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Abstract

We derive a confluent λ-calculus with a catch/throw mechanism (called λct-calculus) from
M. Parigot’s λµ-calculus. We also present several translations from one calculus into the
other which are morphisms for the reduction. We use them to show that the λct-calculus
is a retract of λµ-calculus (these calculi are isomorphic if we consider only convertibility).
As a by-product, we obtain the subject reduction property for the λct-calculus, as well
as the strong normalization for λct-terms typable in the second order classical natural
deduction.

1 Introduction

In the last four years, several extensions of the λ-calculus with some catch/throw

mechanism have been proposed by H. Nakano (1994a; 1994b; 1995) and by M. Sato

(1997) and Y. Kameyama (1997; 1998). In these papers, the authors consider the

catch/throw mechanism as “intrinsically non-deterministic” and thus investigate

non-confluent calculi or confine themselves to some specific evaluation strategy.

For instance in (Nakano, 1994b), the non-deterministic feature of the catch/throw

mechanism is introduced by the following rule:

C[throw α t] 7→ throw α t

where the context C[•] does not capture α or any individual/tag variable occurring

freely in t. Let us now look at the following example from H. Nakano (1994b):

M ≡ catch α ((λx.λy.1 (throw α 2) (throw α 3))

If we assume that we also have the two following rules catch α throw α t →

catch α t and catch α t → t when α does not occur free in t, we have three

possible normal forms depending on the evaluation strategy:

M →β catch α ((λy.1 (throw α 2)) →β catch α 1 → 1

M 7→ catch α throw α 2 → catch α 2 → 2

M 7→ catch α throw α 3 → catch α 3 → 3
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In this paper, we will see however that it if we weaken the rule 7→, it is possible to

define a confluent λ-calculus with a catch/throw mechanism. This calculus, called

λct-calculus, is in fact derived from M. Parigot’s λµ-calculus. We will present several

“canonical” morphisms for the reduction from one calculus to the other (this notion

of canonical translation will be formalized).

Then we show that the λct-calculus is a canonical retract of the λµ-calculus. This

will enable us to derive the confluence of the λct-calculus from the confluence of the

λµ-calculus. We also prove that the converse is not true (the λµ-calculus is not a

canonical retract of the λct-calculus) since there is no surjective canonical morphism

from the λct-calculus to the λµ-calculus. Both calculi are however isomorphic if we

consider terms up to renaming/simplification.

As a by-product of these translations, we will also obtain the subject reduction

property as well as the strong normalization for terms typable in the second order

classical natural deduction.

As usual with control operators, the catch/throw mechanism is easier to intro-

duce in the framework of abstract stack machines. Indeed, control operators are

aimed to handle the continuation (i.e. the rest of the computation to be performed,

see Felleisen at al. (1986; 1987) or Reynolds (1993) for a survey), and precisely, in

abstract stack machines, the continuation is represented by the stack. In the remain-

der of this introduction, we will thus consider two simple extensions of Krivine’s

abstract machine: the λµ-machine and the λct-machine. The former is designed for

evaluating λµ-terms, as suggested in (Parigot, 1993) and developped in (Beus &

Streicher, 1998; De Groote, 1999), while the latter is provided with a catch/throw

mechanism.

In section 2, we derive the reduction rules of the λct-calculus from the rules of

the λµ-calculus. In section 3, we prove that the λct-calculus is a canonical retract

of the λµ-calculus and as a corollary we obtain the confluence of the λct-calculus.

In section 4, we take advantage of the fact that the classical natural deduction may

be seen as a type system for the λct-calculus, as well as for the λµ-calculus.

1.1 An abstract machine for the λµ-calculus

We first recall the syntax of λµ-terms (as usual, we use x, y, z . . . as λ-variables and

α, β, γ . . . as µ-variables). The set of λµ-terms is inductively defined as follows.

Definition 1.1.1
If t, u are λµ-terms then the following terms are also λµ-terms (where α and β

range over µ-variables and x ranges over λ-variables):

x, (t u), λx.t, µα[β]t

Remark. The µ-operator is a binder (the µ-variable α is bound in µα[β]t).

We will now define the λµ-machine as a rewrite system. For that purpose we

recall some common definitions (see (Beus & Streicher, 1998) for instance): a

closure is inductively defined as a triple 〈λµ-term, closure-environment, stack-

environment〉 where a closure-environment is a list of pairs (λ-variable, closure),
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a stack-environment is a list of pairs (µ-variable, stack) and a stack is a list of

closures.

The rules of the λµ-machine are given below. The variables CE and SE range over

closure-environments and stack-environments, respectively. As usual, the notation

E(v), whereE is a closure-environment (resp. stack-environment) and v a λ-variable

(resp. µ-variable) stands for the closure (resp. stack) assigned to v in E.

• (〈x,CE, SE〉, S) → (CE(x), S)

• (〈(u v), CE, SE〉, S) → (〈u,CE, SE〉, 〈v, CE, SE〉 :: S)

• (〈λx.t, CE, SE〉, c :: S) → (〈t, (x, c) :: CE, SE〉, S)

• (〈µα[β]t, CE, SE〉, S) → (〈t, CE, (α, S) :: SE〉, ((α, S) :: SE)(β))

Remark. We wrote ((α, S) :: SE)(β) in the last rule (and not just SE(β)) in order

to deal with the case α = β.

An instruction of the form µα[β]t is carried out as expected: the machine first

binds the current continuation to name α, then restores the continuation whose

name is β in the current environment (discarding the current continuation) and

eventually evaluates t.

Remark. Notice that this abstract machine actually evaluates only the weak head

normal form of a λµ-term. For further details, see (Beus & Streicher, 1998; De

Groote, 1999).

1.2 An abstract machine with a catch/throw mechanism

We still consider two separate name-spaces for λ-variables and µ-variables (or “tag-

variables”). The set of λct-terms is inductively defined as follows.

Definition 1.2.1

If t, u are λct-terms then the following terms are also λct-terms (where α ranges

over µ-variables and x ranges over λ-variables):

x, (t u), λx.t, catch α t, throw α t

Remark. The catch operator is a binder (the µ-variable α is bound in catch α t).

The intended behaviour of the catch and throw operators is intuitively clear.

