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Abstract

We define a type theory with a strong elimination rule for existential quantification. As in
Martin-Löf’s type theory, the “axiom of choice” is thus derivable. Proofs are also annotated
by realizers which are simply typed λ-terms. A new rule called “type extraction” which
extract the type of a realizer allows us to derive the so-called “independance of premisses”
schema. Consequently, any formula which is realizable in HAω, according to Kreisel’s modified
realizability, is derivable in this type theory.
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1 Introduction

The well-known Brouwer-Heyting-Kolmogoroff semantics gave birth to Kleene’s original recursive
realizabitity (r-realizabitity) and to Kreisel’s modified realizability (mr-realizabitity). While in the
former realizers denote partial functions, in the latter they denote total functions. One can thus
think that r-realizabitity is closer to provability than mr-realizability since terms extracted from
proofs (thanks to the Curry-Howard isomorphism) denote total functions (functionals of Gödel’s
System T for proofs in finite-type arithmetic HAω , for instance). Surprisingly, it is not the case:
there is a schema which is mr-realizable but not r-realizable (and thus not provable). To be more
specific, Kreisel’s mr-realizabitity is different from provability for two reasons:

1. the axiom of choice (which is actually a schema) AC:

∀x : σ.∃y : τ.B ⇒ ∃f : σ → τ.∀x : σ.B[f(x)/y]

is mr-realizable but not provable in HAω.

2. the independance of premisses schema IP, where H is a Harrop formula in which y does not
occur free (see definition 1.1.2) :

(H ⇒ ∃y : σ.B) ⇒ ∃y : σ.(H ⇒ B)

is mr-realizable but not provable in HAω.

It is known that a strong elimination rule for existential quantification as in P. Martin-Löf’s
type theory [6, 7, 8] is enough to prove AC. Notice that the distinction between the numerous
presentation of the theory (or between intensional and extensional theories) is not relevant in this
paper, so we will just call it ML (for further details see [14]).
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On the other hand, IP is not derivable in ML (since ML conservative over HA, see [1] p. 323).
Let us try to explain this phenomenon: in ML, proof-terms denote total functions (which are
functionals of Gödel’s System T, as in HAω) but this information is not explicit inside the formal
system. In fact, ML differs from HAω in its behaviour in that there is a “built-in” realizability
interpretation connected with the “formulas-as-types” idea. However, this realizability is more
like an abstract Kleene realizability (thanks to A. S. Troelstra for pointing this to me).

To charaterize provability in ML [11, 12], M. D. G. Swaen is led to extend HAω with a “condi-
tional application”, and consequently (as in ML) there is no way to reflect the totality of realizers
into the formal system. Conversely, we will show here that if we add a rule which states that
“any realizer is typable” (and thus denotes a total function), provability and mr-realizability col-
lapse. In other words, a formula A is thus provable in the resulting type theory if and only if A is
mr-realizable in HAω.

This paper is devoted to the definition of the type theory and the proof of the main result
(which is partly is given in appendix). In the second section, we give the definition of a realized
theory, which allows for a general study of realizibility in many-sorted predicate calculi (and not
only finite-type arithmetic). Although the results of the second section are not new, they are
necessary to understand the type theory defined in the last section.

Related works

For formal definitions of languages and theories in which r-realizability and mr-realizability have
been investigated, the reader is refered to the works of S. C. Kleene [5] (in the theory HA, where
a function is represented its Gödel-number), S. Feferman [4] (in the theory APP, where functions
are represented in a λ-calculus with a fixed-point operator) and M. J. Beeson [1] p. 148 (in the
theory EON, where functions are represented by untyped λ-terms) and the works on G. Kreisel’s
modified realizability of J. Diller [2] and A. S. Troelstra [13] p. 220 (in the theory HA, where a
function is represented by its Gödel-number) and p. 213 (in the theory HAω , where functions are
represented by typed λ-terms).

