
A Tool for Automated Verification of

Parameterized Timed Algorithms

Tristan Crolard Evguenia Prokofieva

December 2004

TR–LACL–2004–15

Laboratoire d’Algorithmique, Complexité et Logique (LACL)
Département d’Informatique

Université Paris 12 – Val de Marne, Faculté des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedex, France

Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01

Laboratory of Algorithmics, Complexity and Logic (LACL)
University Paris 12 (Paris Est)

Technical Report TR–LACL–2004–15

T. Crolard, E. Prokofieva.
A Tool for Automated Verification of Parameterized Timed Algorithms

c© T. Crolard, E. Prokofieva, December 2004.

A Tool for Automated Verification of

Parameterized Timed Algorithms

Tristan Crolard and Evguenia Prokofieva

Laboratory of Algorithmics, Complexity and Logic
University Paris 12 – Val de Marne⋆(France)
{crolard,prokofieva}@univ-paris12.fr

Abstract. We present a tool developed for automated verification of
parameterized real-time systems. Algorithm specification is provided as
Timed Gurevich Abstract State Machines while requirements are ex-
pressed as formulas of the First Order Timed Logic (FOTL). In our
framework, the semantics of an ASM is also defined as a FOTL-formula.
Thus any verification problem amounts to proving the validity of some
FOTL-formula. Our method is based on a decidable subclass of FOTL
which models some “finiteness” properties of control systems.

1 Preliminaries

We present a tool developed for automated verification of parameterized real-
time systems. For algorithm specification we chose Timed Gurevich Abstract
State Machines, a particular case of ASM which is apt to specify synchronous
real-time algorithms. For requirements specification we use a First Order Timed
Logic (FOTL) which permits to express directly the initial specifications. In our
framework, the semantics of an ASM is also defined as a FOTL-formula. So any
verification problem amounts to proving the validity of some FOTL-formula.
Although FOTL is undecidable, there exists decidable subclasses. Our method
is based on such a decidable class which models some “finiteness” properties of
control systems. The existence of a counter-model for a formula in this class is
equivalent to the validity of a formula in the theory of real closed fields. This
theory known to be decidable and moreover a quantifier elimination method
(QE) can applied to get the result.

The tool consists in two parts. The first part is a translator whose purpose
is to generate a FOTL formula describing the set of runs of a given ASM. The
core of the tool implements elimination of functional and predicate symbols
from a FOTL-formula together with quantifier elimination (we rely here on a
well-tested implementation of QE in Redlog [DS97,AD99] which is part of a
computer algebra system Reduce [Hea99]). This process is summarized in the
following diagram:

⋆ 61, Av. du Général de Gaulle, 94010 Créteil Cedex France

Syntax and semantics of FOTL. A First Order Timed Logic in this framework
is is the theory of real addition and unary multiplications by rational numbers
(which is known to be decidable [Wei99]) extended by functions with at most
one time argument and with other arguments being of finite abstract sorts.

The vocabulary W of a FOTL consists of a finite set of sorts , a finite set
of function symbols and predicate symbols . Some sorts are predefined, i.e. have
fixed interpretations. Here the predefined sorts are the real numbers R and time
T ≡ R≥0 treated as a subsort of R. The other sorts are finite. The notions
of interpretation, model, satisfiability and validity are treated as in first order
predicate logic modulo the preinterpreted part of the vocabulary.

Timed Gurevich Abstract States Machines. We consider a particular case of
ASM, namely basic ASM that consists of a set of If -Then-operators (rules).
The notations of ASM are self-explanatory so we just give the form of ASM we
consider (our notation only slightly differs from that of [Gur95]).

Repeat

ForAll ω ∈ Ω

InParallelDo

If G1(ω) Then A1(ω) EndIf

If G2(ω) Then A2(ω) EndIf

.

If Gm(ω) Then Am(ω) EndIf

EndDo

EndForall

EndRepeat

Here each Gi is a guard, i.e. a formula without any free variable different from
ω, and each Ai is a list of assignments (called updates) whose terms have no free
variables different from ω. Each assignment has the form f(T) := θ, where f is
an internal function, θ is a term and T is a list of terms with the required type.
For a precise definition of the semantics see [BS02].

