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Abstract

We revisit, from a logical standpoint, Filinski’s implementation of Moggi’s monadic reflection
using delimited control operators. We show that monadic reflection can be applied in Lax logic to
provide some computational content to various axioms of the form ¢ = ¢ where < is a repre-
sentable monad. We also discuss the meaning of this axiom for some standard monads.

In the quest for a logical understanding of delimited control, we revisit Filinski’s encoding of Moggi’s
monadic reflection [9] using shift/reset [5]. Indeed, since representing monads is a major application
of delimited control, it seems reasonable to look first for a the logical interpretation in this framework
(where the full type system from [3]] is not required).

As studied in [1]], Moggi’s computational types correspond, through the formulas-as-types interpre-
tation, to formulas of a modal logic called Lax logic [4] (originally due to Curry [2]]) . We show in this
paper that monadic reflection can also be applied to provide some computational content to axioms of
the form {¢ = ¢ where <) is a representable monad. Note that we shall not consider here the equa-
tional laws of monads, so { is, strictly speaking, just a definable modality together with two proof-terms
unit : @ = $@ and bind : (¢ = Qy) = O = Oy. However, we shall see that correctness can still be
enforced by the presence of dependent types, even if the three monad equations do not hold.

As in [5]], the source language is the typed A-calculus with two operators [-] and u (-), called reify
and reflect, and typed as follows:

I'Ht:0
'E[]:00

I'kr:G0

R TR

(reflect)

As shown by Filinski [3]], monadic reflection is validated both by the monadic translation and the cps-
translation. We shall consider only the latter, and focus on the continuation monad V defined as Vo =
Vo ((¢ = o) = $a). Note that this continuation monad, which suggested in a footnote of [5], is
polymorphic in the answer type.

To be more specific, let us assume that our target system is a formulation of second-order arithmetic
(such as Leivant’s M2L [8] or, equivalently, Krivine’s AF, [7]). However, for simplicity, we shall
only consider source terms typable is the first-order fragment. The translation of formulas is defined
inductively as follows (where o is atomic):
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Now, if ¥ denotes the call-by-value cps-translation of a term ¢ [5], we have the following property:
if [ ¢ : ¢ is derivable then I'V I ¢¥ : V@V is derivable. Moreover, a direct style implementation of
the reflect/reify operators using delimited control operators shift and reset can be derived from the
continuation semantics:

[t] = reset (unitt) u (t) = shift (Ak.bind k 1)
where the above instances of shift and reset are typable as follows:

reset : o = O shift : Vo ((¢o = Qa) = Qa) = ¢
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Note that Vo (¢ = $a) = Qo is equivalent to $@. Indeed, f: Vo(@ = a) = Qo (f unit) : S is
derivable and, conversely, we also have x : (@ F Ak.bind k x : (¢ = $a) = . As a consequence, the
above type of shift is equivalent to the type of i, which is @ = .

From a provability standpoint, monadic reflection is thus completely equivalent to assuming the
existence of operators shift/reset (with the above types). Let us now consider this axiom ¢ = ¢ for
some standard monads:

e for the continuation monad {¢ = (¢ = y) = v, for some formula y, we get -—¢ = ¢ which
extends the logic to classical logic if we take y = _L, but this axiom is incoherent if y is a theorem.

e for the state monad ¢ = y = (@ A ), for some formula y, we get (¥ = (@ A y)) = ¢ which
is not valid in general. This axiom is derivable if y is a theorem, but it is incoherent if we take
V=1

e for the exception monad, ¢ = @ V vy, for some formula y, we get (¢ V ) = ¢ which is not
valid in general. This axiom is incoherent if Y is a theorem, but it is derivable if =y is derivable.

It seems that there is no obvious conclusion to draw from those remarks. For instance, it is reasonable
to assume that the type of the simulated global state from the state monad is a theorem, since we usually
need to initialize the state before running the computation. On the other hand, we would clearly like
to allow for inhabited exception types. It is also worth noticing that the incoherent axioms mentioned
above are (of course) translated into valid axioms (and a proof of - L is in fact translated only into a
proof - <> which is a theorem for these cases).

One way to understand these apparent issues is to try to extend the representation theorem for M2L
[8]] (called programming theorem in AF, [1]) to the resulting logic. For that purpose, one need to be able
to derive a proof of - o from a proof of - (> (where o is atomic). One can rely on Friedman’s top level
trick [6} [10], for the continuation monad. One can provide an initial state (if its type is a theorem) for the
state monad. But, for the exception monad, in order to extract a proof of - ¢ from the proof of - o V vy,
one need to be able to prove that y is not a theorem (and then apply the disjunction property).
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