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Abstract

We present a formulae-as-types interpretation of Subtractive Logic (i.e. bi-intuitionistic logic). This pre-

sentation is two-fold: we first define a very natural restriction of the λµ-calculus which is closed under

reduction and whose type system is a constructive restriction of the Classical Natural Deduction. Then

we extend this deduction system conservatively to Subtractive Logic. From a computational standpoint,

the resulting calculus provides a type system for first-class coroutines (a restricted form of first-class con-

tinuations).
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1 Introduction

Subtractive logic, also called
�
bi-intuitionistic logic

�
, is an extension of intuitionistic logic

with a new connector, the subtraction (called pseudo-difference in Rauszer’s original work
[43, 44, 45]), which is dual to implication. This duality has already been widely investi-
gated from algebraic, relational, axiomatic and sequent perspectives by various authors [6,
8, 21, 43, 44, 45, 49]. In particular, a unified proof-theoretic approach can be found in
Gor

�
’s recent paper [21], while a connection with category theory is presented in the

author’s previous work [6, 8].
We present in this paper a Curry-Howard correspondence for this logic. In other

words, we define an extension of the λ-calculus together with its type system such that
the logical interpretation of this type system (as a natural deduction system) is exactly
subtractive logic. This work is mainly motivated by the following two facts:

• subtractive logic is not a constructive logic (disjunction and existence properties do
not hold in it). In fact, subtractive logic already combines many flavors of classical
logic [8]. However, subtractive logic is conservative over some constructive logic
(see below). In other words, disjunction and existence properties hold for formulas
which contain no subtraction. Therefore, it is likely that a faithful computational
interpretation of subtractive logic would shed new light onto the boundary between
constructive and classical logics.
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• Curien and Herbelin demonstrated in [9] a striking result: duality in classical logic
exchanges call-by-value with call-by-name (see also Wadler’s recent paper [52]).
Actually, a first attempt at a categorical continuation semantics was Filinski’s pio-
neering work [17]. Then Selinger [50] has investigated thoroughly this duality (but
still in a categorical setting). On the other hand, Curien and Herbelin’s work is
based on Parigot’s λµ-calculus and its type system, the Classical Natural Deduc-
tion (CND) [36, 37]. In order to complete the duality, they are led to extend CND
with the subtraction (Walder does not consider the subtraction in [52]). However,
this new connective is presented in a purely formal way (without any computa-
tional meaning). We believe that an accurate computational interpretation of sub-
traction should arise from a formulas-as-types investigation of subtractive logic.

Subtractive Logic

The usual way to define a (sound and faithful) deduction system for subtractive logic is
first to add rules for subtraction (which are symmetrical to the rules for implication) and
then to restrict sequents to singletons on the left/right sides [21]. Unfortunately, such a
calculus is not closed under Parigot’s proof normalization process. We shall thus define
another restriction which takes into account

�
dependencies

�
between hypotheses and con-

clusions of a derived sequent. Since these dependencies are defined in a symmetrical
manner, our restriction can also be dualized to subtraction. We shall call Subtractive
Natural Deduction (SND) the resulting system.

Our method is, on the one hand, to derive introduction and elimination rules for sub-
traction from its definition in classical logic, and on the other hand, first to restrict the
Classical Natural Deduction to intuitionistic logic and then to extend it again to subtrac-
tive logic. This process is summarized in the following diagram:

CND→∨∧

classical logic

↙ (2) (1)↘
SND→∨∧ CND→∨∧−

intuitionistic logic classical logic

↘ (3) (4)↙
SND→∨∧−

subtractive logic

1. Definition of subtraction in classical logic (A−B ≡A∧¬B).

2. Restriction of CND→∨∧ to intuitionistic logic (resp. CDL).

3. Extension of SND→∨∧ with restricted rules for subtraction.

4. Dualized restriction of CND→∨∧− to subtractive logic.

Formulae-as-types

The restriction above can be rephrased for the pure (i.e. untyped) λµ-calculus, in such a
way that the former restriction is exactly the latter when we consider typed terms. We
shall call

�
safe λµ→+×−-calculus

�
(resp.

�
safe λµ→+×-calculus

�
) the subset of restricted

λµ→+×−-terms (resp. λµ→+×-terms). This terminology comes from the computational
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interpretation of this restriction (see below). The main result of this paper is the proof
that these subsets are closed under reduction, which means that they actually define a
calculus. The diagram above is thus completed accordingly:

λµ→+×-calculus
CND→∨∧

↙ ↘
safe λµ→+×-calculus λµ→+×−-calculus

SND→∨∧ CND→∨∧−

↘ ↙
safe λµ→+×−-calculus

SND→∨∧−

Let us now rephrase precisely the relation between safe λµ→+×−-terms (resp. safe
λµ→+×-terms) and proofs of SND→∨∧− (resp. SND→∨∧). This relation can be stated as
follows: given the derivation of a typing judgement of a λµ→+×−-term (resp. λµ→+×-
term) t by some sequent in CND→∨∧− (resp. CND→∨∧), if t is safe then this derivation
belongs to SND→∨∧− (resp. SND→∨∧). As a consequence, the subject reduction for
CND→∨∧− (resp. CND→∨∧) together with the closure under reduction of the safe

λµ→+×−-calculus (resp. λµ→+×-calculus) provides the subject reduction for SND→∨∧−

(resp. SND→∨∧).

Strong normalization and the subformula property

Since our calculi are derived from de Groote’s λµ→∧∨⊥, they enjoy the properties listed in
[12], namely:

a) all connectives are taken as primitive;

b) normal deductions satisfy the subformula property;

c) the reduction relation is defined by means of local reduction steps;

d) the reduction relation is strongly normalizing ;

e) the reduction relation is Church-Rosser;

f) the reduction relation is defined at the untyped level;

g) the reduction relation satisfies the subject reduction property.

In [43], C. Rauszer defined a sequent calculus for subtractive logic which enjoys cut-elimi-
nation (and the subformula property which follows). As a by-product of the previous
properties, we obtain a new proof of this result (actually, we prove a stronger result,
namely the strong normalization). As a corollary of the subformula property, we obtain
that the normal form of the deduction of a sequent in CND→∨∧− (resp. SND→∨∧−)
which does not contain any occurrence of subtraction belongs to CND→∨∧ (resp.
SND→∨∧).

Computational interpretation

Since Griffin’s pioneering work [23], the extension of the well-known formulas-as-types
paradigm to classical logic has been widely investigated for instance by Murthy [31], Bar-
banera and Berardi [2], Rehof and S�rensen [46], de Groote [11, 12], Krivine [30]. We
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shall consider here Parigot’s λµ-calculus mainly because it is confluent and strongly nor-
malizing in the second order framework [38]. However, Parigot’s original CND is a
second-order logic, in which ∨ , ∧ , ∃, ∃2 are definable from → , ∀, ∀2. Since we are also
interested in the subformula property, we shall restrict ourselves to the propositional
framework where any connective is taken as primitive and where the proof normalization
process includes permutative conversions [12]. Such an extension of CND with primitive
conjunction and disjunction has already been investigated by Pym, Ritter and Wallen [40,
41, 39] and de Groote [12].

The computational interpretation of classical logic is usually given by a λ-calculus
extended with some form of control (such as the famous call/cc of Scheme or the
catch/throw mechanism of Lisp) or similar formulations of first-class continuation con-
structs. Continuations are used in denotational semantics to describe control commands
such as jumps. They can also be used as a programming technique to simulate back-
tracking and coroutines. For instance, first-class continuations have been successfully used
to implement Simula-like cooperative coroutines in Scheme [53, 18, 19]. This approach has
been extended in the Standard ML of New Jersey (with the typed counterpart of
Scheme’s call/cc [15]) to provide simple and elegant implementations of light-weight pro-
cesses (or threads), where concurrency is obtained by having individual threads volun-
tarily suspend themselves [48, 42] (providing time-sliced processes using pre-emptive
scheduling requires additional run-time system support [5, 47]). The key point in these
implementations is that control operators make it possible to switch between coroutine
contexts, where the context of a coroutine is encoded as its continuation.

The definition of a catch/throw mechanism is straightforward in the λµ-calculus: just
set catch α t≡ µα[α]t and throw α t≡ µδ[α]t where δ is a name which does not occur in
t (see [7] for a study of the sublanguage obtained when we restrict the λµ-terms to these
operators). Then a name α may be reified as the first-class continuation λx.throw α x.
However, the type of such a λµ-term is the excluded-middle ` Aα; ¬A. Thus, a continua-
tion cannot be a first-class citizen in a constructive logic. To figure out what kind of
restricted use of continuations is allowed in SND→∨∧, we observe that in the restricted
λµ→+×-calculus, even if continuations are no longer first-class objects, the ability of con-
text-switching remains (in fact, this observation is easier to make in the framework of
abstract state machines). However, a context is now a pair 〈environment , continuation 〉.
Note that such a pair is exactly what we expect as the context of a coroutine, since a
coroutine should not access the local environment (the part of the environment which is
not shared) of another coroutine. Consequently, we say that a λµ→+×-term t is

�
safe with

respect to coroutine contexts
�

(or just
�
safe

�
for short) if no coroutines of t access the

local environment of another coroutine.
The extension of this interpretation to SND→∨∧− is now straightforward. We already

know (from its definition in classical logic) that subtraction is a good candidate to type a
pair 〈environment , continuation 〉. SND→∨∧− is thus interpreted as a type system for
first-class coroutines. The dual restriction from the safe λµ→+×−-calculus just ensures
that one cannot obtain full-fledged first-class continuations back from first-class corou-
tines.

Related work

Nakano, Kameyama and Sato [33, 32, 34, 26, 27, 28] have proposed various logical frame-
works that are intended to provide a type system for a lexical variant of the catch/throw
mechanism used in functional languages such as Lisp. Moreover, Nakano has shown that
it is possible to restrict the catch/throw mechanism in order to stay in an intuitionistic
(propositional) framework. However, in their approach, a disjunction is used to type first-
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class exceptions. In this paper, we generalize these results in several ways:

• We use Parigot’s λµ-calculus and its type system, the Classical Natural deduction
which is confluent and strongly normalizing in the second order framework [38].

• We consider a type system � la Curry, which allows us to rephrase the above
restriction on pure (i.e. untyped) λµ-terms, and not only on typed terms as in [34].

Brauner and de Paiva [4] have proposed a restriction of Classical Linear Logic (in order to
obtain a sequent-style formulation of Full Intuitionistic Linear Logic defined by Hyland
and de Paiva [25]) very akin to the one presented in this paper. In a recent work [13], de
Paiva and Ritter also consider a Parigot-style linear λ-calculus for this logic which is
based on Pym and Ritter’s λµν-calculus [41]. If we forget about linearity (which has of
course many consequences on the resulting system), the main advantages of our approach
are the following ones:

• We propose a computational interpretation of our restriction (as
�
coroutines which

do not access the local environment on another coroutine
�
).

• Our restriction is symmetrical and thus easily extends to duality. This allows us to
propose a computational interpretation of subtraction (as a type constructor
for

�
first-class coroutines

�
).

About first-order subtractive logic

Propositional subtractive logic is conservative over intuitionistic logic. However, in the
first-order framework, subtractive logic is no longer conservative over intuitionistic logic
but over Constant Domain Logic (CDL). This logic as been studied for instance in [20,
22, 35] and [45]. Although CDL is not conservative over intuitionistic logic (in the first-
order framework), it is important to note that CDL is still a constructive logic (i.e. both
disjunction and existence properties hold in it [22]). Moreover, CDL if fully axiomatized
as the first order intuitionistic logic extended with the following axiom schema (called DIS
in [45]) where x does not occur in B (see [20, 35] for instance):

∀x(A∨B)`∀x A∨B

Recall however that this paper is devoted to the computational interpretation of proposi-
tional subtractive logic.

Plan of the paper

The remainder of the paper is organized as follows. In section 2, we present CND→∨∧−

which is our extension of CND→∨∧ with the subtraction. In section 3, we present the
SND→∨∧− which is our restriction of CND→∨∧− to subtractive logic. In section 4, we
recall the λµ→+×-calculus and we introduce the λµ→+×−-calculus. In section 5, we define
the safe λµ→+×−-calculus and we show how it is related to CND→∨∧−. Eventually, in
section 6, we prove that the safe λµ→+×−-calculus is closed under reduction.

2 The system CND→∨∧−

We consider sequents with the form Γ ` ∆; A where Γ, ∆ are sets of named propositional
formulas. As usual, the semi-colon serves to single out one distinguished (or

�
active

�
) con-
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A`A (axiom)

Γ, A, A`∆; B

Γ, A`∆; B
(CL)

Γ`∆; B

Γ, A`∆; B
(WL)

Γ`∆(, Aα);

Γ`∆; A
(activate)

Γ`∆(, Aα); A

Γ`∆, Aα;
(passivate)

Γ`∆; A Γ, A`∆; B

Γ`∆; B
(cut)

Γ, A`∆; B

Γ`∆; A→B
(I→)

Γ`∆; A→B Γ`∆; A

Γ`∆; B
(E→)

Γ`∆; A Γ`∆; B

Γ`∆; A∧B
(I∧)

Γ`∆; A∧B

Γ`∆; A
(E∧

1)
Γ`∆; A∧B

Γ`∆; B
(E∧

2)

Γ`∆; A

Γ`∆; A∨B
(I∨

1)
Γ`∆; B

Γ`∆; A∨B
(I∨

2)

Γ`∆; A∨B Γ, A`∆; C Γ, B `∆; C

Γ`∆; C
(E∨)

Γ`∆(, Cγ); A Γ, B `∆(, Cγ); C

Γ`∆, Cγ; A−B
(I−)

Γ`∆; A−B Γ, A`∆; B

Γ`∆; C
(E−)

Figure 2.1. System CND→∨∧−

clusion of a sequent, which clearly amounts to naming this occurrence with a special
name (when needed, we shall use the name

�
[]
�

for this
�
unnamed

�
occurrence).

