
Laboratoire d'Algorithmique,
Complexité et Logique (LACL)
Université Paris 12 — Val de Marne
Faculté des Sciences  et Technologie
61, Av. du Gén. de Gaulle
94010 CRETEIL cedex
FRANCE
Tel: (33 1) 45 17 16 47,   Fax: (33 1) 45 17 16 49

A Predi
ate Logi
 Frameworkfor Me
hani
al Veri�
ationof Real-Time Abstra
t State Ma
hines:A Case Study with PVS.Dani�ele Beauquier Tristan Crolard Anatol SlissenkoO
tober 2000TR{00{25

INFORMATIQUEUniversit�e Paris 12 { Val de Marne, Fa
ult�e des S
ien
e et Te
hnologie61, Avenue du G�en�eral de Gaulle, 94010 Cr�eteil 
edex, Fran
eTel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 16 49, Telex: UPVMINT 264 167 F



Laboratory of Algorithmi
s, Complexity and Logi
University Paris 12Te
hni
al Report 00{25D. Beauquier, T. Crolard A. Slissenko.A predi
ate logi
 framework for me
hani
al veri�
ationof real-time Gurevi
h Abstra
t State Ma
hines:A 
ase study with PVS.O
tober, 2000.



A Predi
ate Logi
 Frameworkfor Me
hani
al Veri�
ationof Real-time Gurevi
h Abstra
t State Ma
hines:A 
ase study with PVSDani�ele BeauquierE-mail: beauquier�univ-paris12.fr Tristan CrolardE-mail: 
rolard�univ-paris12.frAnatol Slissenko℄E-mail: slissenko�univ-paris12.frLaboratory of Algorithmi
s, Complexity and Logi
,Department of Informati
s, University Paris-12, Fran
e1
Abstra
tWe des
ribe general prin
iples and a tool that permit to get a rather short and 
lear PVS proof ofveri�
ation of the Generalized Railroad Crossing Problem. The problem is treated 
ompletely followingthe initial spe
i�
ation pra
ti
ally without any modi�
ations. Su
h a dire
t, 
omplete and easy tounderstand formal treatment of the problem has never been done before. The framework we use israther general and we believe it 
an be used for veri�
ation of other real-time systems.1 Introdu
tionThe paper des
ribes a methodology of veri�
ation of timed abstra
t state ma
hines with the help of theoremprovers within a predi
ate logi
 framework. This approa
h is oriented onto using tools like PVS [PVS℄,Isabelle [Pau94℄ and towards development of more advan
ed ones that take into 
onsideration the experien
ea

umulated in the domain of logi
 based veri�
ation.Veri�
ation presumes an intera
tion of two spe
i�
ations: a spe
i�
ation of requirements (brie
y, re-quirements) and a spe
i�
ation of algorithm (brie
y, algorithm). Requirements, generally, 
onsist of twoparts: des
ription of the environment and demands to the fun
tioning. Suppose that these spe
i�
ations arerepresented by logi
 formulas �Env (environment), �Fun
 (fun
tioning) and �Runs (exe
utions or runs ofthe algorithm) respe
tively. Thus, the veri�
ation in this situation is to prove � (�Env ^�Runs)! �Fun
 �.Logi
 approa
hes to veri�
ation have their advantages and disadvantages, say, with respe
t to model-
he
king. Their advantages: (1) they use (relatively) easily 
omprehensible languages to embed user'sspe
i�
ations without imposing on the latter new languages, (2) logi
 languages are very expressive, thatpermits to represent the initial spe
i�
ation dire
tly, 
ompletely and without ex
essive e�orts, (3) whilere�ning the spe
i�
ations the user 
hanges his/her spe
i�
ation languages but the veri�
ation environmentremains the same. The main disadvantage of the approa
h is that in its general setting the logi
s used areunde
idable, and the sear
h of a veri�
ation proof is not fully automati
 in the general 
ase. Our goal is todevelop methods to augment the automated part of the proof sear
h. To do it we pursue a more theoreti
alway of looking for de
idable 
lasses (e. g. [BS00℄) and a more pra
ti
al way of seeking heuristi
s for eÆ
ientveri�
ation. Here we present a work in the latter dire
tion. With respe
t to model-
he
king (e. g. [CGP99℄)1Address: Dept. of Informati
s, University Paris 12, 61 Av. du G�en. de Gaulle, 94010, Cr�eteil, Fran
e.℄Member of St-Petersburg Institute for Informati
s and Automation, A
ademy of S
ien
es of Russia.



