the level of individual nodes and (b) the tradeoff is between
the size of the structures and the access speed and not a pure
optimization of access time.

In practice, these structures are able to reduce the memory
footprint of H significantly for a number of reasons: (a) the
bit-arrays (via a choice of a smaller suffix) can be made much
smaller than the signature-information stored by hash-tables,
(b) when the entropy of a bit-array is large, they can be
compressed further, yielding significant gains and (c) unlike
many hash-table implementations, there is no need to require
the wordhash signatures or the pointers/offsets into the node
table to be a multiple of 8 bits in length.

To illustrate this, consider the following example. Since we
assume that our techniques will be applied to corpora with
very large numbers of advertisements, we will concentrate on
the nH0(B)-term in the space-requirement. Consider an ad
corpus of 100 million advertisements, containing 20 million
distinct sets of words (= wordhash signatures). We assume
that a wordhash-value requires 4 byte in memory and the
lookup of the data nodes is done via a 4-byte offset into
memory. Assuming that storing the data in a hash-table
causes a blow-up of 4

3 of the data, the in-memory size of
H becomes size(H) = (108/5) · (4 + 4) · 4

3 ≈ 2.1 · 108

byte or bit size(H) ≈ 1.7 · 109 bits. Now, consider the size
of Bsig . If we choose s to be 28 bit, the ratio of distinct
wordhash signatures to distinct positions in Bsig is close to
1:13, meaning a small number of additional hash collisions.
Now, the number of positions in Bsig is n = 228 and the
number of 1-bits in these positions only k = 108/5, meaning
we can upper-bound n ·H0(Bsig) ≤ k · log2

n
k + k · log2 e ≈

8 · 107. To calculate the size of Boff, we further assume
that we require 75 byte on average per distinct set of words
to store phrase and meta-data, meaning that the number of
positions in Boff is n′ = 108/5 · 75 and the number of
1-bits in these positions again k′ = 108/5 giving us that
n ·H0(Boff) ≤ k′ · log2

n′

k′ + k′ · log2 e ≈ 108, meaning that

the ratio bit size(H) :
(
n ·H0(Bsig) + n ·H0(Boff)

)
is about

9:1.
While the data structures required to achieve these space

bounds above can be very complex in practice, much simpler
structures can yield significant compression as well (e.g. [23]).
Maintaining the data structure under insertions/deletions:
Keeping the data structure updated to ensure the correct broad-
match processing in the presence of inserts/deletions is straight
forward, although deletion-operations become more expensive
to process as – due to the re-mapping – we cannot identify
the correct data node to delete from without processing the
equivalent of a broad-match query. However, as deletions
are much less frequent that queries in sponsored search, this
overhead should be negligible.

It is significantly more challenging to keep the mapping
itself (close to) optimal in the presence of insertions/deletions,
as online versions of the set-cover problem have much weaker
guarantees on the approximation bounds [24]. Therefore,
instead of re-computing the optimization for each inser-
tion/deletion, this re-computation is only performed periodi-
cally (potentially on a separate machine), while – at the time of
an insertion – a mapping of the newly inserted advertisement
is computed using a fast local heuristic.

VII. EXPERIMENTAL EVALUATION

Experimental Setup: All experiments were performed on a
16GB RAM PC using a 4-CPU 2.67 GHz Xeon Processor and
running Windows 2003 Server. In our experiments we use a
real corpus of 180 million advertisements. To evaluate our
structures, we use a web search trace with 5 million queries
as the workload.

A. Processing using Inverted Indexes

In the first experiment, we are looking to validate the claim
that processing broad-match queries using inverted indexes
only is not sufficient to achieve performance comparable to our
approach. For this purpose, we implemented the two inverted-
index based processing strategies outlined in Section I-C.
(I) Unmodified inverted indexes: Here, we construct inverted
indexes that index the least frequent word (with regards to
the corpus of bids) for each advertisement phrase only (i.e.
we created a “posting” in the index for this word referencing
the relevant phrase and metadata). We process queries using
this structure by iterating over the indexes for all words in a
query, checking if phrase(Ai) for any advertisement Ai we
encounter contains words not in the query. This corresponds
to the “non-redundant” indexing described in Section I-C.
(II) Modified inverted indexes: In this data structure, we
store ad identifiers as postings in the inverted index for each
keyword in an advertisement’s bid phrase. We augment each
posting by storing the total number of words in the corre-
sponding ad phrase with the posting. Now, when processing
a query, we traverse the inverted indexes corresponding to all
keywords in the query, keeping track of all advertisement IDs
we encounter and the number of times they are seen. Any
advertisement ID that occurs as many times as the total number

of keywords in the corresponding phrase is a match, since it
cannot contain any keywords that do not occur in the query;
any advertisement that occurs less often cannot be a match.