The deductions rules for CND→∨∧− (CND with conjunction, disjunction, subtraction
and an explicit cut rule) are given in figure 2.1. We write

�
∆(, Aα)

�
in the premise of the

activate/passivate rules to outline the fact that Aα is allowed but not required in the
succedent of the sequent. Note that if A does not occur in ∆ in the premise of the acti-
vate rule the we obtain a weakening rule. Similarly, if Aα already occurs in ∆ in the con-
clusion of the passivate rule then we obtain a contraction rule. Moreover, the acti-
vate/passivate rules allow us to derive the following weakening, contraction and exchange
rules (on the right-hand side):

Γ`∆(, Aα); A

Γ`∆; A
(CR)

Γ`∆(, Aα); A

Γ`∆, Aα; B
(WR)

Γ`∆(, Bβ)(, Aα); B

Γ`∆, Bβ; A
(ExR)

Note that we may replace the semi-colon by a comma in the rules whenever we want to
allow implicit exchange (and consider named conclusions up to permutation).

Let us now comment the introduction/elimination rules for subtraction. The introduc-
tion rule is dual to the left-hand side introduction rule for implication (in LK), while the
elimination rule is reminiscent of the elimination rule for disjunction. A simpler introduc-
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tion rule for the subtraction would be the following one:

Γ`∆(, Bβ); A

Γ`∆, Bβ; A−B
(I−

′ )

This rule is equivalent to (I−). Indeed, (I−
′ ) is derivable from (I−) as follows (for sake of

simplicity, we omit Γ,∆ in axioms):

Γ`∆(, Bβ); A B ` ; B

Γ`∆, Bβ; A−B
(I−)

Conversely, (I−) is derivable from (I−
′ ) using the cut rule (we omit the structural rules):

Γ`∆(, Cγ), A

Γ`∆(, Cγ), Bβ, A−B
(I−

′ )
Γ, B `∆(, Cγ), C

Γ`∆, Cγ , A−B
(cut)

We shall give more details about the differences between (I−) and (I−
′ ) in section 4.

2.1 Defining A − B as A ∧ ¬B

Since A − B is definable in classical logic as A ∧ ¬B, let us prove that the introduc-
tion/elimination rules for subtraction are derivable. In order to deal with the negation, we
add the propositional constant for falsum ⊥. We use the same name ε for occurrences of
⊥ in all sequents. Moreover, we do not represent ⊥ε in the conclusions of sequents (see [1]
for more details about the various treatments of ⊥ in CND). Now the elimination rule for
⊥ is just an instance of (WR) (take ⊥ε as Aα ):

Γ`∆;⊥
Γ`∆; B

(E⊥)

As usual, we also define ¬A as (A→⊥).

Derivation of the introduction rule (I−
′ )

Γ`∆; A

Γ, B `∆; B
Γ`∆, B;⊥

(WR)

Γ`∆, B;¬B
(I→)

Γ`∆, B; A∧¬B
(I∧)

Derivation of the elimination rule (E−)

Γ`∆; A∧¬B

¬B `¬B Γ, A`∆; B
Γ, A,¬B `∆;⊥

(E→)

Γ, A,¬B `∆; C
(E⊥)

Γ`∆; C
(E∧)

where the last rule (E∧) is easily derivable from (E∧
1), (E∧

2) and (cut).

2.2 About the duality

The rules chosen for disjunction (resp. subtraction) in CND→∨∧− are clearly not dual to
the rules for conjunction (resp. implication). As expected, such rules are left-hand side
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introduction/elimination rules. For instance, the rules for disjunction which are dual to
the rules for conjunction are the following ones:

Γ, A`∆ Γ, B `∆

Γ, A∨B `∆
(LI∨)

Γ, A∨B `∆

Γ, A`∆
(LE∨

1 )
Γ, A∨B `∆

Γ, B `∆
(LE∨

2 )

It is easy to show that these rules are equivalent to the (right-hand side) introduc-
tion/elimination for disjunction. Similarly, we could define by duality left-hand side intro-
duction/elimination rules for subtraction:

Γ, A`∆, B

Γ, A−B `∆
(LI −)

Γ, A−B `∆ Γ, B `∆

Γ, A`∆
(LE−)

Let us prove that these rules are indeed equivalent to the (right-hand side) introduc-
tion/elimination rules:

Derivation of the left-hand side introduction rule (LI −)

A−B `A−B Γ, A`∆, B
Γ, A−B `∆,⊥

(E−)

Γ, A−B `∆
(CR)

Derivation of the left-hand side elimination rule (LE−)

A`A Γ, B `∆
Γ, A`∆, A−B

(I−)
Γ, A−B `∆

Γ, A`∆
(cut)

Conversely, the (right-hand side) introduction/elimination rules are derivable from the
left-hand side rules. Indeed:

Derivation of the introduction rule (I −)

Γ`∆, A
A−B `A−B Γ, B `∆, C

Γ, A`∆, C , A−B
(LE−)

Γ`∆, C , A−B
(cut)

Derivation of the elimination rule (E−)

Γ`∆, A−B
Γ, A`∆, B

Γ, A−B `∆
(LE−)

Γ`∆
(cut)

Γ`∆, C
(WR)

Definition 2.1. We call Symmetric CND→∨∧− the system CND→∨∧− where the rules

for disjunction and subtraction are replaced by (LI ∨), (LE∨
1 ), (LE∨

2 ), and (LI −), (LE−).

3 Constructive restrictions of CND

It is well-known that if we restrict the classical sequent calculus LK [51] to sequents with
at most one conclusion we obtain the intuitionistic sequent calculus LJ [51]. As for nat-
ural deduction, it was originally presented for sequents having one conclusion and formal-

8 A Formulae-as-Types Interpretation of Subtractive Logic



ized intuitionistic logic. Parigot’s CND may be seen as an extension of natural deduction
to sequents with several conclusions. As expected, this extension leads to classical logic.
In order to stay in a constructive framework, several authors (for instance [29] p. 481 and
also [3, 14, 16]) have suggested to restrict only the introduction rule of implication of LK
to sequents with at most one conclusion. The same restriction can be applied to CND and
by duality it can be generalized to Symmetric CND→∨∧− (definition 2.1) as follows:

Definition 3.1. We call Symmetric SND→∨∧−
1 the system Symmetric CND→∨∧− where:

1. the rule (I→) is restricted to sequents with at most one conclusion,

2. the rule (LI −) is restricted to sequents with at most one hypothesis.

Proposition 3.2. Symmetric SND→∨∧−
1 is sound and complete for Subtractive Logic.

Proof. By induction on the derivation, we prove that a sequent Γ1, � , Γm ` ∆1, � , ∆n is
derivable in Symmetric SND→∨∧−

1 iff Γ1 ∧ � ∧ Γm ` ∆1 ∨ � ∨ ∆n is derivable in the sym-
metrical propositional categorical calculus defined in [8]. �

Remark 3.3. The restriction on the rule (LI−) is required, otherwise we are still in clas-
sical logic (even if the introduction rule for implication is restricted). See [8] for more
details.

However, this restriction of the introduction rule for implication is not closed under
Parigot’s proof normalization process. Let us consider for instance the following proof in
CND where (I→) is applied only to sequents with at most one conclusion:

B ` ; B
A, B ` ; B

(WL)

B ` ; A→B
(I→)

` ; B→ (A→B)
(I→)

�
Γ`∆; B

Γ`∆; A→B
(E→)

Since (I→) is immediately followed by the last (E→), this proof may be replaced by:

�
Γ`∆; B

Γ, A`∆; B
(WL)

Γ`∆; A→B
(I→)

And in this proof, the rule (I→) is applied to a sequent with multiple conclusions. Note
that we could try to detect when multiple conclusions are harmless (from the constructive
standpoint) in an occurrence of (I→). This was also observed by Ritter, Pym and Wallen
in [41], where a notion of

�
superfluous subderivations

�
is defined. Since their definition

relies on weakening occurrences in proof terms, we shall come back to this question in sec-
tion 5 (remark 5.13). We shall here consider another restriction of CND which enjoys the
following properties: it is closed under proof normalization, it is expressed independently
of proof terms and it is designed to easily extend by symmetry to SND.

Our restriction is based on dependencies between occurrences of hypotheses and occur-
rences of conclusions in a derived sequent, where dependencies come from axioms and are
propagated by inference rules. Then some hypothesis may be discharged onto some con-
clusion if and only if no other conclusion depends on it.
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A very similar notion of dependency, and the same restriction was discovered indepen-
dently by Brauner and de Paiva [4, 25], and applied to the definition of Full Intuitionistic
Linear Logic. In a recent work [13], de Paiva and Ritter also present a Parigot-style linear
λ-calculus for this logic which is based on Pym and Ritter’s λµν-calculus.

Note however that linearity has many consequences on the resulting system. For
instance, the properties of their multiplicative

�
disjunction

�
(the connective �) are very

different from the properties of our (usual) intuitionistic disjunction. Moreover we do not
need any specific typed λ-calculus in order to keep track how dependencies are propa-
gated (as in [13]). Our annotations are just sets of names.

Eventually, a major difference (if we forget about linearity) with their work in [4, 25]
is that we emphasize here the symmetry of our definition of dependency relations in order
to take the subtraction into account.

3.1 A restriction of CND based on dependency relations

We use undirected links to make explicit all dependencies between occurrences of
hypotheses and occurrences of conclusions in any derived sequent. A link between some
occurrence of an hypothesis Γi and some occurrence of a conclusion ∆j may be repre-
sented as follows:

, . . . Γi , . . ., . . . ΓnΓ1 ` ∆m, . . .∆j∆1

In order to annotate sequents with such links, we name any occurrence of hypotheses (x,

y, z, � ) and any occurrence of conclusions (α, β, γ, � ) in a sequent. We assume that the
name of an hypothesis (resp. a conclusion) never occurs twice in a sequent. The links
annotating some sequent Γ1

x1, � , Γn
xn ` ∆1

α1, � , ∆m
αm provide a subset of {x1, � , xn} ×

{α1, � , αm} which can be represented by annotating either each conclusion by a set of
hypotheses or each hypothesis by a set of conclusions.

Example 3.4. Consider the sequent Ax, By, Cz ` Dα, Eβ , F γ , Gδ together with the
dependencies {(x, β), (x, δ), (z, α), (z, β), (z, δ)} :

B, CA, D, E, F , G`

This annotated sequent can be represented in both forms:

• each conclusion is annotated by a set of hypotheses

Ax, By, Cz ` {z}: D, {x, z}: E, {}: F , {x, z}: G

• each hypothesis is annotated by a set of conclusions

{β, δ}:A, {}: B, {α, β, δ}: C `Dα, Eβ , F γ , Gδ

3.1.1 Annotations for Symmetric CND→∨∧−

We first present the annotations for the multiplicative context variant of Symmetric
CND→∨∧−. Multiplicative rules are easier to annotate since the dependencies in the con-
text are not modified by the rule. Thus, in these multiplicative rules, we assume that a
formula does not occur with the same name in both Γ and Γ′ (resp. ∆ and ∆′). Note
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Ax`{x}: A (ax)

Γ`∆

Γ, Ax`∆
(WL)

Γ`∆

Γ`∆, {}: A
(WR)

Γ, U : A, V : A`∆

Γ, U ∪ V : A`∆
(CL)

Γ`∆, U : A, V : A

Γ`∆, U ∪V : A
(CR)

Γ`∆, S: A Γ′, Ax`S1
′: ∆1

′ , � , Sp
′ : ∆p

′

Γ, Γ′`∆, S1
′[S/x]: ∆1

′ , � , Sp
′ [S/x]: ∆p

′
(cut)

Γ, Ax`S1: ∆1, � , Sn: ∆n, S: B

Γ`S1 \ {x}: ∆1, � , Sn \ {x}: ∆n, S \ {x}: (A→B)
(I→)

Γ`∆, U : (A→B) Γ′`∆′, V : A

Γ, Γ′`∆, ∆′, U ∪ V : B
(E→)

Γ`∆, S: A∧B

Γ`∆, S: A
(E∧

1)
Γ`∆, S: A∧B

Γ`∆, S: B
(E∧

2)

Γ`∆, U : A Γ′`∆′, V : B

Γ, Γ′`∆, ∆′, U ∪ V : A∧B
(I∧)

Γ, S: A∨B `∆

Γ, S: A`∆
(LE∨

1 )
Γ, S: A∨B `∆

Γ, S: B `∆
(LE∨

2 )

Γ, U : A`∆ Γ′, V : B `∆′

Γ, Γ′, U ∪V : A∨B `∆, ∆′
(LI∨)

Γ, U : A−B `∆ Γ′, V : B `∆′

Γ, Γ′, U ∪V : A`∆, ∆′
(LE−)

S1: Γ1, � , Sm: Γm, S: A`∆, Bβ

S1 \ {β}: Γ1, � , Sm \ {β}: Γm, S \ {β}: A−B `∆
(LI −)

Figure 3.1. Annotations for Symmetric CND→∨∧−

that we use here both representations of dependencies (i.e. in some rules conclusions are
annotated while in dual rules, hypotheses are annotated) in order to emphasize the sym-
metry of the definition. The annotated rules of Symmetric CND→∨∧− are summarized in
figure 3.1.