To evaluate catch α t, the machine should bind the current continuation to name α

and then evaluate t. To evaluate throw α t, the machine should discard the current

continuation, restore the continuation whose name is α in the current environment,

and eventually evaluate t. Formally, to define the λct-machine, just replace the last

rule of the λµ-machine by the following rules:

• (〈catch α t, CE, SE〉, S) → (〈t, CE, (α, S) :: SE〉, S)

• (〈throw α t, CE, SE〉, S) → (〈t, CE, SE〉, SE(α))
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1.3 Simulating one machine by the other

It is easy to simulate the behaviour of µα[β]t in the λct-machine. Indeed, let us

consider a term of the form catch α throw β t. To evaluate such a term, the

λct-machine binds the current stack to name α, restores the stack whose name is

β in the current environment and then evaluates t: this is exactly what does the

λµ-machine when it evaluates µα[β]t.

Conversely, the behaviour of the catch and throw operators can also be simu-

lated in the λµ-machine.

• Let us first consider a term of the form µα[α]t. When the λµ-machine evalu-

ates such a term, it first binds the current stack to name α, then restores this

very stack, before it evaluates t. This is exactly what does the λct-machine

when it evaluates catch α t.
• Let us now consider the instruction µα[β]t where α does not occur in t.

To carry out this term, the λµ-machine binds the current stack to name α,

then restores the stack whose name is β in the current environment before

it evaluates t. Since α does not occur in t, the current stack should have

been discarded, and this is exactly what does the λct-machine whenever it

evaluates throw β t.

2 The catch and throw operators and the λµ-calculus

In the previous section, we have discussed how abstract machines can simulate one

another. However, restricting ourselves to some abstract machine amounts exactly

to considering a specified evaluation strategy (weak head reduction for Krivine’s

abstract machines). In this section, we show that the simulation of the catch and

throw operators defined in the framework of abstract machines work as well when

we consider the λµ-calculus as a confluent rewriting system: we will take advantage

of this in the next section to derive a confluent λ-calculus with some catch/throw

mechanism. Let us first recall the reduction rules of the λµ-calculus (note that the

original proof of confluence of the λµ-calculus given in (Parigot, 1992) is broken by

the renaming rule, however the fix is easy and presented in (Py, 1998)).

Reduction rules of the λµ-calculus

• The β-reduction:

(λx.t u) → t{u/x}

• The structural rule:

(µα.t u) → µα.t{[α](w u)/[α]w}

• The renaming rule:

[β]µα.t → t{β/α}

• The simplification rule:

µα[α]t → t if α does not occur free in t
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The notation t{u/x} stands for the usual capture-avoiding substitution of the

λ-variable x by u in t. The structural substitution t{[α](w u)/[α]w} is defined

inductively by:

• x{[α](w v)/[α]w} = x

• (λx.t){[α](w v)/[α]w} = λx.t{[α](w v)/[α]w}

• (t u){[α](w v)/[α]w} = (t{[α](w v)/[α]w} u{[α](w v)/[α]w})

• (µβ.t){[α](w v)/[α]w} = µβ.t{[α](w v)/[α]w}

• ([α]t){[α](w v)/[α]w} = [α](t{[α](w v)/[α]w} v)

• ([β]t){[α](w v)/[α]w} = [β]t{[α](w v)/[α]w} if α 6= β.

Remark. We will sometimes use the more explicit notation t{µβ[α](w u)/µβ[α]w}

for structural substitution above since any occurrence of [α]w in t has actually the

shape µβ[α]w.

Definition 2.0.1

We call simple λµ-term a term which contains no renaming/simplification redex.

Remark. The simple form of a λµ-term t (which is obtained from t by applying

only renaming/simplification rules) is unique (modulo α-conversion) and is reached

in a linear number of reduction steps. Indeed, it is easy to check that renaming

and simplification rules commute with any other rule. Moreover, the application of

renaming/simplification rules strictly decreases the size of the term.

Notation. We denote by t the simple form of a λµ-term t.

2.1 Deriving the rules

We saw in the previous section that the catch and throw operators can be sim-

ulated respectively by catch α t ≡ µα[α]t and throw α t ≡ µβ[α]t where β is a

µ-variable different from α and which does not occur free in t.

Notation. We will use the abbreviation µ [α]t in the latter case, where stands for

any µ-variable different from α which does not occur free in t. Moreover, to avoid

any confusion, we will use italic font for macros (while we use boldface font for

built-in operators).

We will call λµct -calculus the sublanguage of the λµ-calculus containing only

the “macros” catch and throw (in other words, where any occurrence of a subterm

µα[β]t is either of the form µα[α]t or of the form µ [β]t). Unfortunately the subset

consisting of all λµct -terms is not closed under reduction because of the following

rule:

catch α throw β t = µα[α]µ [β]t → µα[β]t{α/ } = µα[β]t

We will therefore restrict ourselves to instances of rules for which the contractum

is still a λµct -term. We obtain these rules by enumerating all the redexes that may

occur in a λµct -term.
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• The subset of λµct -terms is clearly closed under substitution. We thus obtain

the β-reduction as a derived rule (since the contractum is always a λµct -term):

(λx.t u) → t{u/x}

• Any redex of the form µα[α]t that occurs in a λµct -term has the form

catch α t. The rule µα[α]t → t, if α does not occur free in t, thus yields

a unique derived rule (since the contractum is still a λµct -term):

catch α t = µα[α]t → t

• Any redex of the form (µα.w v) (to be more specific (µα[β]u v)) that occurs

in a λµct -term is either of the form (catch α u) v or of the form (throw α u) v.

The rule (µα.w v) → µα.w{[α](t v)/[α]t} yields two derived rules (since in

both cases the contractum is still a λµct -term):

((catch α u) v) = (µα[α]u v) → µα([α]u){[α](t v)/[α]t}
= µα[α](u({µ [α](t v)/µ [α]t} v)

= catch α (u{throw α (t v)/throw α t} v)

((throw α u) v) = (µδ[α]u v) → µδ([α]u){[δ](t v)/[δ]t}
= µδ[α]u = throw α u

since, by definition of throw , the variable δ is different from α and does not

occur free in u.

• Any redex of the form [α]µβ.w (to be more specific µγ[α]µβ[δ]t) that oc-

curs in a λµct -term has one of the four following forms: catch α catch β t,

throw α throw β t, throw α catch β t, catch α throw β t. The rule [α]µβ.w →

w{α/β} yields four cases:

catch α catch β t = µα[α]µβ[β]t → µα[α]t{α/β} = catch α t{α/β}

throw α throw β t = µ [α]µ [β]t → µ [β]t{α/ } = throw β t

throw α catch β t = µ [α]µβ[β]t → µ [α]t{α/β} = throw α t{α/β}

catch α throw β t = µα[α]µ [β]t → µα[β]t{α/ } = µα[β]t

The first three cases yield three derived rules, but in the last case (as we already

saw) the contractum is no more a λµct -term. Nevertheless, in the special case α = β

we obtain the following derived rule:

catch α throw α t = µα[α]µ [α]t → µα[α]t = catch α t

Remark. The rule catch α throw β t → µα[β]t shows that the two “macros” catch

and throw are enough to express all the λµ-terms up to renaming.