we gain in the quality of the veri�
ation result, in parti
ular in 
ompleteness, and a faster preparation of agiven problem for veri�
ation, but loose in automation of the �nal phase.We develop the approa
h des
ribed in [BS00℄ (and other papers available athttp://www.univ-paris12.fr/la
l/) towards using proof sear
h tools. To 
he
k how it works we analyze awell-known a
ademi
 example, namely, the Generalized Railroad Crossing Problem (abbreviated to GRCPbelow) introdu
ed in [HL94℄. We take the version of [GH96℄ that is pra
ti
ally equivalent to the original one.The GRCP was studied in many papers, e. g. see [HM96℄. A PVS veri�
ation of GRCP has been done in 70-page report [AH98℄. This report is very hard to read be
ause it uses not suÆ
iently eÆ
ient formalism thatdemands a 
ompli
ated modeling. We use ri
her, simpler and more general languages for the spe
i�
ations, inparti
ular, First Order Timed Logi
 (FOTL) for requirements and timed Gurevi
h Abstra
t State Ma
hines(ASM) [Gur95℄ to spe
ify algorithms. The latter are 
loser to programming languages, and mu
h strongerand mu
h easier to use than automata based formalisms (the approa
h works as well for other spe
i�
ationlanguages with 
lear semanti
s). Our approa
h is ideologi
ally 
loser to that of [MMP+96℄ where the authorsuse some kind of �rst order logi
 to spe
ify the requirements and Petri nets to spe
ify algorithms.Here we present our analysis of the entire problem, based on the initial, almost unmodi�ed spe
i�
ation.We 
learly separate the spe
i�
ations to analyze: requirements to fun
tioning, spe
i�
ation of environmentand spe
i�
ation of 
ontroller, and give a dire
t PVS proof that the 
ontroller veri�es the requirementsto fun
tioning under the spe
i�
ation of environment. In our solution the requirements, in
luding theenvironment, are des
ribed on 1-page easy to read formulas, the 
ontroller is spe
i�ed by, in fa
t, 4-linealgorithm as a Gurevi
h ASM (that we take with some minor modi�
ations and re
ti�
ations from [GH96℄),and our PVS proof is 3-page long. Su

in
tness and 
larity of our solution distinguish it from [AH98℄.The eÆ
ien
y of our proof is based, in parti
ular, on general, automati
ally generated properties of timedGurevi
h ASM that, in parti
ular, `pre-pro
ess' some indu
tions to use.New results of this paper are the following ones: an eÆ
ient embedding of runs of timed blo
k Gurevi
hASM in First Order Timed Logi
 (FOTL), an automati
 tool to transform su
h an ASM into PVS formulas,and a short PVS proof of safety for the GRCP (liveness is somehow simpler to prove).The paper is organized as follows. In se
tion 2 we des
ribe our logi
 framework for veri�
ation of real-timealgorithms, in parti
ular FOTL and timed blo
k Gurevi
h ASM. Se
tion 2.3 
ontains spe
i�
ations of theGRCP. In se
tion 3 we give FOTL formulas des
ribing ASM runs and how to translate automati
ally anASM into su
h formulas in PVS format. Se
tion 4 presents the 
on
luding part of PVS proof of (Safety) forthe GRCP.2 Ba
kgroundWe start with a brief summary of our methodology to verify a real-time system:{ Write down environment and requirement spe
i�
ations as FOTL formulas �Env and �Fun
. UsingFOTL permits, without mu
h e�ort, to remain very 
lose to the initial spe
i�
ations given usually in alanguage 
lose to natural ones and to avoid errors appearing in less dire
t modelings.{ Spe
ify the algorithm as a timed ASM. The ASM formalism permits to be 
lose to programminglanguage and to express dire
tly our algorithmi
 ideas.{ Automati
ally translate the ASM into FOTL formulas des
ribing its runs with the help of the translator.(Noti
e that our method 
an easily be applied to another formalism than ASMs, we 
hosed this formalismfor its 
larity and its 
on
iseness.){ Use and develop strategies to automate partially the veri�
ation whi
h 
onsists in the proof of� (�Env ^ �Runs)! �Fun
 �.In this se
tion below we remind the predi
ate logi
 framework for real-time veri�
ation from [BS97℄,[BS00℄ and the notion of timed blo
k Gurevi
h ASM [GH96℄.2.1 First Order Timed Logi
 (FOTL)A First Order Timed Logi
 used in this framework is 
onstru
ted in two steps. Firstly, we 
hoose a simple,if possible de
idable theory to deal with 
on
rete mathemati
al obje
ts (the underlying theory), like reals,and, se
ondly, we extend it in a `minimal' way by abstra
t fun
tions to deal with our spe
i�
ations. Here wetake as the underlying theory the theory of real addition and unary multipli
ations by rational numbers, and2