Note 3.5. We shall use the following abbreviation:

U [V /x]≡

{

U \{x}∪ V if x∈U

U otherwise

We also omit annotations which are not modified by a rule.

3.1.2 Restriction of Symmetric CND→∨∧− to subtractive logic

Definition 3.6. In an annotated proof of Symmetric CND→∨∧−, we say that an occur-
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rence of the rule (I→) is constructive iff x does not occur in any Si. We obtain then:

Γ, Ax`S1: ∆1, � , Sn: ∆n, V : B

Γ`S1: ∆1, � , Sn: ∆n, V \ {x}: (A→B)
where x 	 S1∪ � ∪Sn

In other words, to stay in a constructive framework, an hypothesis may be discharged
onto some conclusion if and only if no other conclusion depends on it. By duality, we
obtain the following restriction on (LI −):

Definition 3.7. In an annotated proof of Symmetric CND→∨∧−, we say that an occur-
rence of the rule (LI −) is constructive iff β does not occur in any Si. We obtain then:

S1: Γ1, � , Sm: Γm, S: A`∆, Bβ

S1: Γ1, � , Sm: Γm, S \ {β}: A−B `∆
where β 	 S1∪ � ∪Sm

Definition 3.8. We say that a proof of Symmetric CND→∨∧− is constructive iff:

1. any occurrence (I→) is constructive,

2. any occurrence (LI −) is constructive.

Definition 3.9. We call Symmetric SND→∨∧− the restriction of Symmetric CND→∨∧−

to constructive proofs.

Theorem 3.10. Symmetric SND→∨∧− is sound and complete for Subtractive Logic.

Proof. (sketch) It is clear that Symmetric SND→∨∧− is a generalization of Symmetric

SND→∨∧−
1 , thus it is sufficient to prove that any sequent derivable in Symmetric

SND→∨∧− is also derivable in Symmetric SND→∨∧−
1 . The idea of the proof is the fol-

lowing one: any derivation of a sequent in Symmetric SND→∨∧− can be translated into a
derivation which does not contain any introduction rule of implication nor any left-hand
side introduction rule of subtraction, but which depends only on axioms valid in Sym-
metric SND→∨∧−

1 . For that purpose, we show that (a generalized version of) constructive
(I→)

�
commutes

�
with every other rule of Symmetric SND→∨∧−. By duality, we know

that (a generalized version of) constructive (LI −) also
�
commutes

�
with every other rule

of Symmetric SND→∨∧−. There is thus a procedure which removes occurrences of con-
structive (I→) and constructive (LI −) in the original proof and yields a proof of Sym-

metric SND→∨∧−
1 . The details are given in appendix B. �

3.2 Annotations for CND→∨∧−

We derive here the annotations for CND→∨∧− from the annotations of Symmetric
CND→∨∧−. There are several steps to perform:

• derive rules with additive contexts (using the weakening and contraction rules),

• move all the annotations on the right-hand side (each conclusion is annotated by a
set of hypotheses),

• derive right-hand side introduction/elimination rules for disjunction and subtrac-
tion (using the cut rule).
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Ax` ; {x}: A (ax )

Γ, U : A, V : A`∆; B

Γ, U ∪V : A`∆; B
(CL)

Γ`∆; B

Γ, Ax`∆; B
(WL)

Γ`∆(, U : Aα);

Γ`∆; U : A
(activate)

Γ`∆(, U : Aα); V : A

Γ`∆, U ∪ V : Aα;
(passivate)

Γ`S1: ∆1, � , Sn: ∆n; S: A Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n; S ′: B

Γ`S1∪S1
′[S/x]: ∆1, � , Sn∪Sn

′ [S/x]: ∆n; S ′[S/x]: B
(cut)

Γ, Ax`S1: ∆1, � , Sn: ∆n; S: B

Γ`S1 \ {x}: ∆1, � , Sn \ {x}: ∆n; S \ {x}: (A→B)
(I→)

Γ`S1
′: ∆1, � , Sn

′ : ∆n; U : (A→B) Γ`S1
′′: ∆1, � , Sn

′′: ∆n; V : A

Γ`S1
′ ∪S1

′′: ∆1, � , Sn
′ ∪Sn

′′: ∆n; U ∪ V : B
(E→)

Γ`∆; S: A∧B

Γ`∆; S: A
(E∧

1)
Γ`∆; S: A∧B

Γ`∆; S: B
(E∧

2)

Γ`S1
′: ∆1, � , Sn

′ : ∆n; U : A Γ`S1
′′: ∆1, � , Sn

′′: ∆n; V : B

Γ`S1
′ ∪S1

′′: ∆1, � , Sn
′ ∪Sn

′′: ∆n; U ∪V : A∧B

Γ`∆; S: A

Γ`∆; S: A∨B
(I∨

1)
Γ`∆; S: B

Γ`∆; S: A∨B
(I∨

2)

Γ` � , Si: ∆i � ; S: A∨B Γ, Ax` � , Si
′: ∆i � ; S ′: C Γ, By ` � , Si

′′: ∆i � ; S ′′: C

Γ` � , Si∪Si
′[S/x]∪Si

′′[S/y]: ∆i � ; S ′[S/x]∪S ′′[S/y]: C
(E∨)

Γ`S1: ∆1, � , Sn: ∆n(, Sn+1: C); S: A Γ, By `S1
′: ∆1, � , Sn

′ : ∆n(, Sn+1: C); S ′: C

Γ`S1∪S1
′[S/y]: ∆1, � , Sn∪Sn

′ [S/y]: ∆n, Sn+1∪Sn+1
′ ∪S ′[S/y]: C; S: A−B

(I−)

Γ`S1: ∆1, � , Sn: ∆n; S: A−B Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n; U : B

Γ`S1∪S1
′[S/x]: ∆1, � , Sn∪Sn

′ [S/x]: ∆n; {}: C
(E−)

Figure 3.2. Annotations for CND→∨∧−

We shall just give two examples below, the full system of annotations for CND→∨∧− is
summarized in figure 3.2. Due to lack of space, we shorten S1: ∆1 , � Sn: ∆n (with n > 0)
simply as � , Si: ∆i � in the elimination rule for disjunction.

Example 3.11. Let us derive the annotations for (E∨). We first annotate the additive
variant of the left-hand side introduction rule for disjunction (where hypotheses are still
annotated):

T1
′: Γ1, � , Tp

′: Γp, U : A`∆ T1
′′: Γ1, � , Tp

′′: Γp, V : B `∆

T1
′∪T1

′′: Γ1, � , Tp
′∪ Tp

′′: Γp, U ∪ V : A∨B `∆

Let us now annotate this rule on the right-hand side:

Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n Γ, By `S1
′′: ∆1, � , Sn

′′: ∆n

Γ, A∨Bz `S1
′[{z}/x]∪S1

′′[{z}/y]: ∆1, � , Sn
′ [{z}/x]∪Sn

′′[{z}/y]: ∆n
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Using the (additive variant of the) cut rule, we eventually obtain the right-hand side
annotations for the usual (in natural deduction style) elimination rule for disjunction.

Γ` � , Si: ∆i � , S: A∨B Γ, Ax` � , Si
′: ∆i � , S ′: C Γ, By ` � , Si

′′: ∆i � , S ′′: C

Γ` � , Si∪Si
′[S/x]∪Si

′′[S/y]: ∆i � , S ′[S/x]∪S ′′[S/y]: C
(E∨)

Note that the apparent inhomogeneous treatment of ∆i and C comes from the fact that
C cannot occur (with the same name) in the leftmost sequent of the premise.

Example 3.12. Let us derive the annotations for (E−). We first annotate the left-hand
side introduction rule for subtraction on the right-hand side:

Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n, U : B

Γ, A−Bz `S1
′[{z}/x]: ∆1, � , Sn

′ [{z}/x]: ∆n
(LI −)

By applying the cut rule and then the weakening rule, we obtain the right-hand side
annotations for the right-hand side elimination rule for subtraction:

Γ`S1: ∆1, � , Sn: ∆n; S: A−B

Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n, U : B
Γ, A−Bz `S1

′[{z}/x]: ∆1, � , Sn
′ [{z}/x]: ∆n

(LI −)

Γ`S1∪S1
′[S/x]: ∆1, � , Sn∪Sn

′ [S/x]: ∆n

Γ`S1∪S1
′[S/x]: ∆1, � , Sn∪Sn

′ [S/x]: ∆n, {}: C
(WR)

(cut)

The technique used in the previous examples can be applied to show that the rules of
Symmetric CND→∨∧− and the rules of CND→∨∧− are interderivable. Consequently, Sym-
metric CND→∨∧− and CND→∨∧− are equivalent as systems with annotations:

Proposition 3.13. An annotated sequent is derivable in Symmetric CND→∨∧− iff it is
derivable in CND→∨∧− (with the same annotations in both systems).

3.2.1 Restriction of CND→∨∧− to subtractive logic

In order to define the system SND→∨∧− we still have to derive the restriction on (E−)
from the restriction on (LI −). We obtain thus:

Definition 3.14. In an annotated proof of CND→∨∧−, we say that an occurrence of the
elimination rule for subtraction is constructive iff U ⊆{x}. The rule becomes then:

Γ`S1: ∆1, � , Sn: ∆n; S: A−B Γ, Ax`S1
′: ∆1, � , Sn

′ : ∆n; U : B

Γ`S1∪S1
′[S/x]: ∆1, � , Sn∪Sn

′ [S/x]: ∆n; {}: C
(E−) where U ⊆{x}

This definition extends to proofs:

Definition 3.15. A proof of CND→∨∧− is said to be constructive iff:

1. any occurrence of the introduction rule for implication is constructive,

2. any occurrence of the elimination rule for subtraction is constructive.

Definition 3.16. We call SND→∨∧− the restriction of CND→∨∧− to constructive proofs.

By construction, constructive (E−) and constructive (LI −) are interderivable (with the
same annotations), which gives us the following proposition:

Proposition 3.17. An annotated sequent is derivable in Symmetric SND→∨∧− iff it is
derivable in SND→∨∧− (with the same annotations in both systems).

Theorem 3.18. SND→∨∧− is sound and complete for Subtractive Logic.

Proof. By proposition 3.17 and theorem 3.10. �

Since subtractive logic is conservative over intuitionistic logic (see [8] for instance), we
also have the following corollary:

Corollary 3.19. A sequent is derivable in SND→∨∧ iff it is valid in intuitionistic logic.
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Example 3.20. In the following example the (only) occurrence of (I→) is constructive
since there is no link between C and A in the premise, and the derived sequent is thus
valid in intuitionistic logic.

A∨Bz`;A∨B
Ax`;A

Ax`{x}:A;{}B
(WR)

By`;B
A∨Bz`{z}:A;{z}:B (E∨)

Cw` ; {w}: C

A∨Bz, Cw` {z}A; {z, w}: B ∧C
(I∧)

A∨Bz ` {z}: A; {z}: C → (B ∧C)
(I→)

4 The typed λµ→+×−-calculus

In this section, we briefly present the λµ→+×-calculus which is an extension of Parigot’s
λµ-calculus [36] where disjunction and conjunction are taken as primitives. Our λµ→+×-
calculus corresponds to de Groote’s λµ→∧∨⊥-calculus [12] up to minor differences
(namely, we augment the syntax with a primitive let and we also consider simplification
rules as in Parigot’s original calculus). Then we extend this calculus with a primitive sub-

traction and thus obtain the λµ→+×−-calculus. Note that in this
�
unsafe

�
calculus corou-

tines are exactly as expressive as first-class continuations (since a coroutine’s context is
just a pair 〈value, continuation 〉).

4.1 The λµ→+×-calculus

Raw λµ→+×-terms M, N , � are constructed by the following grammar:

M : 
 x | (M N) | λx.M | let x =M in N | µαM | [β]M

| inl M | inr M | case M of (inl x) � P | (inr y) � Q

| 〈M, N 〉 | fst M | snd M

where x, y, z, � range over variables and α, β, γ, � range over names. Besides, we call
simple λµ→+×-contexts the contexts defined by the following grammar:

C : 
 ([ ] t) | fst [ ] | snd [ ] | case [ ] of (inl x) � M | (inr y) � N

4.1.1 Reduction rules

Detour-reduction

a) (λx.u t)  u{t/x}

b) fst 〈t, u〉  t

c) snd 〈t, u〉  u

d) case (inl t) of (inl x) � u | (inr y) � v  u{t/x}

e) case (inr t) of (inl x) � u | (inr y) � v  v{t/y}

f) let x = t in u  u{t/x}

where u{t/x} stands for the usual capture-avoiding substitution.

