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1. Introduction. This paper is devoted to the study of the expressive power of an elementary
imperative programming language similar to the Loop language described by Meyer and Ritchie
in [MR76].

While the λ-calculus is usually used to describe the denotational semantics of programming
languages, we exploit it to encode the operational semantics of this imperative language. More
precisely, we define a lock step simulation of imperative programs by pure functional programs
(λ-terms with natural numbers and recursor). This simulation enables us to derive properties
concerning this imperative language from previously known results in the λ-calculus community
(see for instance [Col91] for such results).

The main property which is derived using this framework is the following : there is no pro-
gram in the Loop language which computes the minimum of two natural numbers n and m in
time O(min(n,m)). In order to prove this result, we first need to generalize a result by Colson
and Fredholm called the “ultimate obtinacy” property in [CF98].

The plan of the paper is the following. Section 3 is devoted to the presentation of our target
functional language which corresponds to Gödel system T equipped with a primitive predecesor
function, products and the call-by-value strategy. In section 4, we sketch the proof of the “ulti-
mate obtinacy” for our extended system. Our version of the Loop-language is described in sec-
tion 5 and the lock-step simulation is eventually presented in details in section 6.

2. Related works. In his pioneering work [Col91], Colson applies denotational semantics
(with the domain of lazy integers [Esc93]) and proves that although the function that computes
the minimum of two natural numbers is obviously primitive recursive (see for instance [Pet68]
for a formal definition), there is no way to implement it efficiently as a primitive recursive algo-
rithms (represented by PR-combinators in [Col91]). His main theorem states the ultimate obsti-
nacy property of PR-combinators. Informally, this property express the fact that once an algo-
rithm begin to consume an argument, it will never switch to another argument (a constructive
proof of this property by Coquand may be found in [Coq92]). This idea has been developed fur-
ther by David [Dav01] who defines a trace semantics which allows him to prove a stronger prop-
erty (the backtracking property). The third author has proved in [Val96] similar results about
intensionnal behiavour of other primitive recursive schemes. At the same time, L. Colson and D.
Fredholm [Fre96, CF98] have extended these results to Gödel’s system T equipped with a call-
by-value strategy (and recursion over lists of natural numbers). Related issues concerning non-
determinism and sequentiality have been studied by Brookes and Dancannet [BD95, DB96].

More recently, Moschovakis [Mos03] established linear lower bounds for the complexity of
non-trivial primitive recursive algorithm from piecewise linear given functions. For instance, he
proves that Stein’s algorithm for the greatest common divisor cannot be implemented efficiently
by a primitive recursive algorithm. Eventually, a partial solution to an open problem concerning
the classical Euclidan algorithm mentionned in [Mos03] has been found by Van Den Dries
[Dri03].

3. Gödel’s system T under call-by-value. In this section, we extend the Gödel’s system T
with product types (tuples and projections) and a constant-time predecessor operation. The
resulting system is thus closer to some realistic programming language. Its formal definition is
summed up in table 1. The reduction rules presented here implements the so-called weak reduc-
tion call-by-value strategy (since we do not reduce under an abstaction). Although we do not
recall the type system (for lack of space), we shall only consider well-typed terms in the sequel.
As usual, we shall consider the form let x = u in t as an abbreviation for (λx.t u).
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Syntax
t, u ::= 0

| S(t)
| pred(t)
| λx.t

| (t u)
| 〈t, u〉
| pi(t)
| rec(t, t, t)

Values
v ::= 0

| Sk(0)
| λx.t

Types
T ::= N

| T →T

| T × T

Evaluation contexts
C[ ] ::= [ ]

| (C[ ] t)
| (v C[ ])
| 〈C[ ], t〉
| 〈v, C[ ]〉
| S(C[ ])
| pred(C[ ])
| rec(C[ ], t2, t3)
| rec(v1, C[ ], t3)
| rec(v1, v2, C[ ])

Evaluation rules
C[λx.t v] ⇒ C[t[v/x]]

C[πi〈v1, v2〉] ⇒ C[vi]
C[pred(0)] ⇒ C[0]

C[pred(S(v))] ⇒ C[v]
C[rec(0, v2, v3)] ⇒ C[v2]

C[rec(S(v1), v2, v3)] ⇒ C[(v3 v1 rec(v1, v2, v3))]

Table 1. Types, terms, values and evaluation rules

4. Ultimate obstinacy. We show here that the ultimate obstinacy property holds for our
(extended) call-by-value system T. We sketch a (new) direct proof of this result (we rely here on
two important properties hold for Gödel’s system T, namely strong normalization of well-typed
terms and the Church-Rosser property).