extend it by fun
tions with at most one time argument and with other arguments being of �nite abstra
tsorts. Pre
isions are given below.Syntax of FOTL.The vo
abulary W Æ of a FOTL 
onsists of a �nite set of sorts and of a set of fun
tion symbols. Predi
atesare treated as a parti
ular 
ase of fun
tions, sure ex
ept equalities for ea
h sort.Sorts are 
lassi�ed as prede�ned and abstra
t. Prede�ned sorts are those whi
h interpretation is �xed.Here we 
onsider only �nite abstra
t sorts (though the 
ardinality of su
h a sort may be �xed, bounded orarbitrary).We limit prede�ned sorts to real numbers R, time T =df R�0 treated as a subsort of R, and boolean valuesBool. We expli
itely mention just variables for time: t and � with indi
es. For other sorts we will use anyletter with expli
it indi
ation of its sort. For example, 8X 2 X , where X is a list of n variables and X is adire
t produ
t of n sorts, will mean that ith variable of X is of the ith sort of X .As usually, ea
h fun
tion has its type (pro�le) whi
h determines also its arity.The fun
tions are 
lassi�ed as prede�ned and abstra
t on the one hand, and as dynami
 and stati
 on theother hand. We explain these notions just below.The prede�ned fun
tions are 
ompletely interpreted. We take as prede�ned fun
tions the Boolean 
on-stants true and false of the type ! Bool, rational numbers Q treated as reals, i. e. an in�nite set offun
tions of the type ! R, addition + and substra
tion � of reals, in�nite number of unary multipli
ationsby rational numbers, usual binary predi
ates over reals: =; �; <, equality for ea
h abstar
t sort and at last,identity fun
tion over time that will represent the \
urrent time"; we will denote it by CT Æ as it will appearin examples.The set of abstra
t fun
tion symbols is �nite and any abstra
t fun
tion symbol has at most one timeargument, and the other arguments, if any, are of �nite sorts.The dynami
 fun
tions are those that have a time argument, and the stati
 ones are those that have nosu
h an argument.A vo
abularyW Æ being �xed, the notion of term and that of formula overW Æ are de�ned in a usual way.Remark 1. We treat predi
ates as fun
tions, nevertheless, to give more su

