
Deriving a Hoare-Floyd logic for non-local jumps
from a formulæ-as-types notion of control

Tristan Crolard
Emmanuel Polonowski

LACL – Université Paris-Est, France
{crolard,polonowski}@u-pec.fr

Abstract

We derive a Hoare-Floyd logic for non-local jumps and mutable higher-order procedural variables
from a formulæ-as-types notion of control for classical logic. The main contribution of this work is
the design of an imperative dependent type system for non-local jumps which corresponds to classical
logic but where the famous consequence rule is still derivable.

Hoare-Floyd logics for non-local jumps are notoriously difficult to obtain, especially in the presence
of local mutable variables [7]. As far as we know, the question of proving the correctness of imperative
programs which combine local mutable higher-order procedural variables and non-local jumps has not
even been addressed. On the other hand, we know since Griffin’s pioneering work [3] how to prove the
correctness of (higher-order) functional programs with control in direct style, thanks to the formulæ-as-
types interpretation of classical logic.

In [1], Chapter 3, we have thus extended the formulæ-as-types notion of control to imperative pro-
grams with higher-order procedural mutable variables and non-local jumps. Our technique, which was
inspired by Landin’s seminal paper [4], consists in defining an imperative dependent type system ID
by translation into a functional dependent type system (which is actually Leivant’s ML1P [5]). This
imperative language, called LOOPω , was defined by the authors in [2].

Similarly to ML1P, the imperative type system is parametrized by a first-order signature and an
equational system E which defines a set of functions in the style of Herbrand-Gödel. The syntax of
imperative types of ID (with dependent procedure types and dependent records) is the following:

σ ,τ ::= nat(n) | proc ∀~ı(in~τ;out ~σ) | ∃~ı(σ1, . . . ,σn) | n = m

Typing judgements of ID have the form Γ;Ω ` e : ψ if e is an expression and Γ;Ω ` s B Ω′ if s is a
sequence, where environments Γ and Ω corresponds respectively to immutable and mutable variables.
Note that our type system is pseudo-dynamic in the sense that the type of mutable variables can change
in a sequence and the new types are given by Ω′ (as in [8]). For instance, here is the typing rule of the
for loop:

Γ;Ω,~x : ~σ [0/i] ` e : nat(n) Γ,y : nat(i);~x : ~σ ` s B~x : ~σ [s(i)/i]
Γ;Ω,~x : ~σ [0/i] ` for y := 0 until e {s}~x B~x : ~σ [n/i]

Embedding a Hoare-Floyd logic

It is almost straightforward to embed a Hoare-Floyd logic into ID. Indeed, let us take a global mutable
variable, dubbed assert, and let us assume that this global variable is simulated in the usual state-passing
style (the variable is passed as an explicit in and out parameter to each procedure call). Consequently,
any sequence shall be typed with a sequent of the form Γ;Ω,assert : ϕ ` s B Ω′,assert : ψ . If we
now introduce the usual Hoare notation for triples (which hides the name of global variable assert),
we obtain judgments of the form Γ;Ω ` {ϕ}s B Ω′{ψ}. Rules very similar to Hoare rules are then
derivable: for instance, the type of assert corresponds to the invariant in a loop, and to the type of pre

1

{crolard,polonowski}@u-pec.fr

Deriving a Hoare-Floyd logic for non-local jumps T. Crolard and E. Polonowski

and post conditions in a procedure type. The only rule which is not directly derivable is the well-known
consequence rule:

Γ,Ω ` ϕ ′ ⇒ ϕ Γ;Ω ` {ϕ}s B Ω′{ψ} Γ,Ω ` ψ ⇒ ψ ′

Γ;Ω ` {ϕ ′}s B Ω′{ψ ′}

This rule deserves a specific treatment since no proof-term is required for the proof obligations. However,
it is well-known that in intuitionistic logic the proof of some formulas have no computational content
(they are called data-mute in [5]). The consequence rule is thus derivable if we restrict (without loss of
generality) the set of assertions to data-mute formulas.

Non-local jumps

The imperative language was then extended in [1] with labels and non-local jumps. At the (dependent)
type level, this extension (called IDc) corresponds to an extension from intuitionistic logic to classical
logic. For instance, the following typing rules for labels and jumps are derivable (where first-class labels
are typed by the negation):

Γ,k : ¬~σ ;~z :~τ ` s B~z : ~σ Γ;Ω,~z : ~σ ` s′ B Ω′

Γ;Ω,~z :~τ ` k : {s}~z; s′ B Ω′
Γ;Ω,~z :~τ ` k : ¬~σ Γ;Ω,~z :~τ `~e : ~σ

Γ;Ω,~z :~τ ` jump(k,~e)~z B~z :~τ ′

However, deriving a Hoare-Floyd logic for non-local jumps is not straightforward since there is no ob-
vious notion of data-mute formula in classical logic (as noted also in [6]), and thus the consequence
rule is in general not derivable. The problem comes from the fact that, in presence of control operators,
the proof-terms corresponding to proof-obligations may interact with the program. We shall exhibit an
example of such program and we shall present a general solution to this problem which relies on the
distinction between purely functional terms and imperative procedures (possibly containing non-local
jumps).

References
[1] T. Crolard. Certification de programmes impératifs d’ordre supérieur avec mécanismes de contrôle. Habilita-

tion Thesis. University of Paris-Est, 2010. Available at http://lacl.u-pec.fr/crolard/publications.
[2] T. Crolard, E. Polonowski, and P. Valarcher. Extending the loop language with higher-order procedural vari-

ables. Special issue of ACM TOCL on Implicit Computational Complexity, 10(4):1–37, 2009.
[3] T. G. Griffin. A formulæ-as-types notion of control. In Conference Record of the 17th Annual ACM Symposium

on Principles of Programming Langages, pages 47–58, 1990.
[4] P. J. Landin. A correspondence between ALGOL 60 and Church’s lambda-notation: part I. Commun. ACM,

8(2):89–101, 1965.
[5] D. Leivant. Contracting proofs to programs. In Odifreddi, editor, Logic and Computer Science, pages 279–327.

Academic Press, 1990.
[6] Y. Makarov. Practical program extraction from classical proofs. Electronic Notes in Theoretical Computer

Science, 155:521 – 542, 2006. Proceedings of the 21st Annual Conference on Mathematical Foundations of
Programming Semantics (MFPS XXI).

[7] R. D. Tennent and J. K. Tobin. Continuations in possible-world semantics. Theor. Comput. Sci., 85(2):283–
303, 1991.

[8] H. Xi. Imperative programming with dependent types. In Proceedings of 15th IEEE Symposium on Logic in
Computer Science, pages 375–387, Santa Barbara, June 2000.

2

http://lacl.u-pec.fr/crolard/publications