Definition 1. We say that a term t is in ⊥-form iff one of the following conditions (1-5) holds:
(1) t is a variable, (2) t = t′ u with t′ in ⊥-form, (3) t = πi(t′) with t′ in ⊥-form,
(4) t = rec(t′, u, v) with t′ in ⊥-form, (5) t =pred(t′) with t′ in ⊥-form.

Lemma 2. Let t be a weak normal term of type N, U1 × U2 or T → U then t is respectively of
the form Sk(t′) with t′ = 0 or t′ in ⊥-form, 〈t1, t2〉 with t1, t2 in ⊥-form and λx.t′ with t′ in ⊥-
form.

Definition 3. We say that a term of type N is trivial if its weak normal form is either of the
form Sk(0) or of the form Sk(predn(xi)).

Remark 4. These terms represent constant functions or functions of the form xi
� (xi

.
n)+ k.

Lemma 5. Given term t with free variables x1, � , xn, if t u then t[S(xi)/xi] u[S(xi)/xi].

Lemma 6. (unique decomposition) If t is a term then either t is a value or there exists a
unique evaluation context C[ ] and a redex r such that t = C[r].

Lemma 7. For any evaluation context C[ ], there exists C ′[ ] such that C[rec(Sk(0), v2, v3)]  
C ′[rec(Sk−1(0), v2, v3)] and C ′[ ] is again an evaluation context.

Proposition 8. (ultimate obstinacy) Given a non trivial term t of type N with free variables
x1, � , xn, if t is in weak normal form then there is some 1 6 i 6 n such that t[c1/x1, � , Sk(0)/
xi, � , cn/xn] reaches its weak normal form in at least k reductions steps for any terms cj.

Corollary 9. There is no term in Gödel’s system T with tuples and constant-time predecessor
which computes the minimum of two natural numbers n and m in time O(min(n, m)).

5. The Loop language. The imperative language we consider is a syntactic variant of the
Loop language described in [MR76] and [DW83]. Variables (called registers in [MR76]) can con-
tain only non-negative integers. The atomic statements are assignments of the form xi

� c

(where c is a constant), xi
� xj, xi

� xi + 1 or xi
� xi − 1. The only program constructs are the

sequence (a list of statements separated by semi-colons) and the for-loop which implements
bounded iteration. A loop has the form for xi

� 1 toExp{Seq } where Exp is either a constant
or a variable and Seq is a sequence.
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The operational semantics may be given as a simple abstract machine described as a set of
rewriting rules. A rule has the form state state, where a state is pair 〈Program ,Environment 〉.
As usual, an environment is a mapping of variables onto values (natural numbers). Note that a
code pointer is not required when one uses a semantics of loop unrolling. For instance, here are
the rules which concern the loop cosntruct:

〈for xi
� 1 to Exp {Seq }, E 〉 〈{}, E 〉 (1)

where Exp is either the constant 0 or a variable xj and then E(xj)= 0.

〈for xi
� 1 toExp {Seq }, E 〉 〈{for xi

� 1 to c {Seq }; xi
� c + 1;Seq }, E 〉 (2)

where Exp is either the constant c + 1 or a variable xj and then E(xj)= c+ 1.

We are now able to define the semantics of a program (as usual  ? stands for the reflexive
and transitive closure of  ).

Definition 10. Given an initial environment E, we say that a program P evaluates to E ′ if and
only if 〈P , E 〉 ? 〈{}, E ′〉

6. Lock-step simulation.

Definition 11. The translation ∗ of a Loop program with variables x
�

= x1, � , xk into a term is
defined by induction on expressions and instructions as follows:

• c∗=Sc(0)

• xi
∗= xi

• (xi +1)∗= S(xi)

• (xi − 1)∗=pred(xi)

• {}∗= x
�

• {I;Seq }∗= let x
�

= I∗ in {Seq}∗ if I is not an assignment

• {xi
� Exp; Seq }∗= let xi =Exp∗ in {Seq }∗

• (for xi
� 1 to Exp {Seq})∗= rec(Exp∗, x

�

, λx
�

λxi{Seq}
∗)

where Exp is either a constant or a variable

We are now able to state the main theorem (the lock-step simulation) and its corollary con-
cerning the expressive power of the Loop language.

Theorem 12. If 〈I , E〉 〈I ′, E ′〉 then I∗[E∗/x
�

]⇒ I ′∗[E ′∗/x
�

]

Proof. By induction on the derivation of 〈I , E 〉 〈I ′, E ′〉. �

Corollary 13. There is no program in the Loop-language which computes the minimum of two
natural numbers n and m in time O(min(n,m)).
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