Let us summarize the derived rules we obtained above in the following definition

(where catch and throw are now native operators):

Definition 2.1.1

We call λct-calculus the λ-calculus together with the operators catch and throw

defined by the 8 following rules:

1. (λx.t u) → t{u/x}
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2. ((catch α t) u) → catch α (t{throw α (w u)/throw α w} u)

3. ((throw α t) u) → throw α t

4. catch α catch β t → catch α t{α/β}

5. throw α throw β t → throw β t

6. throw α catch β t → throw α t{α/β}

7. catch α throw α t → catch α t

8. catch α t → t if α does not occur free in t.

Notation. The structural substitution t{throw α (w u)/throw α w} is defined

inductively by:

• x{throw α (w u)/throw α w} = x

• (λx.t){throw α (w u)/throw α w} =

λx.t{throw α (w u)/throw α w}

• (s t){throw α (w u)/throw α w} =

(s{throw α (w u)/throw α w} t{throw α (w u)/throw α w})

• (catch β t){throw α (w u)/throw α w} =

catch β t{throw α (w u)/throw α w}

• (throw α t){throw α (w u)/throw α w} =

throw α (t{throw α (w u)/throw α w} u)

• (throw β t){throw α (w u)/throw α w} =

throw β t{throw α (w u)/throw α w} if α 6= β.

Definition 2.1.2

Rules 4, 5, 6, 7 are called renaming rules. Rule 8 is called simplification rule. A

simple λct-term is a term which contains no renaming/simplification redex.

Remark. As for λµ-terms, the simple form of a λct-term t (which is obtained from t

by applying only renaming and simplification rules) is unique (modulo α-conversion)

and is reached in a linear number of reduction steps. Two λct-terms are said to be

equal up to renaming/simplification if they have the same simple form.

Notation. We denote by t the simple form of a λct-term t.

3 Canonical morphisms

The construction of the λct-calculus lets us expect the existence of some canonical

translations that embedd each calculus into the other and which are morphisms for

the reduction. We first formalize this notion of canonical translation. Then we show

that the λct-calculus is a canonical retract of the λµ-calculus. This will enable us to

derive the confluence of the λct-calculus from the confluence of the λµ-calculus. We

also show that the converse is not true (the λµ-calculus is not a canonical retract

of the λct-calculus) since there is no surjective canonical morphism from the λct-

calculus to the λµ-calculus. Both calculi are however isomorphic if we consider

terms up to renaming/simplification (and consequently up to convertibility).
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To be more specific, we will define two canonical translations Λι
ct

and Λs
ct

of λµ-

terms into λct-terms and two canonical translations Λι
µ and Λs

µ of λct-terms into

λµ-terms such that:

• Λs
ct

◦ Λι
µ = Idct and thus Λs

ct
is surjective and Λι

µ is injective.

• Λs
µ ◦ Λι

ct
= Idµ and thus Λs

µ is surjective and Λι
ct

is injective.

• Λι
µ and Λs

ct
are morphisms and thus 〈Λι

µ,Λ
s
ct
〉 is a retraction pair.

• Λι
ct

is a morphism, but Λs
µ is not a morphism (since there is no surjective

canonical morphism from the λct-calculus to the λµ-calculus).

3.1 Morphisms

We give here the formal definition of a morphism. As usual, for any relation → we

denote by →⋆ the reflexive, transitive closure of →.

Definition 3.1.1

Given two calculus c1 and c2 and a mapping Φ from c1 to c2, we say that Φ is a

morphism for →c1
iff for any terms t, u of c1:

t →c1
u implies Φ(t) →⋆

c2
Φ(u)

Remarks

• A morphism for the reduction also preserves convertibility. In other words, if Φ

is a morphism for →c1
and if =ci

denotes the reflexive, symmetric, transitive

closure of →ci
:

t =c1
u implies Φ(t) =c2

Φ(u)

• A mapping Φ which preserves one-step reduction:

t →c1
u implies Φ(t) →c2

Φ(u)

is of course a morphism according to the previous definition.

• If Φ is an injective morphism and the relation →c1
is irreflexive (i.e. t 6→c1

t

for any t, which is usually the case for one-step reduction) then if →+
ci
denotes

the transitive closure of →ci
:

t →c1
u implies Φ(t) →+

c2
Φ(u)

3.2 Canonical translations

Let us notice that there is a very natural bijection between simple terms of both

calculi (see proposition 3.2.3). A translation from one calculus into the other is thus

said to be canonical if it extends this natural bijection. Conversely, we recover this

natural bijection from any canonical translation when we consider terms equal up

to renaming/simplification (in both calculi).

Definition 3.2.1

We define the mapping Λs
µ from λct-terms to λµ-terms by induction:
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• Λs
µ(x) = x, if x is a λ-variable,

• Λs
µ((u v)) = (Λs

µ(u) Λ
s
µ(v))

• Λs
µ(λx.t) = λx.Λs

µ(t)

• Λs
µ(catch α t) =

{

µα[β]Λs
µ(u) if t has the form throw β u

µα[α]Λs
µ(t) otherwise

• Λs
µ(throw α t) = µδ[α]Λs

µ(t) where δ is a fresh µ-variable.

Definition 3.2.2

We define the mapping Λs
ct

from λµ-terms to λct-terms by induction:

• Λs
ct
(x) = x, if x is a λ-variable,

• Λs
ct
((u v)) = (Λs

ct
(u) Λs

ct
(v))

• Λs
ct
(λx.t) = λx.Λs

ct
(t)

• Λs
ct
(µα[β]t) =







catch α Λs
ct
(t) if α = β

throw β Λs
ct
(t) if α 6= β and α is not free in t

catch α throw β Λs
ct
(t) otherwise

Remark. For any λct-term (resp λµ-term) t, the free λ-variables and µ-variables are

the same in t and Λs
ct
(t) (resp. Λs

µ(t)).

Proposition 3.2.3

The mapping Λs
ct

(resp. Λs
µ) is a bijection between simple forms of both calculi.

Proof

Check that if t is a simple λct-term then Λs
ct
(Λs

µ(t)) = t and conversely if t is a

simple λµ-term then Λs
µ(Λ

s
ct
(t)) = t.