1.1 Recursive realisability

We recall informally Kleene’s recursive realizability. The reader may assume that the theory is
HA (although the same results hold in EON). The notation (f a) ↓ means that the function f is
defined on a (this predicate is built-in in EON, but can be defined in HA from Kleene’s predicate
T). In the following definition, x r A is a new formula where x is a fresh variable (i.e. which does
not occur free in A).

• x r A ≡ A, if A is an atomic formula

• x r A ∧ B ≡ π(x) r A ∧ π′(x) r B

• x r A ⇒ B ≡ ∀y(y r A ⇒ ((x y) ↓ ∧(x y) r B))

• x r ∀yB(y) ≡ ∀y((x y) ↓ ∧(x y) r B)

• x r ∃yB(y) ≡ π′(x) r B(π(x))

Remark. The notation x r A is relevant since the “substitution lemma” holds: (x r A)[t/y] =
x r A[t/y].

Definition 1.1.1 We say that a formula A is r-realized (resp. r-realizable) in HA iff there is a
term t with the same free variables as A such that HA � t r A (resp. HA � ∃x(x r A)).

Axiomatization of r-realizability

Definition 1.1.2 Harrop formulas are defined inductively as follows: atomic formulas are Harrop
formulas. If A and B are Harrop formulas and C is any formula then A ∧ B, C ⇒ A and ∀xA
are Harrop formulas.
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Definition 1.1.3 We call ECT (for “Extended Church Thesis”) the following axiom schema:

∀x(H ⇒ ∃yB(y)) ⇒ ∃f∀x(H ⇒ (f x) ∧ B(f x)) where H is a Harrop formula

Lemma 1.1.4 ECT is r-realized.

Remark. The restriction of H to Harrop formulas in ECT is needed for the following reason:
an intuitionistic proof of A ⇒ B is a procedure which turns a proof (realizer) of A into a proof
(realizer) of B. In the assumption H ⇒ ∃y.B, y may depend on the proof of H . This axiom can
thus be realized only if there is no “computational content” in H , which is the case for negative
formulas such as Harrop formulas (see section 2.5). Consequently, if H is a Harrop formula, a
realizer of ∀x(H ⇒ ∃yB(y)) is a partial function which is defined on every x where H is realized,
and which map this x to a realizer of ∃yB(y).

Lemma 1.1.5 (soundness) Any formula provable in HA is r-realized in HA.

Proposition 1.1.6 (axiomatization) For any formula A, there is a term t such that HA � t r A
if and only if HA + ECT � A.

The axiom schema ECT is a generalization of CT (take H = 	):

∀x∃yB(y) ⇒ ∃f∀x((f x) ↓ ∧B(f x))

Let us now consider the axiom schema IP (where H is a Harrop formula):

(H ⇒ ∃yB(y)) ⇒ ∃y(H ⇒ B(y))

We have CT + IP ⇒ ECT:

∀x(H ⇒ ∃yB(y)) ⇒ ∀x∃y(H ⇒ B(y)) (IP)
⇒ ∃f∀x((f x) ↓ ∧H ⇒ B(f x)) (CT)
⇒ ∃f∀x(H ⇒ ((f x) ↓ ∧B(f x)))

However, ECT 
⇒ IP since IP is not r-realized in HA. Indeed, if IP were r-realized in HA, we
would get a procedure (the realizer of IP) which could turn a realizer of ∀x(H ⇒ ∃yB(y)), which
is a partial function, into a realizer of ∀x∃y(H ⇒ B(y)), which is a total function. Yet, a generic
partial recursive function cannot necessarily be extended into a total function. The formal proof
requires a diagonalization argument (see [9] or [10] p. 171, for instance).

2 Kreisel’s modified realizability

Kreisel’s modified realizability is usually defined in HAω. It is easy to generalize the definition to
many-sorted predicate calculi: the theory HAω is a special case of “realized” theories. As usual,
formulas are realized by simply typed λ-terms.