int des
riptions and avoidex
essive use of equality we will use often for these fun
tions the predi
ate notation.To apply the logi
 to veri�
ation one needs more detailed 
lassi�
ation of abstra
t symbols, in parti
ular,one needs to distinguish input fun
tions and output fun
tions. We will do it when ne
essary.Semanti
s of FOTL.A priori we impose no 
onstraints on the admissible interpretations. Thus, the notions of interpretation,model, satis�ability and validity are treated as in �rst order predi
ate logi
 modulo preinterpreted part ofthe vo
abulary. Thus M j= F , M 6j= F and j= F where M is an interpretation and F is a formula,denote respe
tively that M is a model of F , M is a 
ounter-model of F and F is valid.Remark that an interpretation f� of a fun
tion f of type T � X ! Z des
ribes a family of temporalpro
esses parametrized by the elements of interpretation X � of X .2.2 Timed Gurevi
h Abstra
t State Ma
hinesTo represent the algorithms we use Gurevi
h Abstra
t State Ma
hine (ASM) [Gur95℄. This formalism ispowerful, gives a 
lear vision of semanti
s of timed algorithms and permits to easily 
hange the level ofabstra
tion. In prin
iple, Gurevi
h ASM may serve as an intermediate language between user's languagesfor algorithm spe
i�
ation and a logi
 framework. (This 
laim is supported by numerous appli
ations ofGurevi
h ASM, see http://www.ee
s.umi
h.edu/gasm/.)A timed blo
k ASM is a tuple of the form (W; Init; P rog), where W is a vo
abulary, Init is a 
losedformula des
ribing the initial state and Prog is a program.Sorts, variables and fun
tions are like in subse
tion 2.1 ex
ept that time 
annot be an argument offun
tions. We 
lassify the fun
tions using the same terms as in subse
tion 2.1, namely abstra
t or prede�nedon the one hand and stati
 or dynami
 on the other hand. Sure, to reason about the behavior of an ASM we3



are to embed the fun
tions of the vo
abulary of the ma
hine into FOTL. And at this moment, time be
omesexpli
it to represent our vision of the fun
tioning of the ma
hine. To `time' the dynami
 fun
tions of anASM we pro
eed as follows.If f is a dynami
 fun
tion of type X ! Z in the vo
abulary of an ASM, the 
orresponding logi
alfun
tion is denoted by fÆ and is of type T � X ! Z. We assume that any ASM vo
abulary 
ontains aprede�ned dynami
 fun
tion CT of type ! T whi
h be
omes CT Æ, that is the identity: CT Æ(t) = t.Dynami
 fun
tions are 
lassi�ed into external and internal. External fun
tions are not 
hanged by theASM, internal fun
tions, on the 
ontrary, are 
omputed by the ASM and are obviously abstra
t and dynami
.The fun
tion CT is external and prede�ned.Prede�ned stati
 fun
tions have a �xed interpretation valid for every t 2 T . The interpretation ofa prede�ned dynami
 fun
tion, though 
hanging with time, does not depend on the fun
tioning of thema
hine.The initial 
ondition Init is a 
losed formula over W presumed to have the following property: given aninterpretation of abstra
t sorts and abstra
t external fun
tions (for time 0), there is a unique interpretationof internal fun
tions su
h that the 
ondition Init is satis�ed. This unique interpretation of internal fun
tionsde�nes their value at time 0.We 
onsider a parti
ular 
ase of ASM, namely blo
k ASM that 
onsists of a set of If-Then-operators(rules). This 
ase is, however, a very pra
ti
al one. The notations of ASM are self-explanatory so we givethe form of ASM we 
onsider (our notation slightly di�ers from that of [Gur95℄ to diminish explanations).RepeatForAll ! 2 
InParallelDoIf G1(!) Then A1(!) EndIfIf G2(!) Then A2(!) EndIf: : : : : : : : : : : :If Gm(!) Then Am(!) EndIfEndInParallelDoEndForAllEndRepeatHere ea
h Gi is a guard, i. e. a formula over the vo
abulary des
ribed above, not having free variablesdi�erent from !, and ea
h Ai is a list of assignments (
alled updates) whose terms also do not have freevariables di�erent from !. Ea
h assignment is of the form f(T ) := �, where f is an internal fun
tion, � is aterm and T is a list of terms of the size 
orresponding to the arity of f .Informally all guards are 
he
ked simultaneously and instantaneously, and all the updates of rules with trueguards are exe
uted also simultaneously and instantaneously.Semanti
s of an ASM.Pre
ise semanti
s is given in [BS00℄ and follows [GH96℄. We give here just an intuitive des
ription. For agiven interpretation of abstra
t sorts we de�ne the semanti
s of the program in terms of runs (exe
utions).Informally, given an input, that is an interpretation of external fun
tions for ea
h moment of time, thema
hine 
omputes a run whi
h is an interpretation of internal fun
tions for ea
h moment of time or atleast for an initial segment of T . Noti
e that external fun
tions whi
h are 
lassi�ed as stati
 have the sameinterpretation for every moment of time.The behavior of the ma
hine is deterministi
. All the If-Then-statements are exe
uted simultaneouslyin parallel and instantaneously as well as all the assignments in any Then-part if the 
orresponding guardis true. Sure, if they are in
onsistent, the exe
ution is interrupted, and the run of the algorithm be
omesunde�ned. Noti
e that the e�e
t of an assignment exe
uted at time t takes pla
e after time t but not attime t.We 
onsider only total runs, i.e. those de�ned on whole T . Below \run" means \total run".As we mentioned in Introdu
tion, the set of runs 
an be des
ribed by FOTL-formulas. In the nextse
tion 3 we dis
uss some features of these formulas des
ribing runs in a way apt to veri�
ation and how toprodu
e them automati
ally for PVS proof 
he
ker. Before that, we illustrate this sta� with the GeneralizedRailroad Crossing Problem. 4