Note the we cannot use the well-known skipping optimiza-
tion when processing the inverted indexes [25], since we are
not merely computing intersections: e.g., if a advertisement
phrase contains fewer keywords than a query, it does not have
be present in all inverted indexes traversed to be a match.

The key difference between these two approaches is the
amount of data in the inverted indexes accessed; while the
first approach reads in much fewer postings (as no ad phrase
is indexed in more then one index) on average, it has to access
the phrase data to filter matches subsequently, whereas the
second approach requires access to the inverted indexes only.
Results: We compared the throughput of the two techniques
above to our approach using a web-trace of 5 million real user
queries as the workload. Here, we used a simplified version
of our approach that does not use any re-mapping of nodes
and no workload-adaptation. We found that the difference
in throughput was very pronounced: the throughput of the
new structure was 99× the throughput of the one based on
unmodified inverted indexes, and over 1300× better than the
one using modified inverted indexes.

To ensure that the observed performance for the modified
inverted indexes was not due to inefficiencies in our index-
merging algorithm, we re-ran the same experiment, with the
one difference being that we never merge any indexes, but
only access each required posting once, without any further
processing. This resulted in a similar discrepancy of the overall
throughput, with the difference in throughput still being larger
than three orders of magnitude.

26

104

416

1664

6656

26624

106496

425984

1 4 16 64 256 1024 4096 16384

N
u

m
b

e
r

o
f

a
d

v
e

rt
is

e
m

e
n

ts

Rank of keyword (combination)

Word-Combination

Frequencies

Single-Word Frequencies

Fig. 7. Comparing the frequency-distribution of keywords to the one
of word-combinations in 1.8 million advertisements.

Analysis of the performance gains: It is not hard to un-
derstand why the performance of simple inverted indexes is
in order of magnitude worse compared to our approach. In
the case of inverted indexes the granularity of the “buckets”
we can use for filtering is limited by the number of unique
terms in the corpus. Because we cannot use skip-searches for
either inverted index variant, we always have to access each
of these in its entirety. However, some terms are very popular
in sponsored search. Using inverted indexes the number of
items under keys formed by such terms is very high. It
can easily exceed several thousand elements, which in turn
means that – depending on which index variant we use – we

either have to check large numbers of phrases for additional
keywords, or process large numbers of entries when merging
inverted indexes. In contrast, with our approach the number
of elements under each hash key is significantly smaller. If
we focus on the most popular terms only, our experimental
results show that the average number of elements under each
(hash) key was reduced from about 3000 down to an average
of about 100. To illustrate this graphically, we have plotted
the frequency-distribution for single keywords and for the
word-sets in each advertisement for the most frequent 32K
keywords/combinations in Figure 7. The much larger skew of
the distribution of keyword-frequencies is at the root of the
observed performance problems.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

R
a
ti
o
 o
f
#
b
y
te
s
 r
e
a
d

Number of advertisements (in million)

Fig. 8. The inverted-index based approach processes 4× as much
data as our approach.

In order to quantify this observation, we ran an additional
experiment in which we measured the total amount of data
accessed by each approach for a set of 100K queries, while
varying the number of advertisements in the corpus. In Fig-
ure 8 we plot the ratio between the number of bytes “read”
by the processing based on unmodified inverted indexes to
the number of bytes for our approach. As we can see, even
for ad corpora of 1 million advertisements, the inverted-index
based approach processes 4× as many bytes, and this ratio
rises rapidly as we increase the size of the corpus. While
the inverted-index based processing requires fewer random
accesses into memory, the sheer volume of data is sufficient
to account for the observed performance difference.

A similar experiment also confirmed the reason for the
dramatic difference in performance for the alternative imple-
mentation using inverted indexes that encode the number of
keywords in each ad phrase. Even at one million advertise-
ments, this technique processes three orders of magnitude
more data than our approach; again ratio is increasing with
the size of the ad corpus.