2.1 Many-sorted predicate calculi with equality IQCω

A many-sorted predicate calculus is a predicate calculus in which the term language contains the
simply typed λ-calculus. Equality is used to define the usual conversion rules between λ-terms
with product type.

Language. The language of a many-sorted predicate calculus is given by:

• A set Σ of ground types. We denote by Σω the set of types inductively defined from Σ∪{I1}
using × and → (where I1 is the singleton type).
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• A set of function and predicate symbols typed by elements of Σω. This set contains an
equality symbol =σ for any type σ of Σω.

The set of terms of each type is inductively defined from typed variables, the function symbols, a
constant e : I1 using the following rules:

x : σ y : τ

〈x, y〉 : σ × τ

z : σ × τ

π(z) : σ

z : σ × τ

π′(z) : τ

[x : σ]
t : τ

λx : σ.t : σ → τ

f : σ → τ a : σ

f a : τ

Formulas. The set of formulas is inductively defined as follows:

• atomic formulas are formulas;

• if A and B are formulas then A ∧ B and A ⇒ B are also formulas;

• if x is a variable of type σ and A is a formula, then ∃x : σ.A and ∀x : σ.A are also formulas
(where the variable x is bound).

Rules for equality

• Reflexivity:

t =σ t

• Substitution:

u =σ v φ[v/x]
φ[u/x]

• Conversion rules for the λ-calculus with product type:

(λx : σ.t) u = t[u/x]
π(〈x, y〉) = x
π′(〈x, y〉) = y

Rules for connectives and quantifiers

A B

A ∧ B

A ∧ B

A

A ∧ B

B

[A]
B

A ⇒ B

A ⇒ B A

B

t : σ B[t/x]
∃x : σ.B

∃x : σ.B
[B]
C

C

[x : σ]
B

∀x : σ.B

∀x : σ.B a : σ

B[a/x]

Notation. We call IQCω this calculus (where the entailment symbol will be denoted by �I).

2.2 Example: the theory HAω

The language of HAω contains the ground type N , a symbol 0 of type N , a symbol S of type
N → N and denumerable set of symbols recσ of type (σ × (N → σ → σ)) → N → σ for each
type σ. The theory HAω contains the equations which define these constants,

(recσ h 0) =σ π(h)
(recσ h Sn) =σ (π′(h) n (recσ h n))
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and the induction schema Rec(φ),

φ(0) ∧ ∀n : N.(φ(n) ⇒ φ(Sn)) ⇒ ∀n : N.φ(n)

Remark. If we assume that ⊥ is defined as 0 = 1, the axiom ⊥ � A is derivable by induction
for any formula A (see [15] vol. II, p. 592, in the theory MLi). If the negation ¬A is defined as
A ⇒ ⊥ then the fourth axiom of Peano’s arithmetic (¬0 =N 1) is obvious. Moreover, disjunction
can be defined as A ∨ B ≡ ∃n : N((n = 0 ⇒ A) ∧ (¬(n = 0) ⇒ B))

2.3 Kreisel’s modified realizability for IQC ω

Computational content of a formula

We map each formula to a type which represents the function space where we expect to find a
realizer for the formula. The presence of the singleton type, product types and arrow types allows
for a simple definition of the type of realizers:

• T (A) ≡ I1, if A is an atomic formula,

• T (A ⇒ B) ≡ T (A) → T (B)

• T (A ∧ B) ≡ T (A) × T (B)

• T (∀x : σ.A) ≡ σ → T (A)

• T (∃x : σ.A) ≡ σ × T (A)

Each formula A is mapped to a formula f mr A where f is a fresh variable of type T (A). The
definition is the same as in HAω (see [13] p. 218, for instance).