Structural reduction (µ-reduction and permutative rule)

a) C[µα.u]  µα.u{α � C[ ]}

b) C[case t of (inl x) � u | (inr y) � v]  case t of (inl x) � C[u] | (inr y) � C[v]

where C[ ] ranges over simple λµ→+×-contexts and M {α � C[ ]} denotes the structural
substitution which is inductively defined as follows, where M∗ stands for M {α � C[ ]}:

x∗ ≡ x

(λx.t)∗ ≡ λx.t∗
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x: Ax` ; A

t: Γ`∆; B

t: Γ, Ax`∆; B
(WL)

t: Γ`∆; B

t: Γ`∆, Aα ; B
(WR)

t: Γ`∆(, Aα);

µα.t: Γ`∆; A
(activate)

t: Γ`∆(, Aα); A

[α]t: Γ`∆, Aα;
(passivate)

t: Γ, Ax`∆; B

λx.t: Γ`∆; A→B
(I→)

u: Γ`∆; A→B v: Γ`∆; A

(u v): Γ`∆; B
(E→)

t: Γ`∆; A

inl t: Γ`∆; A∨B
(I∨

1)
t: Γ`∆; B

inr t: Γ`∆; A∨B
(I∨

2)

t: Γ`∆; A∨B u: Γ, Ax`∆; C v: Γ, By `∆; C

case t of (inl x) � u | (inr y) � v: Γ`∆; C
(E∨)

t: Γ`∆; A∧B

fst t: Γ`∆; A
(E∧

1)
t: Γ`∆; A∧B

snd t: Γ`∆; B
(E∧

2)

t: Γ`∆; A u: Γ`∆; B

〈t, u〉: Γ`∆; A∧B
(I∧)

u: Γ`∆; A t: Γ, Ax`∆; B

let x =u in t: Γ`∆; B
(cut)

Figure 4.1. The λµ→+×-calculus

(t u)∗ ≡ (t∗ u∗)

(fst t)∗ ≡ fst t∗ and (snd t)∗ ≡ snd t∗

〈t, u〉
∗ ≡ 〈t∗, u∗〉

(case t of (inlx) � u | (inr y) � v)∗ ≡ case t∗ of (inl x) � u∗ | (inr y) � v∗

(inl t)∗ ≡ inl t∗ and (inr t)∗ ≡ inr t∗

(let x = t in u)∗ ≡ let x= t∗ in u∗

(µγ.u)∗ ≡ µγ.u∗

([α]t)∗ ≡ [α]C[t∗]

([γ]t)∗ ≡ [γ]t∗ if γ 
 α

Simplification

a) µα[α]u  u if α does not occur in u

b) [β]µα.t  t{β/α}

Remark 4.1. We shall often refer to the following macro-definitions: get-context α t ≡
µα[α]t and set-context α t ≡ µδ[α]t where δ is a name which does not occur in t (see [7]
for a study of the sublanguage obtained when we restrict the λµ-terms to these operators,
where they are called respectively catch and throw). Our terminology in this paper
comes from [24].

4.2 Typing rules for the λµ→+×-calculus

The typing rules for the λµ→+×-calculus are summarized in figure 4.1. Note that the
typing rules for get-context and set-context are easily derivable. They correspond
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respectively to the right-hand side weakening and contraction rules :

t: Γ`∆; A

set-context α t: Γ`∆, Aα; B
(WR)

Γ`∆, Aα; A

get-context α t: Γ`∆; A
(CR)

Remark 4.2. In order to deal with the negation, we add a macro-definition called abort
(following de Groote [10]) defined as set-context ε t where ε is a free name (the name of
⊥ given in section 2.1) considered as a constant (see [1] for more details). Here is the
typing rule for abort:

t: Γ`∆;⊥
abort t: Γ`∆; C

(⊥E )

4.3 The λµ→+×−-calculus

4.3.1 Defining A − B as A ∧ ¬B

We have shown in section 2.1 that the introduction/elimination rules for subtraction are
derivable if we define A − B as A ∧ ¬B . Since we are looking for a term calculus for
CND→∨∧−, let us first annotate these proofs with λµ→+×-terms and consider the macro-
definitions we obtain.

Derivation of the introduction rule

t: Γ`∆; A

x: Γ, Bx`∆; B

set-context β x: Γ, Bx`∆, Bβ;⊥
(set)

λx.set-context β x: Γ`∆, Bβ;¬B
(I→)

(t, λx.set-context β x): Γ`∆, Bβ; A∧¬B
(I∧)

Derivation of the elimination rule

t: Γ`∆; A∧¬B

k:¬Bk`¬B u: Γ, Ax`∆; B
(k u): Γ, Ax,¬Bk`∆;⊥

(E→)

abort (k u): Γ, Ax,¬Bk`∆; C
(E⊥)

match t with (x, k) � abort (k u): Γ`∆; C
(E∧)

Remark 4.3.

• It is easy to define the match instruction used in the last inference rule with the
projections, for instance as follows:

match t with (x, y) � u≡ let x =(fst t) in (let y =(snd t) in u)

However, since we also expect the subformula property for the λµ→+×−-calculus,
we need permutative reduction rules related to match (in order to derive the per-
mutative reduction rules related to resume) and these rules are usually not deriv-
able when pattern matching is defined using the projections. This is why we need

to consider an extension of the λµ→+×⊥-calculus with a new product ⊗ and built-
in pattern matching. The resulting calculus (called the λµ→+×⊗⊥-calculus) is
studied in appendix A.

• Informally, the introduction rules builds a pair (value, continuation) while the
elimination rule opens a pair (value, continuation) and invokes the continuation on
some λµ-term which may also use the value. We shall explain in section 5.8 why
we interpret such a pair as a first-class coroutine, and the value as its local envi-
ronment. For the time being, we just define the following macros:

make-coroutine t α ≡ (t, λz.set-context α z)

resume t with x � u ≡ match t with (x, k) � abort (k u)
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The derived typing rules for these macro-definitions are then:

t: Γ`∆; A

make-coroutine t β: Γ`∆, Bβ; A−B

t: Γ`∆; A−B u: Γ, Ax`∆; B

resume t with x � u: Γ`∆; C

• We said in the introduction that in the λµ-calculus, a name α may be reified as the
first-class continuation λz.set-context α z. However, this last syntactic form is
not closed under µ-reduction.

For instance, the term ((get-context α (λz.set-context α z)) u) is a µ-redex,
and its contractum is (get-context α ((λz.set-context α (z u)) u)). We shall thus
consider a more general form λz.set-context α C[z] where C[ ] is a continuation
context (see definition 4.4).

We are now ready to extend the λµ→+×-calculus with first-class coroutines.

4.3.2 Syntax of the λµ→+×−-calculus

We add two term constructors to the syntax of the raw λµ→+×-calculus (where C[ ]
ranges over arbitrary contexts):

M : 
 � |make-coroutine M (C[ ], α) | resume M with x � N

We also define the simple λµ→+×−-contexts by extending the grammar of simple λµ→+×-
contexts:

C : 
 � | resume [ ] with x� N

4.3.3 Continuation contexts

Definition 4.4. Continuation contexts are defined by the following grammar:

C : 
 [ ] | (C[ ] t)

| fst C[ ] | snd C[ ]

| case C[ ] of (inl x) � M | (inr y) � N

| resume C[ ] with x � N

Remark 4.5. We shall abbreviate as Cα a pair (C[ ], α) where C[ ] is a continuation con-
text. Note that if C[ ] is a simple λµ→+×−-context and K[ ] is a continuation context
then C[K[ ]] is also a continuation context, and thus C[K]α is an abbreviation for
(C[K[ ]], α).

4.3.4 Reduction rules

We extend the reduction rules of the λµ→+×-calculus with this new detour-reduction rule:

g) resume (make-coroutine t Cα) with x � u set-context α C[u{t/x}]

and the structural reduction is now defined by the following rules:

a) C[µα.u]  µα.u{α � C[ ]}

b) C[case t of (inl x) � u | (inr y) � v]  case t of (inl x) � C[u] | (inr y) � C[v]

c) C[resume t with x� u]  resume t with x � u

where C[ ] ranges over simple λµ→+×−-contexts. We also extend the inductive definition
of the structural substitution t{α � C[ ]} to λµ→+×−-terms and continuation contexts as
follows, where again M∗ stands for M {α � C[ ]}:

[ ]∗ ≡ [ ]

(make-coroutine t Kα)∗ ≡ make-coroutine t∗ C[K∗]α

(make-coroutine t Kγ)
∗ ≡ make-coroutine t∗ Kγ

∗ if γ 
 α

(resume t with x � u)∗ ≡ resume t∗ with x � u∗
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Remark 4.6. By definition of the structural substitution, the form make-corou-
tine t Cα where C[ ] is a continuation context is preserved by the reduction rules of the
λµ→+×−-calculus. We shall thus restrict the set of raw λµ→+×−-terms to those terms.

4.4 Typing rules for coroutines

The typing rules for make-coroutine and resume are respectively introduction and
elimination rules for subtraction:

t: Γ`∆; A C[x]: Γ, Dx`∆; B

make-coroutine t Cβ: Γ`∆, Bβ; A−D
(I−)

t: Γ`∆; A−B u: Γ, Ax`∆; B

resume t with x � u: Γ`∆; C
(E−)

Remark 4.7. The typing rule for make-coroutine given in the remark 4.3 corresponds
to the particular case C[ ] = [ ] (but we have proved in section 2 that from a logical stand-
point these rules are equivalent).

4.5 Strong normalization and the Church-Rosser property

Theorem 4.8. The typed λµ→+×−-calculus is strongly normalizing and enjoys the
Church-Rosser property.

Proof. (sketch) Recall that the typed λµ→+×⊗⊥-calculus is an extension of the

λµ→+×⊥-calculus with pattern matching (for the tensor product⊗ ) which is strongly nor-
malizing and enjoys the Church-Rosser property (see appendix A). Let us denote by Φ

the translation from the λµ→+×−-calculus into the λµ→+×⊗⊥-calculus defined by the fol-
lowing macro-definitions:

make-coroutine t Cα ≡ (t, λz.set-context α C[z])

resume t with x � u ≡ match t with (x, k) � abort (k u)

It is sufficient to check the following properties:

1. Φ is a morphism for the reduction: if u v then Φ(u) + Φ(v)

2. Φ preserves normal forms: if u is a normal λµ→+×−-term then Φ(u) is a normal
λµ→+×⊗⊥-term.

3. Φ is injective on normal forms.

Indeed, from the first property, we can derive the strong normalization of the λµ→+×−-

calculus from the strong normalization of the λµ→+×⊗⊥-calculus. From the second and
third properties, we obtain the uniqueness of the normal form (i.e. the Church-Rosser
property). The proof that Φ is a morphism for the reduction is given in appendix A. �

4.6 Normal forms and the subformula property

We end this section by proving the subformula property (which is derived as usual from a
characterization of the normal terms).

Proposition 4.9. Given the derivation, in system CND→∨∧−, of some typing judgement
t : Γ ` ∆; A, if t is normal then every type occurring in the derivation is either a subfor-
mula of a type occurring in Γ or ∆, or a subformula of A.
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Proof. Since the subformula property always holds for introduction rules (and weak-
ening/contraction rules), we just have to check the property for occurrences of elimination
rules in a normal proof. Let us then call applicative contexts the contexts defined by the
following grammar:

A : 
 [ ] | (A t) | fst A | snd A

In a well-typed normal λµ→+×−-term, any occurrence of an application or a projection
has the form A[x] (where x is a variable). Indeed, in an application (u v) and in a projec-
tion fst u or snd u, the term u must be either a variable, or again a projection or an
application (otherwise we obtain a detour-redex or a redex for one of the structural rules).
It is easy to prove by induction that in the typing judgement of an applicative context
A[x]: Γ, F x`∆; D, the formula D is a subformula of F .

Now, in a well-typed normal λµ→+×−-term, in any subterm of the form case t of
(inl x) � u | (inr y) � v or resume t with x � u, the term t has the form A[z] (where z

is a variable). Indeed, otherwise we obtain a detour-redex or redex for one of the struc-
tural rules. Consequently, any occurrence of an elimination rule for ∨ (resp. − ) has the
following form:

Elimination rule for ∨

A[z]: Γ, F z `∆; B ∨C u: Γ, Bx`∆; D v: Γ; Cy `∆; D

case A[z] of (inl x) � u | (inr y) � v: Γ, F z `∆; D

Elimination rule for −

A[z]: Γ, F z `∆; A−B u: Γ, Ax`∆; B

resume A[z] with x � u: Γ, F z `∆; C

Then one can easily check that the subformula property holds for these rules. �

5 The safe λµ-calculus

From a computational standpoint, the restriction of the introduction rule for → to at
most one conclusion amounts to requiring that in any subterm λx.u of a term t, u is µ-
closed (there is no free name in u). This restriction is clearly not closed under reduction.
For instance, if u contains a free name (take for instance u= µβ[α]λz.z):

((λyλx.y) u) λx.u

then the contractum is not µ-closed. We define in this section a weaker restriction on
λµ→+×-terms which is closed under reduction. This restriction has actually been derived
from the restriction on sequents given in section 3.1.2. The formal relation between the
two definitions is stated by theorem 5.9.