2 Representing ASM runs as FOTL formulas

It turns out that one can characterize the set of total runs of an ASM by an
FOTL formula (cf. [BS02]). We give here (in plain english) a list of properties,
the conjunction of which characterizes the set of total runs of an ASM.

Ψ0(t): If no guard is valid at t then no guard is valid in a neighborhood of t.

Ψ1(t): If a guard is valid at t for some ω then no guard is valid in some neighborhood
of t except t itself.

Ψ2(t): The value of an internal function at t is equal to its value at the left of t.
Ψ3(t): Values of internal functions do not change as long as related guards are false.
Ψ4(t): If some guard related to the internal function f is true at t, f is updated

according to the update rule of this guard, and the update holds as long as the
guards related to f at time t remain false.

Ψ5(t): If some guard related to the internal function f is true at t, values of f not
updated remain the same as long as the guards related to f remain false.

Finally, the total runs are described by the formula Ψ ≡ Înit(0)
∧

i=0,...,5
∀ t Ψi(t)

(where Init describes the initial state of the ASM) as stated by the following
theorem [BS02]:

Theorem 1. Every model of Ψ is a total run of A, and conversely, every total

run of A is a model of Ψ .

Automated Generation of Description of ASM Runs The translator1 is com-
posed of a parser, a type checker, a library of functions which actually perform
the translation and a printer which can generate a file conforming to any specific
syntax containing definitions and axioms (or lemmas) given in our abstract syn-
tax (see below). Because of this modular design, it is quite simple to extend the
syntax of ASM, to generate new lemmas or to use another system than Reduce
or PVS.

– The input file. An example of input file for the Generalized Railroad Cross-
ing Problem is given in Appendix A (the formal grammar can be found in
[BCS00]). The input file containing the description of the ASM is three-fold.
The first part contains the signature and the (optional) lists of static and in-
ternal functions. The second part contains the definitions of some functions
(or predicates) together with the signature of logical variables. Eventually,
the third part contains the rules of the ASM.

– Abstract syntax. Since this abstract syntax corresponds directly to the con-
crete syntax defined by the formal grammar, it does not require much com-
ment. Note however that we do not distinguish between terms and formulas
at the syntactic level (formulas are just boolean terms) and that the ASM
may or not be parameterized.

– Type checking. We check that no function is declared both static and inter-
nal, that no external function is assigned in the ASM and finally we type
check the definitions and the conditional rules. Note that since some provers
(such as PVS) use stronger type systems (possibly generating TCC), a type
error during the translation does not stop the processing (but should be
considered as a warning). Predefined atomic types and the types of the pre-
defined functions and predicates enumerated in section 2 are known by the

1 The translator (which is currently written in Standard ML) was first developed for
a previous experiment with PVS [BCS00]. The printer had just to be rewritten in
order to generate a file conforming to Reduce syntax.

translator. Moreover, a very simple but convenient form of subtyping and
overloading is provided.

– The translation. The implementation of the translation is very close to the
definition given in section 2: a set of axioms is generated for each axiom
scheme Ψi(t) (where each defined symbols is replaced by its definition).

3 A decidable class of verification

In this section we briefly recall some definitions and results from [BS02]. We
say that an interpretation f∗ of f : T × X → Z is a Finite Interpretation

of complexity (k, n) ((k, n)-FI) if we can divide X ∗, the interpretation of X ,
into k classes and for each class X ∗

i , f∗
x is a same constant for all x ∈ X ∗

i

on each of the n intervals of T . The complexity of a FI of a vocabulary V is
the maximum of complexities of interpretations of all abstract functions, where
max{(k0, n0), (k

′
1
, n′

1
)} = (max{k0, k

′
1
}, max{n0, n

′
1
}).

Theorem 2. It is decidable whether a closed formula of FOTL has a model of

complexity (k, n).