Remark. Notice that neither Λs
ct

nor Λs
µ is a bijection (if we do not restrict the

domain to simple terms). Indeed, Λs
ct

is not injective since if t is a λµ-term such

that α 6= β and α occurs free in t:

Λs
ct
(µα[α]µ [β]t) = catch α throw β Λs

ct
(t) = Λs

ct
(µα[β]t)

Besides, Λs
µ is not injective since if t is a λct-term which has not the form throw β u:

Λs
µ(catch α throw α t) = (µα[α]Λs

µ(t)) = Λs
µ(catch α t)

Definition 3.2.4

A translation Ψ from the λct-calculus into the λµ-calculus is said to be canonical if

for any λct-term t, Ψ(t) = Λs
µ(t). Conversely, A translation Φ from the λµ-calculus

into the λct-calculus is said to be canonical if for any λµ-term t, Φ(t) = Λs
ct
(t).

Remark. A canonical translation is thus a translation which maps sequences of

control operators of one calculus onto sequences of control operators of the other

calculus and leaves the rest unchanged. In particular, a term without control oper-

ator is translated into itself.

Proposition 3.2.5

The translations Λs
µ and Λs

ct
are canonical.
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Proof

Check by induction on the λct-term (resp. λµ-term) t, Λs
µ(t) = Λs

µ(t) (resp. Λ
s
ct
(t) =

Λs
ct
(t)).

3.3 Injective canonical morphisms

In this section we define two injective canonical morphisms Λι
ct

and Λι
µ from one

calculus into the other. Since these translations are injective, they will allow us to

derive the strong normalization of one calculus from the strong normalization of

the other calculus (see section 4).

From the λct-calculus towards the λµ-calculus

Definition 3.3.1

We define the mapping Λι
µ from λct-terms to λµ-terms by induction:

• Λι
µ(x) = x, if x is a λ-variable,

• Λι
µ((u v)) = (Λι

µ(u) Λ
ι
µ(v))

• Λι
µ(λx.t) = λx.Λι

µ(t)

• Λι
µ(catch α t) = µα[α]Λι

µ(t)

• Λι
µ(throw α t) = µδ[α]Λι

µ(t) where δ is a fresh µ-variable.

Remark. For any λct-terms t, Λι
µ(t) is a λµct -term.

Proposition 3.3.2

The mapping Λι
µ is canonical.

Proof

Check by induction on the λct-term t that Λι
µ(t) = Λs

µ(t).

We easily show that Λι
µ is a morphism for the reduction.

Proposition 3.3.3

For any λct-terms t, t′, if t →ct t
′ then Λι

µ(t) →λµ Λι
µ(t

′).

Proof

By construction, since for any λct-term t, Λι
µ(t) is a λµct -term and any reduction

rule of the λct-calculus comes from some reduction rule of the λµ-calculus.

From the λµ-calculus towards the λct-calculus

Definition 3.3.4

We define the mapping Λι
ct

from λµ-terms to λct-terms by induction:

• Λι
ct
(x) = x, if x is a λ-variable,

• Λι
ct
((u v)) = (Λι

ct
(u) Λι

ct
(v))

• Λι
ct
(λx.t) = λx.Λι

ct
(t)

• Λι
ct
(µα[β]t) = catch α throw β Λι

ct
(t)
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Proposition 3.3.5

The mapping Λι
ct

is canonical.

Proof

Check by induction on the λµ-term t that Λι
ct
(t) = Λs

ct
(t).

We will now show that Λι
ct

is a morphism for the reduction.

Lemma 3.3.6

For any λµ-terms u, v and any variable x free in u:

Λι
ct
(u{v/x}) = Λι

ct
(u){Λι

ct
(v)/x}

Proof

By induction on the term u.

Lemma 3.3.7

For any instance u → v of a rule of the λµ-calculus we have Λι
ct
(u) →⋆

ct
Λι
ct
(v).

Proof

We consider each rule of the λµ-calculus:

• Case of the β-reduction (λx.u v) →β u{v/x}:

Λι
ct
((λx.u v)) = (λx.Λι

ct
(u) Λι

ct
(v)) →β Λι

ct
(u){Λι

ct
(v)/x} = Λι

ct
(u{v/x})

by the substitution lemma.

• Case of the rule (µα.u v) → µα.u{[α](t v)/[α]t}

Λι
ct
(µα.u v)

= (catch α Λι
ct
(u) Λι

ct
(v))

→2 catch α (Λι
ct
(u){throw α (t Λι

ct
(v))/throw α t} Λι

ct
(v))

= Λι
ct
(µα.u{[α](t v)/[α]t})

• Case of the rule [β]µαt → t{β/α}, i.e. µγ[β]µα[δ]t → µγ([δ]t){β/α}

Λι
ct
(µγ[β]µα[δ]t) = catch γ throw β catch α throw δ Λι

ct
(t)

→6 catch γ throw β (throw δ Λι
ct
(t)){β/α}

→5 catch γ (throw δ Λι
ct
(t)){β/α}

= Λι
ct
(µγ([δ]t){β/α})

• Case of the rule µα[α]t → t if α does not occur free in t.

Λι
ct
(µα[α]t) = catch α throw α Λι

ct
(t)

→7 catch α Λι
ct
(t)

→8 Λι
ct
(t)

In the sequel, we will need the usual concept of context (i.e. a term with a hole).

Given a context, denoted by C[•], the notation C[t] stands for the term obtained

by replacing in C[•] the symbol • (the hole) by the term t. Let us now prove the

following lemma:

Lemma 3.3.8
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For any context C[•] and any λµ-terms u, v, if Λι
ct
(u) →ct Λ

ι
ct
(v) then:

Λι
ct
(C[u]) →ct Λι

ct
(C[v])

Proof

If we extend Λι
ct

to λµ-contexts by taking Λι
ct
(•) = •, we easily prove that for any

λµ-context C and any λµ-term t, we have Λι
ct
(C[t]) = Λι

ct
(C){Λι

ct
(t)}.

Proposition 3.3.9

For any λµ-terms u, v, if u →λµ v then Λι
ct
(u) →⋆

ct
Λι
ct
(v).

Proof

By lemma 3.3.7 and lemma 3.3.8.

To round off this section, let us prove two useful lemmas:

Lemma 3.3.10

Λs
ct

◦ Λι
µ = Idct.