5.1 The safe λµ→+×−-calculus

In this section we introduce the concept of
�
scope of a name with respect to variables

�
which corresponds to the variables shared by a coroutine. This leads to the formal defini-
tion of a λµ→+×-term in which a coroutine does not access the local environment of
another coroutine (see remark 4.7). We shall say that such a λµ→+×−-term is safe with
respect to coroutine contexts . Then we give the formal definition of a λµ→+×−-term safe
with respect to first-class coroutines.
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•
S[](x) = {x}

Sδ(x)= ∅

•
S[](λx.u)=S[](u)\{x}

Sδ(λx.u) =Sδ(u)\{x}

•
S[](u v) =S[](u)∪S[](v)

Sδ(u v)=Sδ(u)∪Sδ(v)

•
S[]([α]u) = ∅

Sδ([α]u)=Sδ(u) for any δ 
 α and Sα([α]u)=Sα(u)∪S[](u)

•
S[](µα.u) =Sα(u)

Sδ(µα.u)=Sδ(u)

•
S[](inl u) =S[](u) and S[](inr u)=S[](u)

Sδ(inl u)=Sδ(u) and Sδ(inr u)=Sδ(u)

•
S[](case w of (inl x) � u | (inr y) � v)=S[](u)[S[](w)/x]∪S[](v)[S[](w)/y]

Sδ(case w of (inl x) � u | (inr y) � v) =Sδ(u)[S[](w)/x]∪Sδ(v)[S[](w)/y]∪Sδ(w)

•
S[](〈t, u〉)=S[](t) ∪S[](u)

Sδ(〈t, u〉)=Sδ(t) ∪Sδ(u)

•
S[](fst u) =S[](u) and S[](snd u)=S[](u)

Sδ(fst u)=Sδ(u) and Sδ(snd u)=Sδ(u)

•
S[](let x = v in u)=S[](u)[S[](v)/x]

Sδ(let x= v in u)=Sδ(u)[S[](v)/x]∪Sδ(v)

•
S[]([ ])= ∅

Sδ([ ]) = ∅

• S[](make-coroutine t Cα)=S[](t)

Sα(make-coroutine t Cα)=Sα(t)∪Sα(C[ ])∪S[](t)∪S[](C[ ])

Sδ(make-coroutine t Cα)=Sδ(t)∪Sδ(C[ ]) for any δ 
 α

• S[](resume c with x � u)=S[](u)\{x}∪S[](c)

Sδ(resume c with x � u)=Sδ(u)[S[](c)/x]∪Sδ(c)

Figure 5.1. Shared variables

We call S[](t) the set of free variables that occur in the scope of the current coroutine
(which we dubbed []) and Sδ(t) the set of the variables that occur in the scope of a corou-
tine δ in t. It is easy to check by induction on t that Sδ(t) = ∅ if δ does not occur free in t.

Definition 5.1. For any λµ→+×−-term t, the inductive definition of the sets S[](t) and
Sδ(t) is given in figure 5.1.

Remark 5.2. In the particular case of set-context and get-context, we obtain the fol-
lowing definition:

• If the λµ→+×−-term is get-context α u (i.e. µα[α]u) then:
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S[](µα[α]u)=Sα([α]u)=S[](u)∪Sα(u)

Sδ(µα[α]u)=Sδ([α]u)=Sδ(u)

• If the λµ→+×−-term t is set-context α u (i.e. µβ[α]u where β does not occur in
[α]u) then:

S[](µβ[α]u)=Sβ([α]u)= ∅

Sδ(µβ[α]u)=Sδ([α]u)=Sδ(u) for any δ 
 α and Sα(µβ[α]u) =Sα(u)∪S[](u)

Remark 5.3. Given a λµ→+×−-term, a variable may occur in the scope of several corou-
tines (including the current coroutine). We shall say that such a variable is shared
between several coroutines.

Definition 5.4. A λµ→+×−-term t is safe with respect to coroutine contexts iff for
any subterm of t which has the form λx.u, for any free name δ of u, x 	 Sδ(u) .

Remark 5.5. In safe λµ→+×-terms, the usual abbreviation (λx.t) u is no longer equiva-
lent to let x = u in t since in (λx.t) u, the variable x may not occur in the scope of some
name in t: this declaration of x is local to the current coroutine. On the other hand, the
definition of x in let x= u in t is global: any coroutine may access x in t.

Note that although global definitions are useful from a programming perspective, in
this paper, the main purpose of let is just to avoid using the (meta-level) substitution in
the term interpretation of the cut rule.

Example 5.6. As expected, a first class continuation like λy.set-context β y is not safe
with respect to coroutine contexts. On the other hand the following example is safe:

λf.get-context α λx.get-context β set-context α (f (set-context β x))

Indeed, in context α the variable f is visible (even if x is not) while in context β they are
both visible.

Definition 5.7. A λµ→+×−-term t is safe with respect to first-class coroutines (or
just �safe � for short) iff:

1. for any subterm of t which has the form λx.u, for any free name δ of u, x 	 Sδ(u)
(i.e. t is safe with respect to coroutine contexts)

2. for any subterm of t which has the form resume c with x � u, S[](u)⊆{x}

Remark 5.8. If we violate one of these restrictions, we recover the (unsafe) λµ→+×-cal-
culus (and classical logic as a type system). For the first restriction, it is obvious. For the

second restriction, consider the following λµ→+×−-term:

λy.(resume (make-coroutine e β) with x � y) λy.set-context β y

The contractum is indeed a first-class continuation. When it is resumed, a first-class
coroutine is allowed to access only its own local data (which is packed together with the
continuation). This is why we claim that such a pair (value, continuation) corresponds
actually (for safe λµ→+×−-terms) to a pair (environment , continuation) where the envi-
ronment contains the only data visible in the coroutine when it resumes.

5.2 Typing safe λµ→+×−-terms in SND→∨∧−

Proofs of SND→∨∧− (i.e. constructive proofs of CND→∨∧−) and safe λµ→+×−-terms are
related by this theorem (and its corollary):
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Theorem 5.9. Given an annotated derivation, in system CND→∨∧−, of some typing
judgement t : Γ1

x1, � , Γn
xn `∆1

α1, � , ∆m
αm ; A, then xi ∈ Sαj

(t) iff there is a link between Γi
xi

and ∆j
αj and xi∈S[](t) iff there is a link between Γi

xi and A.

Proof. We check that we have two inductive definitions of the same dependency relations
between hypotheses and conclusions of a sequent (recall that [] is the name of the formula
which is on the right-hand side of the semi-colon). Take for instance the rule (E→) of
CND→∨∧−:

t: Γ`S1
′: ∆1

δ1, � , Sn
′ : ∆n

δn; U : (A→B) u: Γ`S1
′′: ∆1

δ1, � , Sn
′′: ∆n

δn; V : A

(t u): Γ`S1
′ ∪S1

′′: ∆1
δ1, � , Sn

′ ∪Sn
′′: ∆n

δn; U ∪V : B

By induction hypothesis, Si
′ = Sδi

(t), Si
′′ = Sδi

(u), U = S[](t) and V = S[](u) and by defini-
tion 5.1:

S[](t u) = S[](t)∪S[](u) = U ∪ V

Sδi
(t u) = Sδi

(t)∪Sδi
(u) = Si

′∪Si
′′

The only difficulty comes from the introduction rule of subtraction (I−) but since C[ ] is a
continuation context, we know that y occurs in S ′ and nowhere else. We obtain thus:

t: Γ` � , Si: ∆i
δi, � (, Sn+1: Cβ); S: A C[y]: Γ, By ` � , Si

′: ∆i
δi, � (, Sn+1

′ : Cβ); S ′: C

make-coroutine t Cβ: Γ` � , Si∪Si
′: ∆i

δi, � , Sn+1∪Sn+1
′ ∪S ′[S/y]: Cβ; S: A−B

(I−)

Again, by induction hypothesis, Si = Sδi
(t), Si

′ = Sδi
(C[y]) = Sδi

(C[ ]), Sn+1 = Sβ(t),
Sn+1

′ =Sβ(C[y]) =Sβ(C[ ]), S ′[S/y] =S[](C[y])[S/y] =S[](C[ ])∪S and by definition 5.1:

S[](make-coroutine t Cβ) = S[](t) = S

Sβ(make-coroutine t Cβ) = S[](t)∪S[](C[ ])∪Sβ(t)∪Sβ(C[ ]) = S ′[S/y]∪Sn+1∪Sn+1
′

Sδi
(make-coroutine t Cβ) = Sδi

(t)∪Sδi
(C[ ]) = Si∪Si

′

�

Corollary 5.10. Given a derivation of the typing judgement t: Γ ` ∆ in CND→∨∧−, if t

is safe with respect to first-class coroutines then the derivation of t: Γ ` ∆ belongs to
SND→∨∧− (and is thus valid in subtractive logic).

Proof. Let us consider an occurrence of the introduction rule for implication:

u: Γ, Ax`∆1
α1, � , ∆m

αm; B

λx.u: Γ`∆1
α1, � , ∆m

αm; A→B

Since t is safe with respect to coroutine contexts, for any αj, x 	 Sαj
(u) and then by the-

orem 5.9, there is no link between Ax and ∆, thus this occurrence of the introduction rule
for implication is constructive. Let us now consider an occurrence of the elimination rule
for subtraction:

t: Γ`∆; A−B u: Γ, Ax`∆; B

resume t with x � u: Γ`∆; C

Since t is safe with respect to first-class coroutines, we know that S[](u) ⊆ {x} and then
by theorem 5.9, there is no link between Γ and B, thus this occurrence of the elimination
rule for subtraction is constructive. �

Corollary 5.11. Given a derivation of the typing judgement t: Γ `∆ in CND→∨∧, if t is
safe with respect to coroutine contexts then the derivation of t: Γ ` ∆ belongs to SND→∨∧

(and is thus valid in intuitionistic logic).
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Example 5.12. Let us decorate the proof of example 3.20 by λµ→+×−-terms, we obtain:

z: A∨Bz ` ; A∨B
x: Ax` ; A

set-context α x: Ax`Aα; B y: By ` ; B
case z of (inl x) � set-context α x | (inr y) � y: A∨Bz `Aα; B

(E∨)
w: Cw ` ; C

〈case z of (inl x) � set-context α x | (inr y) � y, w〉: A∨Bz, Cw`Aα; B ∧C

λw.〈case z of (inl x) � set-context α x | (inr y) � y, w〉: A∨Bz `Aα; C → (B ∧C)

One can check that this term is safe with respect to coroutine contexts, since we have:

w � Sα(〈case z of (inl x) � set-context α x | (inr y) � y, w〉)= {z}

and consequently the derivation is valid in intuitionistic logic.

Remark 5.13. Note that the proof-term which decorates the conclusion in the previous
example (let us call it t) is not a weakening term according to the definition 11 given by
Ritter, Pym and Wallen in [41] since otherwise A ∨ B ` A should be derivable (by lemma
14), and the occurrence of α in t is not a weakening occurrence (according to the same
definition) since otherwise A ∨ B ` C → (B ∧ C) should be derivable. The term t is thus
not intuitionistic according to definition 13.

On the other hand we conjecture that any intuitionistic term (according to definition
13 in [41]) is safe with respect to coroutine contexts. Consequently, our notion of

�
safe-

ness
�

is likely to allow more λµ→+×-term as proof terms for sequents valid in intuition-
istic logic.

6 Closure under reduction

The remainder of the paper is devoted to proving that the subset of safe λµ→+×−-terms
is closed under the reduction rules of the λµ→+×−-calculus. We shall begin with proposi-
tion 6.8 which says that the reduction rules of the λµ→+×−-calculus do not provide new
dependencies (in safe terms). We first need the following additional lemmas about substi-
tutions and contexts:

Lemma 6.1. Sδ(t)= ∅ if δ does not occur in t.

Lemma 6.2. If u and v are λµ→+×−-terms then:

S[](u{v/x}) ⊆ S[](u)[S[](v)/x]

Sδ(u{v/x}) ⊆ Sδ(u)[S[](v)/x]∪Sδ(v)

Lemma 6.3. If t is a λµ→+×−-term then:

S[](t{β/α}) ⊆ S[](t)

Sβ(t{β/α}) ⊆ Sβ(t)∪Sα(t)
Sδ(t{β/α}) ⊆ Sδ(t) for any δ 
 β

Lemma 6.4. If t is a λµ→+×−-terms and C[ ] is a simple λµ→+×−-context such that α

does not occur in C[ ] then:

S[](t{α � C[ ]}) ⊆ S[](t)

Sα(t{α � C[ ]}) ⊆ Sα(t)∪S[](C[ ])

Sδ(t{α � C[ ]}) ⊆ Sδ(t)∪Sδ(C[ ]) for any δ 
 α

Lemma 6.5. Let u be a λµ→+×−-term, let C[ ] be an simple λµ→+×−-context, and let δ

be a free name in C[u]:

S[](C[u])=S[](C[ ])∪S[](u)

Sδ(C[u])=Sδ(C[ ])∪Sδ(u)
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Lemma 6.6. Given an instance r sof a rule of the λµ→+×−-calculus, if r is safe then
S[](s)⊆S[](r) and Sδ(s)⊆Sδ(r) for any a free name δ of s.

Proof. Let us consider each reduction rule of the λµ→+×−-calculus. Let y be a free vari-
able of s (and thus a free variable of r) and let δ be a free name in s (and thus a free
name in r):

Detour-reduction

a) r = (λx.u v) and s = u{v/x}. By lemma 6.2:

• S[](u{v/x})⊆S[](u)[S[](v)/x]⊆S[](u)\{x}∪S[](v)=S[](λx.u v)

• Sδ(u{v/x})⊆Sδ(u)[S[](v)/x]∪Sδ(v)=Sδ(u)∪Sδ(v) =Sδ(λx.u v)
(since r is safe and thus x 	 Sδ(u))

b) r = fst 〈t, u〉 and s = t.