• f mr A ≡ A, if A is an atomic formula

• f mr A ⇒ B ≡ ∀g : T (A).(g mr A ⇒ (f g) mr B)

• f mr A ∧ B ≡ π(f) mr A ∧ π′(f) mr B

• f mr ∀x : σ.B ≡ ∀x : σ.(f x mr B)

• f mr ∃x : σ.B ≡ π′(f) mr B[π(f)/x]

Proposition 2.3.1 (soundness) If A is a closed formula derivable in IQCω from the hypotheses
H1, . . . , Hn, then there is a λ-term t(x1, . . . , xn), where x1, . . . , xn are variables of type T (H1), . . . ,
T (Hn), such that t mr A is derivable from the hypotheses x1 mr H1, . . . , xn mr Hn.

2.4 Realized theory and term extraction

Definition 2.4.1 We say that a formula A is realized in a theory Γ if there is a closed term
t : T (A) such that Γ �I t mr A ; we say that A is realizable if Γ �I ∃x : T (A).(x mr A).

Definition 2.4.2 We say that a theory Γ is realized (resp. realizable) if and only if each axiom
of Γ is realized (resp. realizable) in Γ.

Theorem 2.4.3 (soundness) If Γ is a realized theory, any formula A which is derivable in Γ is
realized in Γ.

Proof. By proposition 2.3.1, if H1, . . . , Hn are the axioms of Γ which occur in the proof of A,
there is a term t(x1, . . . , xn), where x1, . . . , xn are variables of type T (H1), . . . , T (Hn), such that
t mr A is provable from the hypotheses x1 mr H1, . . . , xn mr Hn. And precisely, since Γ is a
realized theory, there are some closed terms t1, . . . , tn with types T (H1), . . . , T (Hn) such that
Γ �I ti mr Hi. We conclude that Γ � t[t1/x1, . . . tn/xn] mr A. �
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Example: the theory HAω

The theory HAω is realized. To prove this, it is enough to prove that the induction scheme
is realized since all other axioms are equational. Of course, Rec is realized by rec (to prove
HAω � recA∗ mr Rec(A), consider Rec((recA∗ h n) mr A(n))).

Remark. The notion of realized theory is independant from the computational properties of the
term language. For instance, the theory HAω is realized, but this result has nothing to do with
the properties of the typed λ-calculus with rec.

2.5 Aximatization of mr-realizability

The axiom schema AC

Proposition 2.5.1 The axiom schema AC:

∀x : σ.∃y : τ.A(x, y) ⇒ ∃f : σ → τ.∀x : σ.A(x, f x)

is mr-realized by the λ-term tσ,τ
AC ≡ λp : T (∀x : σ.∃y : τ.A).〈λx : σ.π(p x), λx : σ.π′(p x)〉.

The axiom schema IP

To prove that IP is mr-realized, we need the concept of self-realized formula.

Definition 2.5.2 A formula A is said to be self-realized if there is a closed term, denoted by
sr(A) of type T (A) such that for any term t of type T (A) :

�I t mr A ⇒ sr(A) mr A

Lemma 2.5.3 Harrop formulas are self-realized.

Proof. By induction on the Harrop formula, prove that �I t mr A ⇒ sr(A) mr A with:

• sr(A) = e if is an atomic formula.

• sr(A ∧ B) = 〈sr(A), sr(B)〉 if A and B are Harrop formulas.

• sr(A ⇒ B) = λx : T (A).sr(B) if B is a Harrop formula.

• sr(∀x : σ.A) = λx : σ.sr(A) if A is a Harrop formula.

�

Proposition 2.5.4 The axiom schema IP (where H is a Harrop formula):

(H ⇒ ∃y : σ.B(y)) ⇒ ∃y : σ.(H ⇒ B(y))

is realized by: tσIP ≡ λf : T (H ⇒ ∃y : σ.B(y)).〈π(f sr(H)), λx : T (H).π′(f sr(H))〉.

Lemma 2.5.5 (axiomatization) For any formula A, AC + IP �I ∃f : T (A).f mr A ⇔ A

Proposition 2.5.6 If Γ is a realized theory then for any formula A, Γ �I ∃t : T (A).t mr A if
and only if Γ + AC + IP �I A.