Proof

Let us prove that Λs
ct
(Λι

µ(t)) = t by induction on the λct-term t:

• Λs
ct
(Λι

µ(x)) = Λs
ct
(x) = x, if x is a λ-variable,

• Λs
ct
(Λι

µ((u v))) = Λs
ct
((Λι

µ(u) Λ
ι
µ(v)) = (Λs

ct
(Λι

µ(u)) Λ
s
ct
(Λι

µ(v))) = (u v)

• Λs
ct
(Λι

µ(λx.t)) = Λs
ct
(λx.Λι

µ(t)) = λx.Λs
ct
(Λι

µ(t)) = λx.t

• Λs
ct
(Λι

µ(catch α t)) = Λs
ct
(µα[α]Λι

µ(t)) = catch α Λs
ct
(Λι

µ(t)) = catch α t

• Λs
ct
(Λι

µ(throw α t)) = Λs
ct
(µδ[α]Λι

µ(t)) where δ is a fresh µ-variable

= throw α Λs
ct
(Λι

µ(t)) since δ does not occur in Λι
µ(t)

= throw α t

Remark. The translation Λs
ct

is thus surjective, and the translation Λι
µ is injective.

However, Λι
µ is clearly not surjective since Λι

µ maps any λct-term to some λµct -

term. We already saw that Λs
ct

is not injective.

Lemma 3.3.11

Λs
µ ◦ Λι

ct
= Idµ.

Proof

Let us prove that Λs
µ(Λ

ι
ct
(t)) = t by induction on the λµ-term t:

• Λs
µ(Λ

ι
ct
(x)) = Λs

µ(x) = x, if x is a λ-variable,

• Λs
µ(Λ

ι
ct
((u v))) = Λs

µ((Λ
ι
ct
(u) Λι

ct
(v)) = (Λs

µ(Λ
ι
ct
(u)) Λs

µ(Λ
ι
ct
(v))) = (u v)

• Λs
µ(Λ

ι
ct
(λx.t)) = Λs

µ(λx.Λ
ι
ct
(t)) = λx.Λs

µ(Λ
ι
ct
(t)) = λx.t

• Λs
µ(Λ

ι
ct
(µα[β]t)) = Λs

µ(catch α throw β Λι
ct
(t)) = µα[β]Λs

µ(Λ
ι
ct
(t)) = µα[β]t

Remark. The translation Λs
µ is thus surjective, and the translation Λι

ct
is injective.

However, Λι
ct

is clearly not surjective since Λι
ct

maps any λµ-term to some λct-term

in which any catch is followed by a throw. We already saw that Λs
µ is not injective.
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3.4 The λct-calculus is a canonical retract of the λµ-calculus

In this section we show that Λs
ct

is a morphism and thus 〈Λι
µ,Λ

s
ct
〉 is a retraction

pair (the λct-calculus is a canonical retract of the λµ-calculus).

Lemma 3.4.1

For any λµ-terms u, v and any variable x free in u:

Λs
ct
(u{v/x}) = Λs

ct
(u){Λs

ct
(v)/x}

Proof

By induction on the λµ-term u.

Lemma 3.4.2

For any instance u → v of any rule of the λµ-calculus we have Λs
ct
(u) →⋆

ct
Λs
ct
(v).

Proof

We consider each rule of the λµ-calculus:

• Case of the β-reduction (λx.u v) →β u{v/x}:

Λs
ct
((λx.u v)) = (λx.Λs

ct
(u) Λs

ct
(v)) →β Λs

ct
(u){Λs

ct
(v)/x} = Λs

ct
(u{v/x})

by the substitution lemma.

• Case of the rule (µα[β]u v) → µα([β]u){[α](t v)/[α]t}

1. If α = β then µα([β]u){[α](t v)/[α]t}= µα[α](u{[α](t v)/[α]t} v),

Λs
ct
(µα[α]u v)

= (catch α Λs
ct
(u) Λs

ct
(v))

→2 catch α (Λs
ct
(u){throw α (t Λs

ct
(v))/throw α t} Λs

ct
(v))

= Λs
ct
(µα[α](u{[α](t v)/[α]t} v))

since any occurrence of a subterm µβ[α]t (for some β 6= α) is translated,

by definition of Λs
ct
, either into catch β throw α Λs

ct
(t) or into throw α

Λs
ct
(t).

2. If α 6= β and α does not occur in u, µα([β]u){[α](t v)/[α]t}) = µα[β]u,

Λs
ct
(µα[β]u v) = ((throw α Λs

ct
(u)) Λs

ct
(v))

→3 throw α Λs
ct
(u)

= Λs
ct
(µα[β]u)

3. If α 6= β and α occurs in u, µα([β]u){[α](t v)/[α]t}= µα[β]u{[α](t v)/[α]t},

Λs
ct
(µα[β]u v)

= ((catch α throw β Λs
ct
(u)) Λs

ct
(v))

→2 catch α ((throw β Λs
ct
(u)){throw α (t Λs

ct
(v))/throw α t} Λs

ct
(v))

= catch α (throw β Λs
ct
(u){throw α (t Λs

ct
(v))/throw α t} Λs

ct
(v))

→3 catch α throw β Λs
ct
(u){throw α (t Λs

ct
(v))/throw α}

= Λs
ct
(µα[β]u{[α](t v)/[α]t})

Again, since any occurrence of a subterm µβ[α]t (for some β 6= α) is

translated, by definition of Λs
ct
, either into catch β throw α Λs

ct
(t) or

into throw α Λs
ct
(t).
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• Case of the rule [β]µαt → t{β/α}, i.e. µγ[β]µα[δ]t → µγ([δ]t){β/α}

1. If γ = β and α = δ then µγ([δ]t){β/α} = µβ[β]t{β/α}

Λs
ct
(µβ[β]µα[α]t) = catch β catch α Λs

ct
(t)

→4 catch β Λs
ct
(t){β/α}

= Λs
ct
(µβ[β]t{β/α})

2. If γ = β and α thus does not occur in [δ]t, µγ([δ]t){β/α} = µβ[δ]t

(a) If β = δ then µβ[δ]t = µβ[β]t

Λs
ct
(µβ[β]µα[β]t) = catch β throw β Λs

ct
(t)

→7 catch β Λs
ct
(t)

= Λs
ct
(µβ[β]t)

(b) If β 6= δ and β does not occur in t

Λs
ct
(µβ[β]µα[δ]t) = catch β throw δ Λs

ct
(t)

→8 throw δ Λs
ct
(t)

= Λs
ct
(µβ[δ]t)

(c) If β 6= δ and β occurs in t

Λs
ct
(µβ[β]µα[δ]t) = catch β throw δ Λs

ct
(t)

= Λs
ct
(µβ[δ]t)

3. If γ = β and α occurs then in [δ]tµγ([δ]t){β/α} = µβ([δ]t){β/α}

(a) If α = δ, this case has already been delt with.