• S[](t)⊆S[](t)∪S[](u)=S[](fst 〈t, u〉)

• Sδ(t)⊆Sδ(t)∪Sδ(u)=Sδ(fst 〈t, u〉)

c) Similar to b).

d) r = case (inl t) of (inl x) � u | (inr y) � v and s =u{t/x}. By lemma 6.2:

• S[](u{t/x})⊆S[](u)[S[](t)/x]⊆S[](u)[S[](t)/x]∪S[](v)[S[](t)/y] =S[](r)

• Sδ(u{t/x})⊆Sδ(u)[S[](t)/x]∪Sδ(t)

⊆Sδ(u)[S[](t)/x]∪Sδ(v)[S[](t)/y]∪Sδ(t)=Sδ(r)

e) Similar to d).

f) r = u{v/x} and s = let x= v in u. By lemma 6.2:

• S[](u{v/x})⊆S[](u)[S[](v)/x] =S[](let x = v in u)

• Sδ(u{v/x})⊆Sδ(u)[S[](v)/x]∪Sδ(v)=Sδ(let x= v in u)

g) r = resume (make-coroutine v Cα) with x � u and
s = set-context β C[u{v/x}].

• S[](set-context β C[u{v/x}])= ∅
⊆S[](resume (make-coroutine v Cβ) with x� u)

• Sβ(set-context β C[u{v/x}]) =Sβ(C[u{v/x}])∪S[](C[u{v/x}])

=Sβ(C[ ])∪Sβ(u{v/x})∪S[](C[ ])∪S[](u{v/x})

⊆Sβ(C[ ])∪Sβ(u)[S[](v)/x]∪Sβ(v)∪S[](C[ ])∪S[](u)[S[](v)/x]

⊆Sβ(C[ ])∪Sβ(u)[S[](v)/x]∪Sβ(v)∪S[](C[ ])∪S[](v) since S[](u)⊆{x}

=Sβ(u)[S[](v)/x]∪
(

Sβ(v)∪Sβ(C[ ])∪S[](v)∪S[](C[ ])
)

=Sβ(u)[S[](v)/x]∪Sβ(make-coroutine v Cβ)

=Sβ(u)[S[](make-coroutine v Cβ)/x]∪Sβ(make-coroutine v Cβ)
=Sβ(resume (make-coroutine v Cβ) with x � u)

• Sδ(set-contextβ C[u{v/x}])=Sδ(C[u{v/x}])
=Sδ(C[ ])∪Sδ(u{v/x})
⊆Sδ(C[ ])∪Sδ(u)[S[](v)/x]∪Sδ(v)

=Sδ(u)[S[](v)/x]∪ (Sδ(v)∪Sδ(C[ ]))

=Sδ(u)[S[](v)/x]∪Sδ(make-coroutine v Cβ)

=Sδ(u)[S[](make-coroutine v Cβ)/x]∪Sδ(make-coroutine v Cβ)
=Sδ(resume (make-coroutine v Cβ) with x � u)
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Structural reduction

a) r = C[µα.u] and s = µα.u{α � C[ ]}. By lemma 6.4 and lemma 6.5:

• S[](µα.u{α � C[ ]})=Sα(u{α � C[ ]})=Sα(u)∪S[](C[ ])
=S[](C[ ])∪S[](µα.u)=S[](C[µα.u])

• Sδ(µα.u{α � C[ ]})⊆Sδ(u{α � C[ ]})⊆Sδ(u)∪Sδ(C[ ])
=Sδ(C[µα.u])

b) r = C[case t of (inl x) � u | (inr y) � v] and
s = case t of (inl x) � C[u] | (inr y) � C[v]

• S[](case t of (inl x) � C[u] | (inr y) � C[v])
=S[](C[u])[S[](t)/x]∪S[](C[v])[S[](t)/y]

=S[](C[ ])∪S[](u)[S[](t)/x]∪S[](v)[S[](t)/y]

=S[](C[case t of (inl x) � u | (inr y) � v])

• Sδ(case t of x � C[u] | y � C[v])=Sδ(C[u])[Sδ(t)/x]∪Sδ(C[v])[Sδ(t)/y]
=Sδ(C[ ])∪Sδ(u)[Sδ(t)/x]∪Sδ(v)[Sδ(t)/y]
=Sδ(C[case t of (inl x) � u | (inr y) � v])

c) r = C[resume t with x � u] and s = resume t with x � u

• S[](resume t with x � u)=S[](C[u])[S[](t)/x]

=S[](C[ ])∪S[](u)[S[](t)/x]

⊆S[](u)[S[](t)/x]

=S[](C[resume t with x� u])

• Sδ(resume t with x � C[u])=Sδ(C[u])[S[](t)/x]∪Sδ(t)
=Sδ(C[ ])∪Sδ(u)[S[](t)/x]∪Sδ(t)

⊆Sδ(u)[S[](t)/x]∪Sδ(t)

=Sδ(C[resume t with x� u])

Simplification

a) r = µα[α]u and s = u where α does not occur free in u.

• S[](u)=S[](u)∪Sα(u) =Sα([α]u) =S[](µα[α]u) (since Sα(u)= ∅)

• Sδ(u) =Sδ([α]u)=Sδ(µα[α]u)

b) r = [β]µα.t and s = t{β/α}. By lemma 6.3:

• S[](t{β/α})⊆S[](t) = ∅=Sα([β]µα.t) (since t has the form [δ]v)

• Sβ(t{β/α})⊆Sβ(t)∪Sα(t)=Sβ(µα.t)∪S[](µα.t)=Sβ([β]µα.t)

• Sδ(t{β/α})⊆Sδ(t)=Sδ(µα.t)=Sδ([β]µα.t) for any δ 
 β

�

Lemma 6.7. Given two λµ→+×−-terms t, u and an arbitrary context C[ ], if S[](u) ⊆
S[](t) and Sδ(u) ⊆ Sδ(t) then S[](C[u]) ⊆ S[](C[t]) and Sδ(C[u]) ⊆ Sδ(C[t]) for any a free
name δ of C[t].

Proof. By induction on the context C[ ]. �

Proposition 6.8. Given a λµ→+×−-term t, if t is safe and t u then S[](u) ⊆ S[](t) and
Sδ(u)⊆Sδ(t) for any a free name δ of t.

Proof. By lemma 6.6 and lemma 6.7. �
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Lemma 6.9. Given two λµ→+×−-terms u, v, if u and v are safe w.r.t. coroutine contexts
then u{v/x} is safe w.r.t. coroutine contexts.

Proof. Let λy.t be a subterm of u{v/x}. Either λy.t is a subterm of v or y does not
occur in v. Consequently, y 	 Sδ(t) since v is safe in the former case and since u is safe in
the latter case. �

Lemma 6.10. Given an instance r  s of a rule of the λµ→+×−-calculus, if r is safe
w.r.t. coroutine contexts then s is safe w.r.t. coroutine contexts.

Proof. Again, we consider each rule of the λµ→+×−-calculus:

Detour-reduction

a) r = (λx.u v) and s = u{v/x}. Apply lemma 6.9.

b) r = fst 〈t, u〉 and s = t. Then s = t is safe.

c) Similar to b).

d) r = case (inl t) of (inl x) � u | (inr y) � v and s =u{t/x}. Apply lemma 6.9.

e) Similar to d).

f) r = u{v/x} and s = let x= v in u. Apply lemma 6.9.

g) r = resume (make-coroutine v Cα) with x � u and s = set-context β C[u{v/
x}]. By lemma 6.9, u{v/x} is safe w.r.t. coroutine contexts, and since C[ ] is safe
w.r.t. coroutine contexts, we know by lemma 6.7 that s is also safe w.r.t. coroutine
contexts.

Structural reduction

a) r = C[µα.w] and s = µα.w{α � C[ ]}.
Let λy.t be a subterm of µα.w{α � C[ ]}, either λy.t is a subterm of C[ ] or y does
not occur in C[ ]. Consequently, y 	 Sδ(t) since C[ ] is safe in the former case and
since w is safe in the latter case.

b) r = C[case w of (inl x) � u | (inr y) � v] and
s = case w of (inl x) � C[u] | (inr y) � C[v].
Let λy.t be a subterm of case w of (inl x) � C[u] | (inr y) � C[v], either λy.t is a
subterm of C[ ] or y does not occur in C[ ]. Consequently, y 	 Sδ(t) since C[ ] is
safe in the former case and since u, v and w are safe in the latter case.

c) r = C[resume c with x � u] and s= resume c with x� u

Obviously s is safe w.r.t. coroutine contexts since it is a subterm of r.

Simplification

a) r = µα[α]u and s = u where α does not occur free in u. Then s =u is safe.

b) r = [β]µα.u and s = u{β/α}. Let λy.t be a subterm of u{β/α} and let λy.v be the
subterm of u such as λy.v = λy.t{β/α}. Then y 	 Sδ(t) = Sδ(v) and y 	 Sβ(t) =
Sβ(v)∪Sα(v) since u is safe.

�

Lemma 6.11. Given two λµ→+×−-terms t, u safe w.r.t. first-class coroutines and such
that S[](u) ⊆ S[](t) and Sδ(u) ⊆ Sδ(t)and an arbitrary context C[ ], if C[t ] is safe then

C[u] is safe w.r.t. first-class coroutines.

Proof. By induction on the context C[ ]. �

Lemma 6.12. Given an instance r  s of a rule of the λµ→+×−-calculus, if r is safe
w.r.t. first-class coroutines then s is safe w.r.t. first-class coroutines.
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Proof. We already know by lemma 6.10 that s is safe w.r.t. coroutine contexts. We just
have to check that for any subterm of s which has the form resume c with x � u,
S[](u)⊆{x}. This property follows from lemma 6.6 and lemma 6.7. �

Theorem 6.13. Given a λµ→+×−-term t, if t is safe with respect to first-class coroutines
and t u then u is safe with respect to first-class coroutines.

Proof. Let us write t as C[r], where r is the redex to be reduced and let r  s be the
instance of the rule which is applied. By lemma 6.12, s is safe w.r.t. first-class coroutines,
and by lemma 6.6, we have S[](s) ⊆ S[](r) and Sδ(s) ⊆ Sδ(r) for any a free name δ of s.
Then, by lemma 6.11 u is safe w.r.t. first-class coroutines.

�

Corollary 6.14. Given a λµ→+×-term t, if t is safe with respect to coroutine contexts
and t u then u is safe with respect to coroutine contexts.

7 Conclusion and further work

We have defined the safe λµ→+×-calculus, which is closed under reduction and whose
type system corresponds to intuitionistic logic. In this calculus, continuations are not
first-class objects but the ability of context-switching remains. The safe λµ→+×−-calculus
is an extension of the λµ→+×-calculus with first-class coroutines. First-class coroutines
are strictly less powerful than first-class continuations: the type system of the λµ→+×−-
calculus corresponds to subtractive logic, which is conservative over intuitionistic logic.

We have proved that first-class coroutines disappear during the normalization process
(since the subformula property holds for normal forms) whenever the type of the term
contains no subtraction (see proposition 4.9). The normal form belongs to the safe
λµ→+×-calculus. If we extend our work to the first-order framework, and since subtrac-
tive logic is conservative over CDL (and the existence property holds in CDL), we expect
to be able to extract witnesses from normal proofs of existential formulas (which contain
no subtraction). A first attempt could consist in exploiting the proof of conservativity
given in appendix B. Another (better) solution would be to derive the existence property
from the subformula property (however this is not straightforward in a deduction system
with multi-conclusioned sequents). A forthcoming paper shall be devoted to this issue.

Applications of first-class coroutines were barely mentioned in this paper. In fact,
practical applications of coroutines often use other extensions such as imperative features
which do not easily fit in the formulae-as-types framework. However, purely functional
examples have to be explored. On the other hand, in would be interesting to define an
abstract machine for the safe λµ→+×-calculus and to investigate what kind of optimiza-
tion is allowed by the

�
safeness

�
property (as opposed to full-fledged continuations).

Eventually, the duality call-by-name/call-by-value (from the classical λµ-calculus)
should be revisited in our framework, where the duality is likely to exchange functions
and coroutines. We already know by construction of the safe λµ→+×−-calculus that the
dual of a safe λµ→+×−-term is also safe.
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Appendix A. Properties of the λµ→+×−-calculus

We shall take advantage of the definability of subtraction in classical logic to derive
strong normalization and uniqueness of normal forms for the λµ→+×−-calculus from the
same properties of the λµ→+×-calculus. In order to derive also the permutative reduction
rules for the λµ→+×−-calculus, we shall need a λµ→+×-calculus with pattern matching:
we thus add a new

�
tensor

�
product ⊗ to our type system. Then we shall be able to

define A −B as A ⊗¬B and then make-coroutine/resume as macro-definitions. Recall
that these macros are in fact extracted from our derivations of the introduction/elimina-
tion rules of the (defined) subtraction.

In [12], de Groote presents a proof of strong normalization of CND with primitive dis-
junction (and primitive conjunction with projections). We show here how to adapt this
proof to take into account the rule for pattern matching. Although de Groote did not
consider the simplification rules in his paper, it is easy to show that simplification (alone)
is strongly normalizing and also that simplification may be postponed with respect with
the other reduction relations.

De Groote’s proof of strong normalization is two-fold: first he proves the strong nor-
malization of the structural reductions (for untyped λµ→∧∨⊥-terms) then he proves the

strong normalization of typed λµ→∧∨⊥-terms using a CPS-simulation. The latter proof is
given in a propositional framework, but de Groote claims that since this CPS-translation
is defined on the untyped λµ-terms, it may be raised to the second-order.

A.1 The λµ→+×⊗⊥-calculus

We add two term constructors to the syntax of the raw λµ→+×-calculus:

M : 
 � | (M, N) | match M with (x, y) � N

We also define the simple λµ→+×⊗⊥-contexts by extending the grammar of simple
λµ→+×-contexts:

C : 
 � | match M with (x, y) � N

Remark A.1. Recall that abort t is defined in the λµ-calculus as set-context ε t where
ε is a free name. Consequently, we shall not consider here abort as a primitive instruc-
tion.