2.3 Generalized Railroad Crossing Problem (GRCP)Informal Des
ription of GRCP.We take the des
ription of GRCP from [GH96℄. A railroad 
rossing has several one-dire
tional tra
ks anda 
ommon gate. Ea
h tra
k admits two sensors, one at some distan
e of the 
rossing in order to dete
tin
oming of a train and another one just after the 
rossing in order to dete
t the train is leaving. Anautomati
 
ontroller re
eives the signals from the sensors and on the basis of these signals, de
ides to send tothe gate a signal 
lose or open. The environment of the fun
tioning of the 
ontroller to 
onstru
t is des
ribedby the following assumptions. It is assumed that a train 
annot arrive on a tra
k (i. e. in the zone of 
ontrol)before the previous one has left this tra
k. The situation when a train does not leave the 
rossing is notformally ex
luded. It takes at least time dmin for a train to rea
h the 
rossing after the sensor has dete
tedits in
oming. And it takes at most dopen (respe
tively d
lose) to the gate to be really opened (respe
tively
losed) after the re
eption of signal to open (respe
tively, to 
lose) if the opposite signal has not been sentin between. To ex
lude degenerated 
ase, it is assumed that 0 < d
lose < dmin. The time is presumed to be
ontinuous.The requirements to the 
ontroller to 
onstru
t are the following ones:(Safety). If a train is in the 
rossing, the gate is 
losed.(Liveness). The gate is open as mu
h as possible.Liveness in this formulation implies se
ond order quanti�ers (for dis
ussion see [BS00℄) and has never beentreated in literature in this form. So we will take below a �rst order formulation in terms of input/outputsignals (one 
an show that it gives the liveness in the initial formulation, but it is out the s
ope of thispaper).Formal Spe
i�
ation of the Requirements to GRCP.FOTL permits to represent the informal requirements dire
tly without any 
hanges (modulo our remark
on
erning liveness).The prede�ned part of vo
abulary W was des
ribed above in subse
tion 2.1. So we de�ne only theabstra
t part of W .Abstra
t sorts 
onsist of one sort Tra
ks that represents the set of tra
ks whi
h number is �nite but not�xed. The variables for Tra
ks are x and x with indi
es.The part of vo
abulary 
ontaining abstra
t fun
tions 
onsists of abstra
t 
onstants (stati
 fun
tions ofzero arity) dmin, dopen, d
lose, all of the type ! T , and of abstra
t dynami
 fun
tions. The latter are thefollowing ones:� CmgÆ : T � Tra
ks! Bool means a presen
e (
oming) of a train on a tra
k at a given time moment;� DirOpÆ : T ! Bool means that a signal to open the gate takes pla
e at a given time moment, and:DirOpÆ means that the signal is to 
lose the gate;� InCrÆ : T ! Bool says that there is a train in the 
rossing at a given time moment;� GtClsdÆ : T ! Bool says that the gate is 
losed at a given time moment;� GtOpndÆ : T ! Bool says that the gate is opened at a given time moment. ( GtOpndÆ is not thenegation of GtClsdÆ as we know only that the gate 
annot be opened and 
losed at the same time.)Requirements Spe
i�
ations of GRCP.Requirements 
onsist of 2 parts: environment (formula �Env mentioned at the beginning of se
tion 2) anddemands to the fun
tioning (formula �Fun
).We have no formal notion of train within the given syntax. We assume that for a given tra
k a new trainrea
hes the sensor laun
hing CmgÆ only after the previous one has left the 
rossing making the tra
k status:CmgÆ. The alternation :CmgÆ= CmgÆ= :CmgÆ : : : 
orresponds to appearan
e of su