(b) If α 6= δ then µβ([δ]t){β/α}= µβ[δ]t{β/α}

— If β = δ then µβ[δ]t{β/α}=µβ[β]t{β/α}

Λs
ct
(µβ[β]µα[β]t) = catch β catch α throw β Λs

ct
(t)

→4 catch β (throw β Λs
ct
(t)){β/α}

= catch β throw β Λs
ct
(t){β/α}

→7 catch β Λs
ct
(t){β/α}

= Λs
ct
(µβ[β]t{β/α})

— If β 6= δ then

Λs
ct
(µβ[β]µα[δ]t) = catch β catch α throw δ Λs

ct
(t)

→4 catch β (throw δ Λs
ct
(t)){β/α}

= catch β throw δ Λs
ct
(t){β/α}

= Λs
ct
(µβ[δ]t{β/α})

4. If γ 6= β and γ does not occur in µα[δ]t (then in particular γ 6= δ)

(a) If α = δ then µγ([δ]t){β/α} = µγ[β]t{β/α}

Λs
ct
(µγ[β]µα[α]t) = throw β catch α Λs

ct
(t)

→6 throw β Λs
ct
(t){β/α}

= Λs
ct
(µγ[β]t{β/α})

since γ 6= β in the last equality.
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(b) If α 6= δ and α does not occur in t (and thus µγ([δ]t){β/α} = µγ[δ]t)

Λs
ct
(µγ[β]µα[δ]t) = throw β throw δ Λs

ct
(t)

→5 throw δ Λs
ct
(t)

= Λs
ct
(µγ[δ]t)

since γ 6= δ in the last equality.

(c) If α 6= δ and α occurs in t (and thus µγ([δ]t){β/α} = µγ[δ]t{β/α})

Λs
ct
(µγ[β]µα[δ]t) = throw β catch α throw δ Λs

ct
(t)

→6 throw β (throw δ Λs
ct
(t)){β/α}

= throw β throw δ Λs
ct
(t){β/α}

→5 throw δ Λs
ct
(t){β/α}

= Λs
ct
(µγ[δ]t{β/α})

5. If γ 6= β and γ occurs in µα[δ]t

(a) If α = δ then µγ([δ]t){β/α} = µγ[β]t{β/α}

Λs
ct
(µγ[β]µα[α]t) = catch γ throw β catch α Λs

ct
(t)

→6 catch γ throw β Λs
ct
(t){β/α}

= Λs
ct
(µγ[β]t{β/α})

(b) If α 6= δ and α does not occur in t (and thus µγ([δ]t){β/α} = µγ[δ]t)

— If γ = δ then µγ[δ]t = µγ[γ]t

Λs
ct
(µγ[β]µα[γ]t) = catch γ throw β throw γ Λs

ct
(t)

→5 catch γ throw γ Λs
ct
(t)

→7 catch γ Λs
ct
(t)

= Λs
ct
(µγ[γ]t)

— If γ 6= δ

Λs
ct
(µγ[β]µα[δ]t) = catch γ throw β throw δ Λs

ct
(t)

→5 catch γ throw δ Λs
ct
(t)

= Λs
ct
(µγ[δ]t)

(c) If α 6= δ and α occurs in t (and thus µγ([δ]t){β/α} = µγ[δ]t{β/α})

— If γ = δ then µγ[δ]t{β/α} = µγ[γ]t{β/α}

Λs
ct
(µγ[β]µα[γ]t)

= catch γ throw β catch α throw γ Λs
ct
(t)

→6 catch γ throw β (throw γ Λs
ct
(t)){β/α}

= catch γ throw β throw γ Λs
ct
(t){β/α}

→5 catch γ throw γ Λs
ct
(t){β/α}

→7 catch γ Λs
ct
(t){β/α}

= Λs
ct
(µγ[γ]t{β/α})
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— If γ 6= δ then µγ[γ]t{β/α}

Λs
ct
(µγ[β]µα[δ]t)

= catch γ throw β catch α throw δ Λs
ct
(t)

→6 catch γ throw β (throw δ Λs
ct
(t)){β/α}

= catch γ throw β throw δ Λs
ct
(t){β/α}

→5 catch γ throw δ Λs
ct
(t){β/α}

= Λs
ct
(µγ[δ]t{β/α})

• Case of the rule µα[α]t → t if α does not occur free in t.

Λs
ct
(µα[α]t) = catch α Λs

ct
(t) →8 Λs

ct
(t)

Lemma 3.4.3

For any λµ-context C[•] and any λµ-terms u, v, if Λs
ct
(u) →⋆

ct
Λs
ct
(v) then:

Λs
ct
(C[u]) →⋆

ct
Λs
ct
(C[v])

Proof

By induction on the context:

• If the context is •, Λs
ct
(C[u]) = Λs

ct
(u) →⋆

ct
Λs
ct
(v) = Λs

ct
(C[v]).

• If the context is an application or an abstraction, just apply the induction

hypothesis.

• If the context has the form µα[β]C[•] then, by definition of the translation

Λs
ct
, on the one hand,

Λs
ct
(µα[β]C[u]) =







catch α Λs
ct
(C[u]) if α = β

throw β Λs
ct
(C[u]) if α 6= β and α is not free in C[u]

catch α throw β Λs
ct
(C[u]) otherwise

and on the other hand,

Λs
ct
(µα[β]C[v]) =







catch α Λs
ct
(C[v]) if α = β

throw β Λs
ct
(C[v]) if α 6= β and α is not free in C[v]

catch α throw β Λs
ct
(C[v]) otherwise

By induction hypothesis Λs
ct
(C[u]) →⋆

ct
Λs
ct
(C[v]), and then we consider each

case:

1. If α = β, by applying the induction assumption:

Λs
ct
(µα[β]C[u]) = catch α Λs

ct
(C[u])

→⋆
ct

catch α Λs
ct
(C[v]) = Λs

ct
(µα[β]C[v])

2. If α 6= β and α does not occur free in C[u], then α cannot occur free in C[v]

because no reduction of the λµ-calculus can introduce a free µ-variable,

hence by applying the induction hypothesis:

Λs
ct
(µα[β]C[u]) = throw β Λs

ct
(C[u])

→⋆
ct

throw β Λs
ct
(C[v]) = Λs

ct
(µα[β]C[v])
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3. If α 6= β and α occurs free in C[u], and α do not occur free then in C[v]

by applying the induction hypothesis and then rule (8):

Λs
ct
(µα[β]C[u]) = catch α throw β Λs

ct
(C[u])

→⋆
ct

catch α throw β Λs
ct
(C[v])

→1 throw β Λs
ct
(C[v])

= Λs
ct
(µα[β]C[v])

4. If α 6= β and α occurs free in C[u] and in C[v] by applying the induction

hypothesis:

Λs
ct
(µα[β]C[u]) = catch α throw β Λs

ct
(C[u])

→⋆
ct

catch α throw β Λs
ct
(C[v]) = Λs

ct
(µα[β]C[v])

Proposition 3.4.4

For any λµ-terms u, v, if u →λµ v then Λs
ct
(u) →⋆

ct
Λs
ct
(v).

