Deriving a Hoare-Floyd logic for non-local jumps
from a formul@-as-types notion of control

Tristan Crolard
Emmanuel Polonowski
LACL — Université Paris-Est, France
{crolard, polonowski}@u-pec.fr

Abstract

We derive a Hoare-Floyd logic for non-local jumps and mutable higher-order procedural variables
from a formulze-as-types notion of control for classical logic. The main contribution of this work is
the design of an imperative dependent type system for non-local jumps which corresponds to classical
logic but where the famous consequence rule is still derivable.

Hoare-Floyd logics for non-local jumps are notoriously difficult to obtain, especially in the presence
of local mutable variables [7]]. As far as we know, the question of proving the correctness of imperative
programs which combine local mutable higher-order procedural variables and non-local jumps has not
even been addressed. On the other hand, we know since Griffin’s pioneering work [3]] how to prove the
correctness of (higher-order) functional programs with control in direct style, thanks to the formulae-as-
types interpretation of classical logic.

In [[1], Chapter 3, we have thus extended the formula-as-types notion of control to imperative pro-
grams with higher-order procedural mutable variables and non-local jumps. Our technique, which was
inspired by Landin’s seminal paper [4]], consists in defining an imperative dependent type system ID
by translation into a functional dependent type system (which is actually Leivant’s MLIP [S]]). This
imperative language, called LOOP®, was defined by the authors in [2].

Similarly to ML1P, the imperative type system is parametrized by a first-order signature and an
equational system & which defines a set of functions in the style of Herbrand-Gddel. The syntax of
imperative types of ID (with dependent procedure types and dependent records) is the following:

0,7 ::=nat(n) | proc Vi(in 7;out 6) | Ji(0y,...,0,) [n=m

Typing judgements of ID have the form I';Q F e : y if e is an expression and [;Q s> Q' if 5 is a
sequence, where environments I" and Q corresponds respectively to immutable and mutable variables.
Note that our type system is pseudo-dynamic in the sense that the type of mutable variables can change
in a sequence and the new types are given by Q' (as in [8]]). For instance, here is the typing rule of the
for loop:
[Q,%:06[0/i] - e : nat(n) I,y:nat(i);X: 6 s> X:0[s(i)/i]
I;Q,%:6[0/i] - for y:=0until e {s}z > X: G[n/i]

Embedding a Hoare-Floyd logic

It is almost straightforward to embed a Hoare-Floyd logic into ID. Indeed, let us take a global mutable
variable, dubbed assert, and let us assume that this global variable is simulated in the usual state-passing
style (the variable is passed as an explicit in and out parameter to each procedure call). Consequently,
any sequence shall be typed with a sequent of the form I';Q,assert : ¢ b s > Q' assert : y. If we
now introduce the usual Hoare notation for triples (which hides the name of global variable assert),
we obtain judgments of the form I';Q - {@}s > Q'{y}. Rules very similar to Hoare rules are then
derivable: for instance, the type of assert corresponds to the invariant in a loop, and to the type of pre

{crolard,polonowski}@u-pec.fr

Deriving a Hoare-Floyd logic for non-local jumps T. Crolard and E. Polonowski

and post conditions in a procedure type. The only rule which is not directly derivable is the well-known
consequence rule:
Q¢ = ¢ [QF{o}ts> Q{y} rLQty=vy
DO {g}s > Q{y'}

This rule deserves a specific treatment since no proof-term is required for the proof obligations. However,
it is well-known that in intuitionistic logic the proof of some formulas have no computational content
(they are called data-mute in [5]). The consequence rule is thus derivable if we restrict (without loss of
generality) the set of assertions to data-mute formulas.

Non-local jumps

The imperative language was then extended in [[1] with labels and non-local jumps. At the (dependent)
type level, this extension (called ID®) corresponds to an extension from intuitionistic logic to classical
logic. For instance, the following typing rules for labels and jumps are derivable (where first-class labels
are typed by the negation):

Ik:-6;7:TFs>7:0 ;Q7:0Fs>Q I;Q7:7+k: -0 I;Q7:7+-¢:6
Q7:ThHk: {s}z s> Q I;Q,7:7F jump(k,é)z>7: 7

However, deriving a Hoare-Floyd logic for non-local jumps is not straightforward since there is no ob-
vious notion of data-mute formula in classical logic (as noted also in [6]), and thus the consequence
rule is in general not derivable. The problem comes from the fact that, in presence of control operators,
the proof-terms corresponding to proof-obligations may interact with the program. We shall exhibit an
example of such program and we shall present a general solution to this problem which relies on the
distinction between purely functional terms and imperative procedures (possibly containing non-local
jumps).

References

[1] T. Crolard. Certification de programmes impératifs d’ordre supérieur avec mécanismes de contrdle. Habilita-
tion Thesis. University of Paris-Est, 2010. Available athttp://lacl.u-pec.fr/crolard/publications.

[2] T. Crolard, E. Polonowski, and P. Valarcher. Extending the loop language with higher-order procedural vari-
ables. Special issue of ACM TOCL on Implicit Computational Complexity, 10(4):1-37, 2009.

[3] T.G. Griffin. A formula-as-types notion of control. In Conference Record of the 17th Annual ACM Symposium
on Principles of Programming Langages, pages 47-58, 1990.

[4] P.J. Landin. A correspondence between ALGOL 60 and Church’s lambda-notation: part I. Commun. ACM,
8(2):89-101, 1965.

[5] D.Leivant. Contracting proofs to programs. In Odifreddi, editor, Logic and Computer Science, pages 279-327.
Academic Press, 1990.

[6] Y. Makarov. Practical program extraction from classical proofs. Electronic Notes in Theoretical Computer
Science, 155:521 — 542, 2006. Proceedings of the 21st Annual Conference on Mathematical Foundations of
Programming Semantics (MFPS XXI).

[71 R. D. Tennent and J. K. Tobin. Continuations in possible-world semantics. Theor. Comput. Sci., 85(2):283—
303, 1991.

[8] H. Xi. Imperative programming with dependent types. In Proceedings of 15th IEEE Symposium on Logic in
Computer Science, pages 375-387, Santa Barbara, June 2000.

http://lacl.u-pec.fr/crolard/publications