B. Multi-Server Indexes

In scenarios where the size of the ad corpus or the index
itself is too large to fit into the main memory of a single
machine, it becomes necessary to split the data across servers.
The bottleneck in these scenarios generally becomes the la-
tency of the network as opposed to main memory whenever a
query has to access multiple nodes to compute the final result.

To show that the performance gains of our approach are
significant enough to make a noticeable difference even in

this scenario, we compared our technique with the inverted-
index based processing described earlier (using the unmodified
inverted index, which was the faster of the two variants) in the
scenario that the index and the advertisement data reside on
two different servers, meaning that every query has to access
both servers consecutively and is thus subject to network
latency. As the workload we used a real query trace; we set
the inter-arrival time between queries as high as possible until
one of the structures did not increase in throughput.

Our experiment showed significant improvements in CPU
utilization, requests per second and query response latency
when compared to traditional inverted indexes, even though
main memory latency is not the primary bottleneck. For
example, the average CPU utilization in the case of an inverted
keyword index was 98%. Using our approach the CPU utiliza-
tion was reduced down to 42%. At the same time the average
number of requests per second more than doubled from 2274
to 5775. Figure 9 shows the response latency distribution – for
this experiment, we divided the spread of query latencies into
ranges of 5 ms and computed which fraction of queries fell
into each bucket (smoothing the resulting curves in the graph).
As the figure shows, the average response latency improved
significantly, with about 75% of the requests being processed
within 10 ms compared to 32% in the case of the traditional
inverted index.

0%

10%

20%

30%

40%

50%

60%

70%

80%

5 10 15 20 25 30 35 45+

P
e

rc
e

n
ta

g
e

 o
f

q
u

e
ri

e
s

w
it

h
in

 l
a

te
n

cy
 r

a
n

g
e

Response Latency [ms]

Hash Indexing

Inverted Indexes

Response Latency [ms]

Fig. 9. Distribution of response latency.

C. Evaluation of Node Re-Mapping

100%

68%

62%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No re-mapping Re-mapping of long

phrases only

Full re-mapping

O
v

e
r
h

e
a

d

phrases only

Fig. 10. Re-mapping of long queries has significant impact on
throughput, optimizing the mapping yields further benefit.

To evaluate the impact of the re-mapping techniques we
measured the time required to process workload of 500K
distinct queries with a skewed frequency distribution (taken
from the web trace via sampling) for 3 different versions
of the proposed structure: (a) without any re-mapping (i.e.
any query Q has to lookup and process all subsets of Q
against the hashtable H), (b) re-mapping of “long” phrases
only and (c) full re-mapping. In case of (b) and (c), we used the
parameter max words = 10 and use an approximate solution
to the set-cover problem to compute the mapping. Figure 10
shows the relative time taken by each structure to process
the entire workload. We can see that the remapping of long
phrases yields significant improvements; when the re-mapping
is extended to all nodes, we gain approximately an additional
10% (relative to (b)) in performance.
Analysis of the performance gains: To understand what
factors are causing the observed differences in throughput,
we used Intel’s VTune Performance Analyzer [26] tool to
collect hardware performance counters for the different data
structures. For this experiment, we compared the proposed
data structure without any re-mapping to the data structure
with full re-mapping. To compare the performance for similar
access patterns, we ensure that in both cases (i.e. even when
re-mapping is used) all subsets of the words in each query are
looked up against the index.

Using VTune, we now measured the following hardware
performance counters: (a) the total number of main memory
accesses that missed the data table lookaside buffer (DTLB),
(b) the fraction of unhalted core cycles spend on the page
walks resulting from these misses, (c) the number of L2
cache misses and (d) the amount of cycle stalls due to branch
mispredictions. Based on this data, the causes for the improved
performance of the re-mapped structure appear to stem from
2 factors: for one, the amount of page-walks performed as a
response to DTLB misses was significantly higher for the data
structure without re-mapping (increase of more than 40%);
interestingly, the number of memory accesses that missed
the DTLB increased by a much smaller factor (12%). The
other cause was the increased number of cache misses in the
structure without re-mapping; this appears to be a consequence
of the hashtable H having much fewer entries when re-
mapping is performed, in turn leading to better cache locality.
Interestingly, the number of branch mispredictions was larger
for the structure with re-mapping (increase of 23%).