Proof

By lemma 3.4.1 and lemma 3.4.3.

Remark. The morphism Λs
ct

does not map any reduction step onto at least one

reduction step since µα[α]µ [β]t → µα[β]t while Λs
ct
(µα[α]µ [β]t) = Λs

ct
(µα[β]t).

Corollary 3.4.5

The λct-calculus and the λµ-calculus are isomorphic if we consider terms up re-

naming/simplification.

Proof

Indeed, for any λct-term t, we have:

λct(Λι
µ(t)) = λct(Λι

µ(t)) = λct(Λ
s
µ(t)) = t

since λct and Λι
µ are canonical.

Corollary 3.4.6

The λct-calculus and the λµ-calculus are isomorphic if we consider terms up con-

vertibility.

Proof

Since λct(Λι
µ(t)) = t implies λct(Λ

ι
µ(t)) =ct t.

3.5 Confluence of the λct-calculus

We are now able to show the confluence of the λct-calculus. Indeed, let us consider

following diagram (where w exists since the λµ-calculus is confluent):
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t

�
�

�+

→
⋆
ct

?
Λ

ι
µ

Q
Q
Qs

→
⋆
ct

u Λι
µ(t) v

?
Λ

ι
µ

�
�

�+ →
⋆
λµ

Q
Q
Qs→

⋆
λµ ?

Λ
ι
µ

Λι
µ(u) Λι

µ(v)

?
Λ

s
ct

Q
Q
Qs

→
⋆
λµ �

�
�+

→
⋆
λµ

?
Λ

s
ct

Λs
ct
(Λι

µ(u)) w Λs
ct
(Λι

µ(v))

Q
Q
Qs→

⋆
ct ?

Λ
s
ct

�
�

�+ →
⋆
ct

Λs
ct
(w)

Theorem 3.5.1

The λct-calculus is confluent.

Proof

We have shown that for any λct-term t, t = Λs
ct
(Λι

µ(t)), (only the weaker property

t →⋆
ct

Λs
ct
(Λι

µ(t)) was actually needed) and the confluence of the λct-calculus results

from following diagram:

t

�
�

�+

→
⋆
ct Q

Q
Qs

→
⋆
ct

Λs
ct
(Λι

µ(u)) = u v = Λs
ct
(Λι

µ(v))

Q
Q
Qs→

⋆
ct

�
�

�+ →
⋆
ct

Λs
ct
(w)

3.6 The λµ-calculus is not a canonical retract of the λct-calculus

Proposition 3.6.1

There is no surjective canonical morphism from the λct-calculus to the λµ-calculus.

Proof

Let us assume that Ψ is a surjective canonical morphism from the λct-calculus to

the λµ-calculus. Let r be a simple λµ-term of the form (µα[β]u v) where α 6= β and

β occurs free in u. Since Ψ is surjective, there is a λct-term s such that Ψ(s) = r.

Since Ψ is canonical, Ψ(s) = Λs
µ(s). But Ψ(s) = r = r since r is simple. Thus the

simple λct-term s = Λs
ct
(r) is ((catch α throw β Λs

ct
(u) Λs

ct
(v)). Now let c be the

contractum of s:

c = catch α (throw β Λs
ct
(u){throw α (t Λs

ct
(v))/throw α t} Λs

ct
(v))

Since Ψ is a morphism, we should have Ψ(s) →⋆ Ψ(c) and thus Ψ(s) →⋆ Ψ(c) (since

the renaming/simplification rules commute with any other rule). Finally, notice that
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r = Ψ(s) = Ψ(s) but we do not have in general r →⋆ µα[α](µδ[β]u{[α](t v)/t} v)

(for instance if the contractum of r which is µα[β]u{[α](t v)/t} is a normal form).

Whence the contradiction.

4 The typed λct-calculus

Typing control operators is strongly related to classical logic. This striking fact has

been first noticed by T. G. Griffin (1990) and has been widely investigated since,

for instance, by C. R. Murthy (1990; 1991), F. Barbanera and S. Berardi (1994a;

1994b), N. J. Rehof and M. H. Sørensen (1994), P. De Groote (1995; 1994a), J.-

L. Krivine (1994), H. Nakano, (1994b; 1994a; 1995), M. Sato and Y. Kamayema

(1997; 1998; 1997) and M. Parigot (1992; 1993).

As far as the author knows, M. Parigot’s λµ-calculus is the only λ-calculus with

control operators for which strong normalization has been proved in the second

order framework.

We first recall the typing rules of this calculus (for more details see (Parigot,

1992)). Then we derive the typing rules of the catch and throw operators: they

correspond respectively to right contraction and weakening rules of classical natural

deduction. The subject reduction property and strong normalization are straight-

forward consequences.

4.1 The typed λµ-calculus

Axiom

x : Ax ⊢ A

Rules for →

t : Γ, Ax ⊢ ∆;B

λx.t : Γ ⊢ ∆;A → B

u : Γ ⊢ ∆;A → B v : Γ ⊢ ∆;A

(u v) : Γ ⊢ ∆;B

Rules for ∀ (where x does not occur free in Γ, ∆ in the introduction rule)

u : Γ ⊢ ∆;A

u : Γ ⊢ ∆; ∀xA

u : Γ ⊢ ∆; ∀xA

u : Γ ⊢ ∆;A{t/x}

Rules for ∀2 (where X does not occur free in Γ, ∆ in the introduction rule)

u : Γ ⊢ ∆;A

u : Γ ⊢ ∆; ∀XA

u : Γ ⊢ ∆; ∀XA

u : Γ ⊢ ∆;A{T/X}

Contraction and weakening rules (where Π is either empty or a single formula B)

t : Γ, Ax, Ay ⊢ ∆;Π

t{x/y} : Γ, Ax ⊢ ∆;Π

t : Γ ⊢ ∆;Π

t : Γ, Ax ⊢ ∆;Π
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t : Γ ⊢ ∆, Aα, Aβ ; Π

t{β/α} : Γ ⊢ ∆, Aβ ; Π

t : Γ ⊢ ∆;Π

t : Γ ⊢ ∆, Aα; Π

Remark. As usual in natural deduction, these explicit contraction and weakening

rules are not actually needed if we allow for “generalized axioms”:

x : Γ, Ax ⊢ ∆;A

Naming rules

These are the rules of the λµ-calculus that allow for multiple conclusions:

t : Γ ⊢ ∆;A

[α]t : Γ ⊢ ∆, Aα;

t : Γ ⊢ ∆, Aα;

µα.t : Γ ⊢ ∆;A

4.2 Typing the catch and throw operators

Let us now use the naming rules to derive type judgments for the λµct -terms

throw α t and catch α t.