A.1.1 Reduction rules

We extend the reduction rules of the λµ→+×-calculus with this new detour-reduction rule:

f) match (u, v) with (x, y) � t t{u/x, y/v}]

and the structural reduction is now defined by the following rules:

a) C[µα.u]  µα.u{α � C[ ]}

b) C[case t of (inl x) � u | (inr y) � v]  case t of (inl x) � C[u] | (inr y) � C[v]

c) C[match t with (x, y) � u]  match t with (x, y) � C[u]

where C[ ] ranges over simple λµ→+×⊗⊥-contexts.

A.1.2 Typing rule for ⊥

TRISTAN CROLARD 29



A.1.3 Typing rules for ⊗

t: Γ`∆; A u: Γ`∆; B

(t, u): Γ`∆; A⊗B
(⊗I )

t: Γ`∆; A⊗B u: Γ, Ax, By `∆; C

match t with (x, y) � u: Γ`∆; C
(⊗E )

A.1.4 Strong normalization of the structural reductions

We provide λµ→+×⊗⊥-terms with a norm adapted from the norm introduced in [12] (we
recall the full definitions but the new cases are only the two last of each definition):

Definition A.2. The norm
∣

∣ ·
∣

∣ assigned to the λµ→+×⊗⊥-terms is inductively defined as
follows:

a) |x|= 1

b) |λx.t|= |t|

c) |(t u)|= |t|+ #t× |u|

d) |〈t, u〉|= |t|+ |u|

e) |fst t|= |t|+ #t

f ) |snd t|= |t|+#t

g) |inl t|= |t|

h) |inr t|= |t|

i) |case t of (inl x) � u | (inr y) � v |= |t|+#t× (|t|+ |u|)

j ) |µα.t|= |t|

k) |[α]t|= |t|

l) |(t, u)|= |t|+ |u|

m) |match t with (x, y) � u|= |t|+2×#t× |u|

where:

a) #x= 1

b) #λx.t = 1

c) #(t u)= #t

d) #〈t, u〉= 1

e) #fst t = #t

f ) #snd t = #t

g) #inl t = 1

h) #inr t = 1

i) #case t of (inl x) � u | (inr y) � v =(2×#t)× (#u + #v)

j ) #µα.t = btc
α

k) #[α]t =1

l) #(t, u)= 1
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m) #match t with (x, y) � u= (2×#t)× (2×#u)

and where:

a) bxc
α

= 0

b) bλx.tc
α

= btc
α

c) b(t u)c
α

= btc
α

+ #t×buc
α

d) b〈t, u〉c
α

= btc
α

+ buc
α

e) bfst tc
α

= btc
α

f ) bsnd tc
α

= btc
α

g) binl tc
α

= btc
α

h) binr tc
α

= btc
α

i) bcase t of (inl x) � u | (inr y) � vc
α

= btc
α

+ #t× (buc
α

+ bvc
α
)

j ) bµα.tc
α

= btc
α

k) b[α]tc
α

= btc
α

+ #t

l) b[β]tcα
= btcα

m) b(t, u)c
α

= btc
α

+ buc
α

n) bmatch t with (x, y) � ucα
= btcα

+ 2×#t×bucα

Lemma A.3. If t and u are two λµ→+×⊗⊥-terms and t S u (where  S denotes the
structural reduction) then

∣

∣t
∣

∣>
∣

∣u
∣

∣.

A.1.5 CPS-simulation

We adapt here de Groote’s modified CPS-translation, which simulates the relation of
detour-reduction by strict β-reduction and the relation of structural reduction by
equality.

Definition A.4. The modified CPS-translation t̄̄ of any λµ→+×⊗⊥-term is defined as:

t̄̄ = λk.(t : k)

where k is a fresh variable and where the infix operator �: � obeys the following definition:

a) x : k = (x k)

b) λx.t : k = (k λx.t̄̄ )

c) (t u) : k = t : λm.m ū̄ k

d) 〈t, u〉 : k =(k λm.(m t̄̄ ū̄))

e) fst t : k = t : λm.(m λi.λj.(i k))

f ) snd t : k = t : λm.(m λi.λj.(j k))

g) inl t : k = (k λi.λj.(i t̄̄ ))

h) inr t : k = (k λi.λj.(j t̄̄ ))

i) case t of (inl x) � u | (inr y) � v : k = t : λm.(m λx.(u k) λy.(v k))
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j ) µα.t : k = (t : λk.k){k/α} if α occurs free in t

k) µα.t : k = λα.(t : λk.k) k otherwise

l) [α]t : k = t α

m) (t, u) : k =(k λm.(m t̄̄ ū̄))

n) match t with (x, y) � u : k = t : λm.(m λxλy.(u k)

where m, i, j are fresh variables.

Lemma A.5. Let t and u be two λµ→+×⊗⊥-terms. If t D u (where  D denotes the
structural reduction) then t̄̄  β ū̄.

Lemma A.6. Let t and u be two λµ→+×⊗⊥-terms. If t S u then t̄̄ = ū̄.

Theorem A.7. The well-typed λµ→+×⊗⊥-terms are strongly normalizable.

A.1.6 Church-Rosser property of the λµ→+×⊗⊥-calculus

The Church-Rosser property follows from the local confluence of the reductions, the
strong normalization and Newman lemma.

A.2 Strong normalization and confluence of the λµ→+×−-calculus

Theorem A.8. The typed λµ→+×−-calculus is strongly normalizing and enjoys the
Church-Rosser property.

Proof. Let us denote by Φ the translation from the λµ→+×−-calculus into the
λµ→+×⊗⊥-calculus defined by the following macro-definitions:

make-coroutine t Cα ≡ (t, λz.set-context α C[z])

resume t with x � u ≡ match t with (x, k) � abort (k u)

It is enough to check the following properties: (1) Φ is a morphism for the reduction, (2)
Φ preserves normal forms and (3) Φ is injective on normal forms. Properties (2) and (3)
are easy to check. Let us verify that Φ is a morphism:

• resume (make-coroutine t Cα) with x � u

≡match (t, Cα) with (x, k) � abort (k u)
 abort (Cα u{t/x})
≡ abort (λz.set-context α C[z] u{t/x})
 abort (set-context α C[u{t/x}])
≡ set-context ε set-context α C[u{t/x}]
 set-context α C[u{t/x}]

• C[resume t with x � u]
≡C[match t with (x, k) � abort (k u)]
 match t with (x, k) � C[abort (k u)]
≡match t with (x, k) � C[set-context ε (k u)]
 match t with (x, k) � set-context ε (k u)
≡ resume t with x � u

The remaining rules are straightforward to deal with. �
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Appendix B. SND→∨∧− is sound and complete for SL

In this appendix, we show that SND→∨∧− is conservative over SND→∨∧−
1 and thus it is

sound and complete for Subtractive Logic (SL). We shall prove that any derivation of a
sequent in SND→∨∧− can be translated into a derivation which does not contain any
(right-hand side) introduction rule of implication nor any left-hand side introduction rule
of subtraction, but which depends only on axioms valid in SND→∨∧−

1 .
The tricky part of the proof consists in showing that the constructive introduction rule

of implication commutes with any other rule. Eventually, we conclude by applying the
duality: the constructive left-hand side introduction rule for subtraction also commutes
with any other rule (by duality). In order to prove this property, we have first to gener-
alize these rules :

• We denote by hyp(∆) the set of (occurrences of) hypotheses linked to at least one
conclusion of ∆ and let us define the following generalization of the constructive
introduction rule of implication:

Γ`∆

Γ\{H }`∆\S, H →S∨
where H � hyp(∆\S)

Note that H does not need to occur in Γ, and occurrences of hypotheses of S do
not need to occur (and possibly none does) in ∆.

• Its dual rule, which generalizes the constructive left-hand side introduction rule for
subtraction is the following (where cncl(Γ) denotes the set of occurrences of conclu-
sions linked to at least one hypothesis of Γ)

Γ`∆

Γ\S, S∧−C `∆\{C}
where C � cncl(Γ\S)

Again, C does not need to occur in Γ, and occurrences of hypotheses of S do not
need to occur (and possibly none does) in Γ.

Theorem B.1. The system SND→∨∧− is conservative over SND→∨∧−
1 .

Proof. We first deal with the case of axioms (in section B.1). Then, the main part of the
proof consists in showing that the generalized introduction rule of implication commutes
with any other rule (in section B.2). Eventually, we conclude by applying the duality: the
generalized left-hand side introduction rule for subtraction also commutes with any other
rule (by duality). Note that this procedure terminates since the generalized rules are
always applied to smaller proofs after a replacement. �

B.1 Axioms

Proposition B.2. In SND→∨∧ , the set of annotated sequents that belong to one of the
three following collections:

• Γ, A ` ∆, B where A ` B is valid in SL, and there is at most one link which anno-
tates this sequent, and this link binds A and B together;

• Γ, Y `∆ where Y `⊥ is valid in SL;

• Γ`∆, X where >`X is valid in SL.
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is closed under the generalized (right-hand side) introduction rule of implication (resp.
left-hand side introduction rule for subtraction).

Proof. Let us consider the generalized introduction rule of implication for the three col-
lections of sequents:

1. The upper sequent has the form Γ, A ` ∆, B where A ` B is valid in SL, and the
unique link which annotates this sequent binds A and B together.

• First case, H 
 A and B � S.

Γ, A`∆, B

Γ\{H}, A`∆\S, B, H →S∨

the lower sequent is indeed of the first form.

• Second case, H 
 A and H is discharged onto S ∪{B}

Γ, A`∆, B

Γ\{H}, A`∆\S, H → (S∨∨B)

the lower sequent is indeed of the third form since if A ` B is valid in SL
and B ∈S then A`H → (S∨∨B) is also valid.

• Third case, H = A and A is discharged onto S ∪ {B}

Γ, A`∆, B

Γ`∆\S, A→ (S∨∨B)

the lower sequent is indeed of the third form since if A ` B is valid in SL
then >`A→ (S∨∨B) is also valid.

In the case H = A and B � S, i.e. where A is discharged onto another conclusion
that B, the constructive constraint does not hold. Consequently this case has not
to be considered.

2. The upper sequent has the form Γ, Y `∆ where Y `⊥ is valid in SL.

• First case, H 
 Y and H � hyp(∆\S)

Γ, Y `∆

Γ\{H}, Y `∆\S, H →S∨

the lower sequent is still of the second form.

• Second case, H = Y and Y � hyp(∆\S)

Γ, Y `∆

Γ`∆\S, Y →S∨

Since Y `⊥ is valid in SL, we infer that Y ` S∨ and thus > ` Y → S∨ is also
valid in SL, and the lower sequent is thus of the third form.

3. The upper sequent has the form Γ`∆, X where >`X is valid in SL.

• First case, X � S

Γ`∆, X

Γ\{H} `∆\S, X, H →S∨

the lower sequent is still of the third form.

• Second case, H is discharged onto S ∪ {X}

Γ`∆, X

Γ\{H }`∆\S, H → (S∨∨X)
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Since > ` X is derivable in SL, we infer that H ` S∨ ∨ X and thus > ` H →
(S∨∨X) are also valid in SL, and the lower sequent is thus still of the third
form.

The closure under the left-hand side introduction rule for subtraction is obtained by
duality. �

B.2 Rules

Left-hand side weakening rule

• First case, H 
 A:

Γ`1 ∆
Γ, A`2 ∆

Γ\{H}, A`3 ∆\S, A→S∨

where H � hyp2(∆\S) and thus H � hyp1(∆\S). Replace with:

Γ`∆
Γ\{H} `∆\S, A→S∨

Γ\{H}, A`∆\S, A→S∨

• Second case, H = A:

Γ`1 ∆
Γ, A`2 ∆

Γ`3 ∆\S, A→S∨

where A � hyp2(∆\S) and thus A � hyp1(∆\S). Replace with:

Γ`∆

Γ`∆\S, A→S∨

Left-hand side contraction rule

• First case, H = Az:

Γ, Ax, Ay `1 ∆
Γ, Az `2 ∆

Γ`3 ∆\S, A→S∨

where Az � hyp2(∆\S) and thus Ax � hyp1(∆\S) and Ay � hyp1(∆\{BS}). Replace
with:

Γ, Ax, Ay `∆
Γ, Az `∆\S, A→S∨

Γ`∆\S, A→ (A→S∨)

and then cut with the sequent A→ (A→S∨)`A→S∨ valid in SL.

• Second case, H 
 Az:

Γ, Ax, Ay `1 ∆
Γ, Az `2 ∆

Γ\{H}, Az `3 ∆\S, H →S∨

where H � hyp2(∆\S) and thus H � hyp1(∆\S). Replace with:

Γ, Ax, Ay, H `∆
Γ\{H }, Ax, Ay `∆\S, H →S∨

Γ\{H }, Az `∆\S, H →S∨
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Right-hand side contraction rule

• First case, B � S:

Γ`1 ∆, Bα, Bβ

Γ`2 ∆, Bγ

Γ\{H }`3 ∆\S, H →S∨, Bγ

where H � hyp2(∆\S, Bγ) and thus H � hyp1(∆\S, Bα, Bβ). Replace with:

Γ`∆, B, B

Γ\{H} `∆\S, H →S∨, B, B

Γ\{H} `∆\S, H →S∨, B

• Second case, H is discharged onto S ∪ {B}:

Γ`1 ∆, Bα, Bβ

Γ`2 ∆, Bγ

Γ\{H} `3 ∆\S, H → (S∨∨B)

where H � hyp2(∆\S, Bγ) and thus H � hyp1(∆\S, Bα, Bβ). Replace with:

Γ`∆, B, B

Γ\{H} `∆\S, H → (S∨∨B ∨B)

and then cut with the sequent H → (S∨∨B ∨B)`H → (S∨∨B) valid in SL.