Corollary 2.5.7 If Γ is a realized theory then the existential property holds in Γ modulo AC+IP.
In other words, for any formula A(x, y1, . . . , yn), if Γ � ∃x : σ.A then there is a term t(y1, . . . , yn)
of type σ such that Γ + AC + IP � A[t/x].
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3 Internalizing Kreisel’s modified realizability

In this section, we define a type theory in which any formula which is mr-realizable is also provable.
This system contains a strong elimination rule of ∃ as in P. Martin-Löf’s type theory, which enables
us to derive the axiom of choice.

3.1 The type theory MR

Terms, types and formulas are those of IQCω. We have three kinds of judgments:

• Typing judgments, denoted by t : σ, where σ is a type and t is a term.

• Realizability (or provability) judgments, denoted by t ∈ A, where A is a formula and t is a
term of type T (A).

• Equality judgments, denoted by u =σ v, where u and v are both terms of type σ.

A context has the following form (all possible free variables shown):

x1 : σ1, . . . , xn : σn, y1 ∈ A1(x1, . . . , xn), . . . , yp ∈ Ap(x1, . . . , xn)

Axioms have the form: Γ, x : σ, ∆ � x : σ and Γ, y ∈ A, ∆ � y ∈ A.
The typing rules are the same as in IQCω (see section 2.1). The logical rules are given below.

Rules for connectives

u ∈ A v ∈ B

〈u, v〉 ∈ A ∧ B

t ∈ A ∧ B

π(t) ∈ A

t ∈ A ∧ B

π′(t) ∈ B

[x ∈ A]
t ∈ B

λx : T (A).t ∈ A ⇒ B

f ∈ A ⇒ B a ∈ A

(f a) ∈ B

provided that x does not occur free in B in the introduction rule of implication.

Remark. In ML, the introduction rule of ∀ is

[x ∈ A]
t ∈ B

λx ∈ A.t ∈ ∀x ∈ A.B

and A ⇒ B is just an abbreviation for ∀x ∈ A.B when x does not occur free in B.

Rules for quantifiers

t : σ u ∈ B[t/x]
〈t, u〉 ∈ ∃x : σ.B

t ∈ ∃x : σ.B

π (t) : σ

t ∈ ∃x : σ.B

π′(t) ∈ B[π (t)/x]

[x : σ]
t ∈ B

λx : σ.t ∈ ∀x : σ.B

f ∈ ∀x : σ.B a : σ

(f a) ∈ B[a/x]

provided that x does not occur in any hypothesis in the introduction rule of ∀ and in the elimination
rules of ∃.
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Rules for equality. The equations are the same as in IQCω, the substitution is now:

u =σ v t ∈ φ[v/x]
t ∈ φ[u/x]

Remark. The elimination rule of ∃ given above is strictly stronger than the usual one (given in
the definition of IQCω), since we are now able to prove the axiom of choice (see section 3.2). The
usual rule can be derived as follows (where h does not occur in C and x does not occur in C or in
any hypothesis other than B):

t ∈ ∃x : σ.B

π′(t) ∈ B[π(t)/x]

t ∈ ∃x : σ.B

π(t) : σ

[h ∈ B]
u ∈ C

λh : T (B).u ∈ B ⇒ C

λx : σ.λh : T (B).u ∈ ∀x : σ(B ⇒ C)

(λx : σ.λh : T (B).u π(t)) ∈ (B ⇒ C)[π(t)/x]

((λx : σ.λh : T (B).u π(t) π′(t)) ∈ C

Proposition 3.1.1 If t ∈ A is derivable in MR from the hypotheses x1 ∈ Γ1, . . . , xn ∈ Γn, then
t mr A is derivable in IQCω from the hypotheses x1 mr Γ1, . . . , xn mr Γn.

Corollary 3.1.2 For any closed formula A provable in IQCω from the hypotheses Γ1, . . . , Γn,
there is a λ-term t(x1, . . . , xn), where x1, . . . , xn are variables of type T (Γ1), . . . , T (Γn), such that
t mr A is provable from the hypotheses x1 mr Γ1, . . . , xn mr Γn.