• We recall that catch α t = µα[α]t:

t : Γ ⊢ ∆, Aα;A

[α]t : Γ ⊢ ∆, Aα;

µα[α]t : Γ ⊢ ∆;A

• We recall that throw α t = µβ[α]t where β does not occur free in t:

t : Γ ⊢ ∆;A

[α]t : Γ ⊢ ∆, Aα;

[α]t : Γ ⊢ ∆, Aα, Bβ ;

µβ[α]t : Γ ⊢ ∆, Aα;B

Hence, we are now able to type the native throw and catch operators.

The catch rule

t : Γ ⊢ ∆, Aα;A

catch α t : Γ ⊢ ∆;A

The throw rule

t : Γ ⊢ ∆;A

throw α t : Γ ⊢ ∆, Aα;B

Remark. As for the λµ-calculus, there is no need for explicit rules for contracting

and weakening “named” conclusions. Consequently, one can see these catch and

throw rules respectively as explicit right-hand contraction and weakening rules for

classical natural deduction.

Proposition 4.2.1
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A λct-term t is typable of type Γ ⊢ ∆;A if and only if λµct -term Λι
µ(t) is typable

of type Γ ⊢ ∆;A.

Example. The λct-term λy.catch α (y λx.throw α x), which represents the fa-

mous call/cc of the Scheme language just as the corresponding λµct -term (Parigot,

1992), can be typed by Peirce’s axiom:

y : ((A → B) → A)y ⊢ (A → B) → A

x : Ax ⊢ A

throw α x : Ax ⊢ Aα;B

λx.throw α x ⊢ Aα;A → B

(y λx.throw α x) : ((A → B) → A)y ⊢ Aα;A

catch α (y λx.throw α x) : ((A → B) → A)y ⊢ A

λy.catch α (y λx.throw α x) ⊢ ((A → B) → A) → A

4.3 Subject reduction property

The subject reduction property holds for the second order λµ-calculus: if a λµ-term

t is typable of the type Γ ⊢ ∆;A and t →λµ t′ then t′ is also typable of the type

Γ ⊢ ∆;A. This property extends directly to the λct-calculus:

Proposition 4.3.1

Given a λct-term t, if t is typable of type Γ ⊢ ∆;A and t → ct t′ then t′ is also

typable of the type Γ ⊢ ∆;A.

Proof

By proposition 4.2.1, if t is typable of type Γ ⊢ ∆;A, then Λι
µ(t) is also typable of

type Γ ⊢ ∆;A. We know that Λι
µ(t) →λµ Λι

µ(t
′), and since the subject reduction

property holds for the λµ-calculus, Λι
µ(t

′) is typable of type Γ ⊢ ∆;A, and again

by proposition 4.2.1, t
′

is also typable of type Γ ⊢ ∆;A.

4.4 Strong normalization of the second order λct-calculus

The λµ-calculus is strongly normalizing in the second order framework, i.e. if a λµ-

term t is typable of type Γ ⊢ ∆;A then there is no infinite sequence of reductions

starting from t. This property extends directly to the λct-calculus.

Proposition 4.4.1

Given a λct-term t, if t is typable of type Γ ⊢ ∆;A then there is no infinite sequence

of reductions starting from t.

Proof

If t is typable of type Γ ⊢ ∆;A, then the λµct-term Λι
µ(t) is also typable of type

Γ ⊢ ∆;A. If there was an infinite sequence of reductions t1 →ct t2 . . . →ct tn . . .

then, since Λι
µ preserves one-step reduction (proposition 3.3.3), there would be

an infinite sequence of reductions Λι
µ(t1) →λµ Λι

µ(t2) . . . →λµ Λι
µ(tn) . . . , which

contradicts the strong normalization of the λµ-calculus.
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Remark. The converse is also true: the strong normalization of the λct-calculus

implies the strong normalization of the λµ-calculus. Indeed, the translation Λι
ct

is

also an injective morphism. Moreover, a λµ-term t is typable of type Γ ⊢ ∆;A if

and only if Λι
ct
(t) is typable of type Γ ⊢ ∆;A.

5 Conclusion

We have defined a confluent λ-calculus with a catch/throw mechanism. Any λct-

term typable in the second order classical natural deduction is strongly normalizing.

We have also seen that the call/cc of Scheme can be defined as:

call/cc t ≡ catch α (t λx.throw α x)

P. De Groote has shown in (1994b) that the λµ-calculus is isomorphic (modulo

convertibility) to the λC-calculus. Similarly, it would be interesting to study how

the λ-calculus with a “native” call/cc is related to the λct-calculus. Besides, we

have only investigated here M. Parigot “call-by-name” λµ-calculus. C.-H. Ong and

C. A. Stewart (1996; 1997) have proposed a “call-by-value” λµ-calculus. It is likely

that a “call-by-value” λct-calculus can be derived from their work. Notice that

P. De Groote (1994b) and C.-H. Ong (1996; 1997) separate the µ and the [ ] in their

λµ-calculus. Nevertheless, this separation does not define a catch/throw mechanism

(since in µα.t the type of t is ⊥).

We did not consider tag-abstraction as in the work of H. Nakano, Y. Kamayema

and M. Sato, since there is no need for tag-abstraction in the classical framework

where a tag (µ-variable) α can be reified as the term λx.throw α x whose type

is ⊢ Aα;¬A (first-class continuations are typed by the negation ¬A ≡ A → ⊥).

Of course, this is not sound anymore in intuitionistic logic since this type is the

excluded-middle. We will consider tag-abstraction in a constructive framework in a

forthcoming paper, but where subtraction (the connector dual to implication, see

Crolard (1996; 1999)) will be used instead of disjunction.
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