The proof of this theorem provides an algorithm transforming a given formula
F into a formula F̃ with real and integers variables and addition such that F̃ is
valid iff F admits a model of complexity (k, n).

The next question is now what formulas satisfy the following bounded com-

plexity counter-model property : “F has a counter-model iff F has a counter-
model of a complexity (k, n) for some k,n”.

Since in our framework, verification problems are formulas of the form Φ → Ψ ,
we introduce two notions that are ‘almost’ dual: finite satisfiability (for Φ) and
finite refutability (for Ψ). Intuitively, finite satisfiability of a formula Φ says
that every “finite piece” of any model of Φ is extendable to a model of F of
a finite complexity. Finite refutability says that if a formula is refutable the
contradiction given by a counter-model is consecrated on a finite piece of a fixed
size. The class of implication of FOTL where the premise is finitely satisfiable
and the conclusion is finitely refutable with a fixed complexity has a bounded

complexity counter-model property.

Automated verification of the existence of counter-model of a given compexity

The formula corresponding to a verification problem is Φruns ∧ Φenv → Ψreq,
where Φruns is a conjunction of axioms generated by the translator, Φenv is a
formula specifying the environment and Ψreq is the property to prove. To apply
our method, one have to find first the complexity (k, n) (for a case study we refer
the reader to [BCP03]). When this is done the existence of a counter-model for
this formula is equivalent of existence of a counter-model of complexity (k, n).

The second part of the tool provides an automated verification of the exis-
tence of a (counter-)model with a given complexity (k, n). Since the design of
our tool is oriented towards dealing with verification problems, the following files
should be supplied:

– The FOTL formula Φruns describing the ASM (which is generally the output
of our translator)

– The FOTL formula Φenv (resp. Ψreq) specifying the environment (resp. the
requirements)2

– The signature of abstract function symbols, the complexity (k, n) and even-
tually the list of parameters.

The main steps are:

1. We eliminate abstract function symbols by applying the algorithm associ-
ated with theorem 2 to the formula ¬ (Φruns ∧ Φenv → Ψreq). The resulting
formula contains real and integer variables. These two sorts of variables are
well separated: an atomic formula contains either only real variables or only
integer variables (and even no addition in the latter case).

2. We have two strategies for elimination of integer variables. If the signature
doesn’t contain ‘=’ over abstract sorts and any functional symbols with a
result of abstract type, and if the partition of the abstract sorts is the same
for all abstract functions, we can suppose that the interpretation of any ab-
stract sort has cardinality k and that each class contains exactly one element.
In this case integers existential (resp. universal) quantifiers can be replaced
by finite disjunctions (resp. conjunctions). Otherwise, since the signature
contains only order (and no addition) we have developed an algorithm for
integer quantifier elimination which is simpler than in Presburger arithmetic.

3. We eliminate real quantifiers using Reduce. We take advantage here of the
knowledge we have about the structure of this formula, actually it is of the
form ∃π(∧φi), where π is a list of reals variables and each φi contains a
few existential and universal real quantifiers. We eliminate consecutively all
quantifiers from each φi. At each step we try to get the smaller result. If
our problem has abstract sorts, it seems (from an empirical standpoint) that
the optimal way is to take some innermost quantifier and then to apply QE
to this subformula and so on. On the other hand, when we have only real
variables there is no improvement with this method, and we can equally
apply QE to the whole formula φi (but in the latter case, Reduce function
rlqews gives a smaller result than rlqe). At the last step, we apply QE on the
resulting formula which is in existential prenex form. Note that the number
of quantifiers in this formula depends on how the problem was first specified
as an ASM.

4 Conclusion and Future works

Let us first say a word about the current state of implementation. The core of
the tool, which is the module that interacts with Reduce, is written in C++
and runs on any personal computer. This module can also invoke Reduce on a

2 An example of requirement formula for the Generalized Railroad Crossing Problem
is given in Appendix A.

distant platform (which is actually needed for dealing with large formulas). In
this case, the interaction with Reduce relies on remote pipes and a shared file
system. Our main distant server is a Sun sparc Ultra 10 with 1Gb memory, but
when needed, we also used a Sun Fire 280 with 4Gb memory3.