Proof. The predicate calculus IQCω can easily be embedded in MR since we have shown that
the usual elimination rule of ∃ is derivable in MR, and this is the only difference between both
systems. �

3.2 Proof of AC

The presence of a strong elimination rule for ∃ allows for a proof of AC which is the same as in
ML. Notice also that the realizer is exactly tσ,τ

AC.

Proposition 3.2.1 In MR, tσ,τ
AC ∈ AC in derivable.

Proof.

[p ∈ ∀x : σ.∃y : τ.A]1 [x : σ]2

(p x) ∈ ∃y : τ.A

π(p x) : τ

λx : σ.π(p x) : σ → τ
(2)

(λx : σ.π(p x) x) = π(p x)

[p ∈ ∀x : σ.∃y : τ.A]1 [x : σ]3

(p x) ∈ ∃y : τ.A

π′(p x) ∈ A[π(p x)/y]

λx : σ.π′(p x) ∈ ∀x : σ.A[π(p x)/y]
(3)

λx : σ.π′(p x) ∈ ∀x : σ.A[(λx : σ.π(p x) x)/y]

〈λx : σ.π(p x), λx : σ.π′(p x)〉 ∈ ∃f : σ → τ.∀x : σ.A[(f x)/y]

λp : T (∀x : σ.∃y : τ.A).〈λx : σ.π(p x), λx : σ.π′(p x)〉 ∈ ∀x : σ.∃y : τ.A ⇒ ∃f : σ → τ .∀x : σ.A[(f x)/y]
(1)

�

3.3 Proof of IP

In order to prove IP, we need a rule which states that we will not consider the computationnal
content of atomic formulas, in the same way as in the realizability semantics. For further infor-
mation on the meaning of this rule, see [3] p. 268. Notice however that atomic formulas are not
necessarily decidable.
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Rule for atomic formulas Re

t ∈ A

e ∈ A
where A is atomic

Notation. We call MRe the system MR + Re.

Proposition 3.3.1 Proposition 3.1.1 still holds in MRe.

Proof. By induction hypothesis, t mr A is derivable in IQCω from the hypotheses of Γmr, and
precisely, by definition t mr A ≡ A ≡ e mr A. Consequently, e mr A is derivable. �

Self-realized formulas

The rule for atomic formulas Re states exactly that atomic formulas are self-realized in MR. As
in the case of realizability, this property extends to Harrop formulas.

Definition 3.3.2 A formula A is self-realized in MR if there is a closed λ-term sr(A) such that
for any t, if t ∈ A is derivable in MRe then sr(A) ∈ A is also derivable from the same hypotheses.

Proposition 3.3.3 Harrop formulas are self-realized in MRe.

Proof. By induction on the formula A, we prove by induction on A that for any t, if t ∈ A is
derivable from the hypotheses of Γ then sr(A) ∈ A is also derivable from the same hyphotheses,
where sr(A) is defined as in the proof of lemma 2.5.3. We denote by SRA this derivation (the
details are given in appendix). �

Remark. The axiom schema IP is still not derivable in MRe. Indeed, it is easy (although rather
technical) to embedd MRe into ML, and IP is not derivable in ML (since ML is conservative over
HA, see [1] p. 323). We really need a rule which states that a realizer of a formula A is typable of
type T (A).

The “type extraction” rule RT

t ∈ A

t : T (A)

Notation. We call MRT
e the system MR + Re + RT .

Proposition 3.3.4 Proposition 3.1.1 still holds in MRT
e .

Remark. It is enough to give rule RT for hypotheses as follows:

f ∈ A � f : T (A)

The general rule is then easily obtained from this axiom by induction on the term.

Proof of IP

We are now able to give a proof of the axiom schema IP in MRT
e . The term which annotates the

proof is of course tσIP. Note also the occurrence of the rule RT which enable us to derive the type
of f and which implies that f is a total function (f is thus defined on sr(H)).