VIII. CONCLUSIONS

Sponsored search raises interesting challenges for indexing.
This paper proposed an index for broad match, an important
matching algorithm for sponsored search. Under a simple cost
model of main memory latency, we reduced the optimization
problem of finding the optimal index structure to weighted
set cover. Although the general set cover problem is NP-
hard, properties inherent in our problem statement make it
amenable to fast approximate solutions. We were able to show
using corpora of real ad data and query traces that our struc-
ture results in order-of-magnitude performance improvements

when compared to solutions based on inverted indexes even
for the simplest structure proposed, while optimizations to the
main memory structure resulting from a suitable re-mapping
of hash-nodes result in significant further improvements.
Acknowledgements: This paper benefitted tremendously from
many insightful comments from Arvind Arasu, Raghav
Kaushik, Chris Quirk, and Jingren Zhou as well as the
anonymous reviewers.

REFERENCES

[1] V. Anh, O. de Kretser, and A. Moffat, “Vector-Space Ranking with
Effective Early Termination,” in Proceedings of the 24th annual inter-
national ACM SIGIR Conference, 2001, pp. 35–42.

[2] T. Strohman and W. B. Croft, “Efficient Document Retrieval in Main
Memory,” in 30th ACM SIGIR International Conference, 2007, pp. 175–
182.

[3] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel, “A Semantic
Approach to Contextual Advertising,” in SIGIR, 2007, pp. 559–566.

[4] R. Fagin, “Combining Fuzzy Information: an Overview,” SIGMOD Rec.,
vol. 31, no. 2, 2002.

[5] http://blogs.zdnet.com/BTL/?p=3925.
[6] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity Predicates,”

in ACM SIGMOD, 2004, pp. 743–754.
[7] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-similarity

Joins,” in VLDB, 2006.
[8] S. Melnik and H. Garcia-Molina, “Adaptive Algorithms for Set Con-

tainment Joins,” ACM TODS, vol. 28, no. 1, pp. 56–99, 2003.
[9] N. Mamoulis, “Efficient Processing of Joins on Set-valued Attributes,”

in ACM SIGMOD, 2003, pp. 157–168.
[10] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien, “Efficient

Query Evaluation using a Two-Level Retrieval Process,” in CIKM, 2003,
pp. 426–434.

[11] R. Baeze-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
ACM, 1999.

[12] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha, “Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe Systems,” ACM SIGMOD Conf., pp. 115–126, 2001.

[13] C. Callison-Burch, C. Bannard, and J. Schroeder, “Scaling Phrase-based
Statistical Machine-Translation to larger Corpora and longer Phrases,”
in Proc. of ACL, 2005, pp. 255–262.

[14] Y. Zhang and S. Vogel, “An Efficient Phrase-to-Phrase Alignment Model
for arbitrarily long Phrases and large Corpora,” in Proc. of EAMT, 2005.

[15] “NIST MT Competition,” http://www.nist.gov/speech/tests/mt/.
[16] E. M. McCreight, “A Space-Economical Suffix Tree Construction Al-

gorithm,” in Journal of the ACM, 23, 1976, pp. 262–272.
[17] S. Büttcher and C. L. Clarke, “Index Compression is Good, Especially

for Random Access,” in In Proceedings of CIKM, 2007.
[18] U. Feige, “A Threshold of ln n for Approximating Set Cover,” Journal

of the ACM, vol. 45, no. 4, pp. 634–652, 1998.
[19] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,” Math-

ematics of Operations Research, vol. 4, pp. 233–235, 1979.
[20] R. Hassin and A. Levin, “A Better-Than-Greedy Approximation Algo-

rithm for the Minimum Set Cover Problem,” SIAM J. Comput., vol. 35,
no. 1, pp. 189–200, 2005.

[21] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM
Comput. Surv., vol. 39, no. 1, 2007.

[22] A. Golynski, “Optimal Lower Bounds for Rank and Select Indexes,”
Theor. Comput. Sci., vol. 387, no. 3, 2007.

[23] S. Vigna, “Broadword Implementation of Rank/Select Queries,” LNCS,
no. 5038, 2008.

[24] G. Ausiello, A. Giannakos, and V. T. Paschos, “Greedy Algorithms for
On-line Set-Covering and related Problems,” in Proc. of CATS, 2006,
pp. 145–151.

[25] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes - Compress-
ing and Indexing Documents and Images. Morgan Kaufman Publishers,
1999.

[26] “Intel VTune Performance Analyzer,”
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/.