From a theoretical point of view any verification problem belonging to the
decidable class mentioned above can be treated with our tool. In practice, QE
fails when the formula contains a few dozen variables (as one can expect from
its complexity). We have thus experimented different implementations of QE in
Reduce in order to find out which method is more appropriated. We also imple-
mented some heuristics to diminish the number of quantified variables depending
on specific properties of the problem in hand. Besides, the number of quantified
real variables introduced during the process strongly depends on the number of
functions in the initial ASM. To overcome this problem, we intend to develop
further some recent ideas concerning how to improve the ASM and thus stay
within the applicability range of our approach.

References

[AD99] T. Sturm A. Dolzmann. Redlog user manual - edition 2.0, for redlog version
2.0. Fakultät für Mathematik und Informatik, Universität Passau, 1999. MIP-
9905.

[BCP03] D. Beauquier, T. Crolard, and E. Prokofieva. Automatic verification of real
time systems: A case study. In Third Workshop on Automated Verifica-
tion of Critical Systems (AVoCS’2003), Technical Report of the University
of Southampton, Southampton (UK), April 2003.

[BCS00] D. Beauquier, T. Crolard, and A. Slissenko. A predicate logic framework for
mechanical verification of real-time Gurevich Abstract State Machines: A case
study with PVS. Technical Report 00–25, University Paris 12, Department of
Informatics, 2000. Available at http://www.univ-paris12.fr/lacl/.

[BS02] D. Beauquier and A. Slissenko. A first order logic for specification of timed
algorithms: Basic properties and a decidable class. Annals of Pure and Applied
Logic, 113(1–3):13–52, 2002.

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets
computer logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic
and Algebraic Manipulation), 31(2):2–9, June 1997.

[Gur95] Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. Börger, editor, Spec-
ification and Validation Methods, pages 9–93. Oxford University Press, 1995.

[Hea99] Anthony C. Hearn. Reduce user’s and contributed packages manual, version
3.7. Available from Konrad-Zuse-Zentrum Berlin, Germany, February 1999.
http://www.uni-koeln.de/REDUCE/.

[Wei99] V. Weispfenning. Mixed real-integer linear quantifier elimination. In Proc.
of the 1999 Int. Symp. on Symbolic and Algebraic Computations (ISSAC’99),
pages 129–136. ACM Press, 1999.

3 We would like to thank J.-M. Moreno from the Computer Science Department of
Paris 7 University for allowing us to experiment with this server.

A Example: the Generalized Railroad Crossing Problem

A.1 The input file describing the ASM

Signature Railroad

WT : time;

dclose : time;

dmin : time;

DL : Tracks -> time;

NoDL : Tracks -> bool;

Cmg : Tracks -> bool;

DirOp : bool;

SafeToOpen : bool;

Init : bool;

Static WT, dmin, dclose;

Internal NoDL, DL, DirOp;

End

Variables

x : Tracks;

Define

WT : time = (dmin - dclose);

SafeToOpen : bool = forall x (not Cmg(x) or NoDL(x) or DL(x) > CT);

Init : bool = forall x (DirOp and NoDL(x) and DL(x)=0);

Repeat

Forall x in Tracks

InParallelDo

If (Cmg(x) and NoDL(x)) Then DL(x) := (CT + WT); NoDL(x) := false; EndIf

If (not Cmg(x) and not NoDL(x)) Then NoDL(x) := true; EndIf

If (DirOp and not SafeToOpen) Then DirOp := false; EndIf

If (not DirOp and SafeToOpen) Then DirOp := true; EndIf

EndDo

EndForall

EndRepeat

End

A.2 Requirement

Liveness: all t ((t >=0 impl (all x (not Cmg(t,x) or all t1 (t1>=t impl (all t2

((t2>=t1 and t>t2) impl (Cmg(t2,x) impl t<t1+WT)))))impl DirOp(t))))