Proposition 3.3.5 In MRT
e , tσIP ∈ IP is derivable.
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Proof.

...

sr(H) : T (H)

[f ∈ H ⇒ ∃y : σ.B]2

f : T (H ⇒ ∃y : σ.B)

(f sr(H)) : T (∃y : σ.B)

π(f sr(H)) : σ

[x ∈ H ]1

· · ·
SRH

· · ·
sr(H) ∈ H [f ∈ H ⇒ ∃y : σ.B]2

(f sr(H)) ∈ ∃y : σ.B

π′(f sr(H)) ∈ B[π(f sr(H))/y]

λx : T (H).π′(f sr(H)) ∈ H ⇒ B[π(f sr(H))/y]
(1)

〈π(f sr(H)), λx : T (H).π′(f sr(H))〉 ∈ ∃y : σ.(H ⇒ B)

λf : T (H ⇒ ∃y : σ.B). 〈π(f sr(H)), λx : T (H).π′(f sr(H))〉 ∈ (H ⇒ ∃y : σ.B) ⇒ ∃y : σ.(H ⇒ B)
(2)

�

Let us round off this section with the result we claimed in the introduction: a formula A is
provable in MRT

e if and only if A is mr-realizable in IQCω.

Theorem 3.3.6 For any formula A, there is a term t of type T (A) such that t ∈ A is derivable
in MRT

e if and only if IQCω � ∃x : T (A).(x mr A).

Proof. By proposition 3.3.4, if t ∈ A derivable in MRT
e then IQCω � t mr A and thus IQCω �

∃t : T (A).(t mr A). Conversely, if IQCω � t mr A then IQCω + IP + AC � A and consequently
there is a term t of type T (A) such that t ∈ A is derivable in MRT

e . �
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A Proofs

Proposition 3.1.1 If t ∈ A is derivable in MR from the hypotheses x1 ∈ Γ1, . . . , xn ∈ Γn, then
t mr A is derivable in IQCω from the hypotheses x1 mr Γ1, . . . , xn mr Γn.

Proof. By induction on the derivation of t : A. If Γ = x1 : Γ1, . . . , xn : Γn is a set of hypotheses
of MR, we denote by Γmr the set of hypotheses of IQCω composed of x1 mr Γ1, . . . , xn mr Γn.

• Case of the axiom: if xi ∈ ΓI is an hypothesis of Γ, then xi mr Γi is an hypothesis of Γmr.

• Case of the introduction rule of ∧
u ∈ A v ∈ B

〈u, v〉 ∈ A ∧ B

By induction hypothesis, u mr A and v mr B are derivable in IQCω from the hypotheses
of Γmr. Consequently, (u mr A)∧(v mr B) and thus 〈u, v〉 mr A ∧ B which is exactly
(π(〈u, v〉) mr A)∧(π′(〈u, v〉) mr B) are derivable in IQCω from the same hypotheses.

• Case of the elimination rule of ∧ (we treat only the first projection)

t ∈ A ∧ B

π(t) ∈ A

By induction hypothesis, t mr A ∧ B is derivable in IQCω from the hypotheses of Γmr. By
definition, t mr A ∧ B ≡ (π(t) mr A) ∧ (π′(t) mr B) and consequently π(t) mr A is also
derivable in IQCω from the same hypotheses.

• Case of the introduction rule of ⇒
[x ∈ A]
t ∈ B

λx : T (A).t ∈ A ⇒ B

If t ∈ B is derivable from the hypotheses Γ, x ∈ A, by induction hypothesis, t mr B is
derivable in IQCω from the hypotheses Γmr, x mr A. Consequently, (x mr A) ⇒(t mr B)
and thus (x mr A) ⇒ (((λx : T (A).t) x) mr B) are derivables in IQCω from the hypotheses
of Γmr. Finally, since x does not occur in Γ (we recall that in MR, the name of an hypothesis
cannot occur in any hypothesis), x does not occur in Γmr. Then ∀x : T (A).(x mr A ⇒ ((λx :
T (A).t) x) mr B) which is by definition exactly λx : T (A).t mr (A ⇒ B) is also derivable
in IQCω from the hypotheses of Γmr.