Right-hand side weakening rule

• First case, B � S:

Γ`1 ∆
Γ`2 ∆, B

Γ\{H }`3 ∆\S, H →S∨, B

where H � hyp2(∆\S, B) and thus H � hyp1(∆\S). Replace with:

Γ`∆
Γ\{H} `∆\S, H →S∨

Γ\{H} `∆\S, H →S∨, B

• Second case, H is discharged onto S ∪ {B}:

Γ`1 ∆
Γ`2 ∆, Bα

Γ\{H} `3 ∆\S, H → (S∨∨B)

where H � hyp2(∆\S, Bα) and thus H � hyp1(∆\S). Replace with:

Γ`∆

Γ\{H} `∆\S, H →S∨

and then cut with the sequent H →S∨`H → (S∨∨B) valid in SL.

Cut rule

Γ′`1 A, ∆′ Γ′′, A`4 ∆′′

Γ′, Γ′′`2 ∆′, ∆′′

(Γ′, Γ′′)\{H} `3 (∆′, ∆′′)\S, H →S∨
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where H � hyp2((∆
′, ∆′′)\S) and thus, by setting S′= S ∩Γ′ and S′′= S ∩Γ′′:

• First case, H � Γ′. Replace with:

Γ′`∆′, A
Γ′`∆′\S′, H →S′∨, A

Γ′′, A`∆′′

Γ′′\{H}, A`∆′′\S′, H →S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, H →S′∨, H →S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨)

then cut with the sequent (H →S′∨)∨ (H →S′′∨)`H → (S′∨∨S′′∨) valid in SL.

• Second case, H � Γ′′ and H � hyp1(A) since H � hyp1(A, ∆′\S′). Replace with:

Γ′`∆′, A
Γ′\{H} `∆′\S′, H →S′∨, A

Γ′′, A`∆′′

Γ′′, A`∆′′\S′, H →S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, H →S′∨, H →S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨)

then cut with the sequent (H →S′∨)∨ (H →S′′∨)`H → (S′∨∨S′′∨) valid in SL.

• Third case, H ∈ Γ′ and H ∈ hyp1(A) and since H � hyp1(∆
′′\S′′) we have A �

hyp1(∆
′′\S′). Replace with:

Γ′`∆′, A

Γ′\{H }`∆′\S′, H → (S′∨∨A)
Γ′′, A`∆′′

Γ′′`∆′\S′, A→S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H → (S′∨∨A))∧ (A→S′′∨)

then cut with the sequent (H → (S′∨ ∨ A)) ∧ (A→ S′′∨) ` H → (S′∨ ∨ S′′∨) valid in
SL.

Right-hand side elimination rule for the implication

• First case, B � S:

Γ′`1 ∆′, A→B Γ′′`4 ∆′′, A

Γ′, Γ′′`2 ∆′, ∆′′, B

(Γ′, Γ′′)\{H}`3 (∆′, ∆′′)\S, B, H →S∨

where H � hyp2(B, (∆′, ∆′′)\S) and thus, by setting S′= S ∩Γ′ and S′′ =S ∩Γ′′, we
have H � hyp1(A→B, ∆\S′) and H � hyp4(A, ∆\S′). Replace with:

Γ′`∆′, A→B
Γ′\{H} `∆′\S′, H →S′∨, A→B

Γ′′`∆′′, A
Γ′′\{H} `∆′′\S′′, H →S′′∨, A

(Γ′, Γ′′)\{H}` (∆′, ∆′′)\S, H →S′∨, H →S′′∨, B

(Γ′, Γ′′)\{H}` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨), B

and then cut with the sequent (H → S′∨) ∨ (H → S′′∨) ` H → (S′∨ ∨ S′′∨) valid in
SL.

• Second case, H is discharged onto S ∪ {B}:

Γ′`1 ∆′, A→B Γ′′`4 ∆′′, A

Γ′, Γ′′`2 ∆′, ∆′′, B

(Γ′, Γ
′′)\{H}`3 (∆′, ∆′′)\S, H → (S∨∨B)

where H � hyp2((∆
′, ∆′′)\S) and thus, by setting S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, there

is H � hyp1(∆\S′) and H � hyp4(∆\S′). Replace with:

Γ′`∆′, A→B

Γ′\{H} `∆′\S′, H → (S′∨∨ (A→B))
Γ′′`∆′′, A

∆′′\S′, H → (S′′∨∨A)

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H → (S′∨∨ (A→B)))∧ (H → (S′′∨∨A))
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and then cut with the sequent (H → (S′∨ ∨ (A → B))) ∧ (H → (S′′∨ ∨ A)) ` H →
(S∨∨B) valid in SL.

Left-hand side introduction rule of disjunction

• First case, H 
 A∨B:

Γ′, A`1 ∆′ Γ′′, B `4 ∆′′

Γ′, Γ′′, A∨B `2 ∆′, ∆′′

(Γ′, Γ
′′)\{H }, A∨B `3 (∆′, ∆′′)\S, H →S∨

where H � hyp2((∆
′, ∆′′)\S) and thus, by setting S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, we

have H � hyp1(∆\S′) and H � hyp4(∆\S′). Replace with:

Γ′, A`∆′

Γ′\{H}, A`∆′\S′, H →S′∨

Γ′′, B `∆′′

Γ′′\{H}, B `∆′′, H →S′′∨

(Γ′, Γ′′)\{H}, A∨B ` (∆′, ∆′′)\S, H →S′∨, H →S′′∨

(Γ′, Γ′′)\{H}, A∨B ` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨)

and then cut with the sequent (H → S′∨) ∨ (H → S′′∨) ` H → (S′∨ ∨ S′′∨) valid in
SL.

• Second case, H = A∨B:

Γ′, A`1 ∆′ Γ′′, B `4 ∆′′

Γ′, Γ′′, A∨B `2 ∆′, ∆′′

Γ′, Γ′′`3 (∆′, ∆′′)\S, A∨B→S∨

where A ∨ B � hyp2((∆
′, ∆′′)\S) and thus, by setting S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′,

we have A � hyp1(∆\S′) and B � hyp4(∆\S′). Replace with:

Γ′, A`∆′

Γ′\{H} `∆′\S′, A→S′∨

Γ′′, B `∆′′

∆′′\S′, B→S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (A→S′∨)∧ (B→S′′∨)

and then cut with the sequent (A→S′∨)∧ (B→ S′′∨)` (A∨B)→ (S′∨∨ S′′∨) valid
in SL.

Left-hand side elimination rule of disjunction
We consider only the case of the first injection , the second one is similar.

• First case, H 
 A:

Γ, A∨B `1 ∆
Γ, A`2 ∆

Γ\{H}, A`3 ∆\S, H →S∨

where H � hyp2(∆\S) and thus H � hyp1(∆\S). Replace with:

Γ, A∨B `∆
Γ\{H}, A∨B `∆\S, H →S∨

Γ\{H }, A`∆\S, H →S∨

• Second case, H = A:

Γ, A∨B `1 ∆
Γ, A`2 ∆

Γ\{H }`3 ∆\S, A→S∨

where H � hyp2(∆\S) and thus H � hyp1(∆\S) and A � hyp4(∆\S). Replace with:

Γ, A∨B `∆

Γ\{H} `∆\S, (A∨B)→S∨
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and then cut with the sequent (A∨B)→S∨`A→S∨ valid in SL.

Introduction rule for conjunction

• First case, A∧B∈S :

Γ′`1 ∆′, A Γ′′`4 ∆′′, B

Γ′, Γ′′`2 ∆′, ∆′′, A∧B

(Γ′, Γ′′)\{H} `3 (∆′, ∆′′)\S, A∧B, H →S∨

where H∈hyp2(A, B, (∆′, ∆′′)\S) and thus by setting S′ = S ∩Γ′ et S′′ = S ∩ Γ′′, we
have H∈hyp1(A, ∆\S′) and H∈hyp4(B, ∆\S′). Replace with:

Γ′`∆′, A
Γ′\{H} `∆′\S′, H →S′∨, A

Γ′′`∆′′, B
Γ′′\{H} `∆′′\S′′, H →S′′∨, B

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, H →S′∨, H →S′′∨, A∧B

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨), A∧B

then cut with the sequent (H →S′∨)∨ (H →S′′∨)`H → (S′∨∨S′′∨) valid in SL.

• Second case, H is discharged onto S ∪ {A∧B} :

Γ′`1 ∆′, A Γ′′`4 ∆′′, B

Γ′, Γ′′`2 ∆′, ∆′′, A∧B

(Γ′, Γ
′′)\{H }`3 (∆′, ∆′′)\S, H → (S∨∨ (A∧B))

where H∈hyp2((∆
′, ∆′′)\S) and thus by setting S′ = S ∩ Γ′ et S′′ = S ∩ Γ′′, on a

H∈hyp1(∆\S′) and H∈hyp4(∆\S′). Replace with:

Γ′`∆′, A

Γ′\{H} `∆′\S′, H → (S′∨∨A)
Γ′′`∆′′, B

∆′′\S′, H → (S′′∨∨B)

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, (H → (S′∨∨A))∧ (H → (S′′∨∨B))

then cut with the sequent (H → (S′∨∨A))∧ (H → (S′′∨∨B))`H → (S∨∨ (A∧B))
valid in SL.

Elimination rule for conjunction
We deal only with the first projection, the second one is similar.

• First case, A∈S :

Γ`1 ∆, A∧B

Γ`2 ∆, A

Γ\{H} `3 ∆\S, H →S∨, A

where H∈hyp2(A, ∆\S) and thus H∈hyp1(A∧B, ∆\S). Replace with:

Γ`∆, A∧B

Γ\{H} `∆\S, H →S∨, A∧B

Γ\{H }`∆\S, H →S∨, A

• Second case, H is discharged onto S ∪ {A} :

Γ`1 ∆, A∧B

Γ`2 ∆, A

Γ\{H} `3 ∆\S, H → (S∨∨A)

where H∈hyp2(∆\S) and thus H∈hyp1(∆\S) and A∈hyp4(∆\S). Replace with:

Γ`∆, A∧B

Γ\{H} `∆\S, H → (S∨∨ (A∧B))
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then cut with the sequent H → (S∨∨ (A∧B))`H → (S∨∨A) valid in SL.

Left-hand side elimination rule for subtraction

• First case, H 
 A :

Γ′, A−B `1 ∆′ Γ′′, B `4 ∆′′

Γ′, Γ′′, A`2 ∆′, ∆′′

(Γ′, Γ
′′)\{H}, A`3 (∆′, ∆′′)\S, H →S∨

where H∈hyp2((∆
′, ∆′′)\S) and thus by setting S′ = S ∩ Γ′ et S′′ = S ∩ Γ′′, we have

H∈hyp1(∆\S′) and H∈hyp4(∆\S′). Replace with:

Γ′, A−B `∆′

Γ′\{H}, A−B `∆′\S′, H →S′∨

Γ′′, B `∆′′

Γ′′\{H}, B `∆′′, H →S′′∨

(Γ′, Γ′′)\{H}, A` (∆′, ∆′′)\S, H →S′∨, H →S′′∨

(Γ′, Γ′′)\{H}, A` (∆′, ∆′′)\S, (H →S′∨)∨ (H →S′′∨)

then cut with the sequent (H →S′∨)∨ (H →S′′∨)`H → (S′∨∨S′′∨) valid in SL.

• Second case, H = A :

Γ′, A−B `1 ∆′ Γ′′, B `4 ∆′′

Γ′, Γ′′, A`2 ∆′, ∆′′

Γ′, Γ′′`3 (∆′, ∆′′)\S, A→S∨

where A∈hyp2((∆′, ∆′′)\S) and thus by setting S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, we
have A−B∈hyp1(∆\S′) and B∈hyp4(∆\S′). Replace with:

Γ′, A−B `∆′

Γ′\{H }`∆′\S′, (A−B)→S′∨

Γ′′, B `∆′′

∆′′\S′, B→S′′∨

(Γ′, Γ′′)\{H} ` (∆′, ∆′′)\S, ((A−B)→S′∨)∧ (B→S′′∨)

then cut with the sequent ((A − B)→ S′∨) ∧ (B → S′′∨) ` (A→ (S′∨∨ S′′∨) valid in
SL.

Left-hand side introduction rule for subtraction

• First case, H 
 A−B:

Γ, A`1 ∆, B

Γ, A−B `2 ∆
Γ\{H}, A−B `3 ∆\S, H →S∨

where H∈hyp2(∆\S) and H∈hyp1(B) and thus H∈hyp1(∆\S, B). Replace with:

Γ, A`∆, B

Γ\{H }, A`∆\S, H →S∨, B

Γ\{H}, A−B `∆\S, H →S∨

• Second case, H = A−B:

Γ, A`1 ∆, B

Γ, A−B `2 ∆
Γ`3 ∆\S, (A−B)→S∨

where H∈hyp2(∆\S) and H∈hyp1(B) and thus H∈hyp1(∆\S, B). Replace with:

Γ, A`∆, B

Γ`∆\S, A→ (S∨∨B)

then cut with the sequent A→ (S∨∨B)` (A−B)→S∨ valid in SL.
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