• Case of the elimination rule of ⇒
f ∈ A ⇒ B a ∈ A

(f a) ∈ B

By induction hypothesis, f mr (A ⇒ B) and a mr A are derivables in IQCω from the
hypotheses of Γmr. Since f mr (A ⇒ B) ≡ ∀x : T (A).(x mr A ⇒ (f x) mr B) by definition,
a mr A ⇒ (f a) mr B and thus (f a) mr B are also derivable from the same hypothesis.
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• Case of the introduction rule of ∃
t : σ u ∈ B[t/x]
〈t, u〉 ∈ ∃x : σ.B

By induction hypothesis, u mr B[t/x] is derivable in IQCω from the hypotheses of Γmr.
Consequently 〈t, u〉 mr ∃x : σ.B ≡ π′〈t, u〉 mr B[π〈t, u〉/x] is also derivable.

• Case of the elimination rule of ∃
t ∈ ∃x : σ.B

π′(t) ∈ B[π (t)/x]

By induction hypothesis, t mr ∃x : σ.B is derivable in IQCω from the hypotheses of Γmr.
By definition t mr ∃x : σ.B is exactly π′(t) mr B[π (t)/x].

• Case of the introduction rule of ∀
[x : σ]
t ∈ B

λx : σ.t ∈ ∀x : σ.B

By induction hypothesis, t mr B is derivable in IQCω from the hypothesis Γmr. Conse-
quently, ∀x : σ.(t mr B) and thus λx : σ.t mr ∀x : σ.B ≡ ∀x : σ.(λx : σ.t x) mr B are also
derivable from the same hypotheses.

• Case of the elimination rule of ∀
f ∈ ∀x : σ.B a : σ

(f a) ∈ B[a/x]

By induction hypothesis, f mr ∀x : σ.B is derivable in IQCω from the hypotheses of Γmr.
By definition, this formula is ∀x : σ.((f x) mr B) and consequently (f a) mr B[a/x] is also
derivable from the same hypotheses.

• Case of the substitution rule
u =σ v t ∈ φ[v/x]

t ∈ φ[u/x]

By induction hypothesis, t mr φ[v/x] is derivable in IQCω from the hypotheses Γmr. Since
x does not occur in t, t mr φ[v/x] = (t mr φ)[v/x] and consequently (t mr φ)[u/x] =
t mr φ[u/x] is also derivable from the same hypotheses.

• The axioms for equality are the same in IQCω and MR.

�

Proposition 3.3.3 Harrop formulas are self-realized in MRe.

Proof.

• If A is an atomic formula, if t ∈ A is derivable from the hypotheses of Γ then apply the rule
for atomic formulas:

t ∈ A

e ∈ A

• If t ∈ A ∧ B is derivable from the hypotheses of Γ then take the following derivation:

t ∈ A ∧ B

π(t) ∈ A
· · ·

SRA

· · ·
sr(A) ∈ A

t ∈ A ∧ B

π′(t) ∈ B
· · ·

SRB

· · ·
sr(B) ∈ B

〈sr(A), sr(B)〉 ∈ A ∧ B
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• If t ∈ A ⇒ B is derivable form the hypotheses of Γ then take the following derivation:

t ∈ A ⇒ B [x ∈ A]
(t x) ∈ B

· · ·
SRB

· · ·
sr(B) ∈ B

λx : T (A). sr(B) ∈ A ⇒ B

• If t ∈ ∀x : σ.B is derivable from the hypotheses of Γ then take the following derivation:

t ∈ ∀x : σ.B [x : σ]
(t x) ∈ B

· · ·
SRB

· · ·
sr(B) ∈ B

λx : σ. sr(B) ∈ ∀x : σ.B

�
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