essive trains on agiven tra
k.Notations:�WaitT ime =WT=df dmin�d
lose will be used to des
ribe a period of time when a train, though havingbeen dete
ted, is far enough from the 
rossing to permit to open or to not to 
lose the gate.� For every fun
tion f of type T � X ! Y , every term X of type X and every term Y of type YLimPlusf(t; X; Y )=df 9 t1 (t1 > t ^ 8 � ((t < � � t1) ! f(�;X) = Y ))
5



LimMoinsf (t; X; Y )=df 9 t1 (t1 < t ^ 8 � ((t1 � � < t) ! f(�;X) = Y ))� A notion des
ribing when the 
ontroller may open the gate is stated as follows:SafeToOpenSp(t)=df8x � :CmgÆ(t; x) _ 8� � t � 8� 0 2 [�; t)CmgÆ(� 0; x) ! t < � +WaitT ime � � :Spe
i�
ation of the Environment.(TrStInit) 8x:CmgÆ(0; x)(At the initial moment there are no trains on any tra
k.)(GtStInit) GtOpndÆ(0)(At the initial moment the gate is opened.)(GtSt) 8 t :(GtOpndÆ(t) ^ GtClsdÆ(t))(The gate 
annot be 
losed and opened at the same time, but it 
an be neither opened nor 
losed.)(DirInit) DirOpÆ(0)(At the initial moment the signal 
ontrolling the gate is opened.)(CrCm) 8t � InCrÆ(t) ! (t � dmin ^ 9x8 � 2 [t� dmin; t℄CmgÆ(�; x)) �(If a train is in the 
rossing it had been dete
ted on one of the tra
ks at least dmin time before the 
urrentmoment.)(OpnOpnd) 8 t � 8 � 2 (t; t+ dopen℄DirOpÆ(�) ! GtOpndÆ(t+ dopen) �(If at time t + dopen the 
ommand has been open for at least a duration dopen then the gate is opened atthis time.)(ClsClsd) 8t � 8� 2 (t; t+ d
lose℄:DirOpÆ(�) ! GtClsdÆ(t+ d
lose) �(If at time t+ d
lose the 
ommand has been 
lose for at least a duration d
lose then the gate is 
losed at thistime.)(Cmg)8x8t � CmgÆ(t; x)!9 t0 � 0 < t0 � t ^ 8� 2 [t0; t℄CmgÆ(�; x) ^ LimMoinsCmgL(t0; x; false) � �(The last property expresses that the predi
ate CmgÆ is true on intervals 
losed on the left and opened onthe right and that the set of points where the value 
hanges has no a

umulation points.)(dIneq) 0 < d
lose < dmin ^ 0 < dopen(These is trivial 
onstraints on the durations involved, the time for 
losing is smaller than the minimum timeof rea
hing the 
rossing by any train dete
ted as 
oming.)Spe
i�
ation of the Control.These spe
i�
ations 
on
ern requirements on the fun
tioning.(Safety): 8t (InCrÆ(t)! GtClsdÆ(t)).(When a train is in the 
rossing, the gate is 
losed).(LIveness) or (Utility): 8t (SafeToOpenSp(t) ! DirOpÆ(t)).(If the zone of 
ontrol is safe to open at time t then the 
ontrol signal must be to open the gate).One 
an noti
e that using FOTL permits us to rewrite almost dire
tly the environment and requirementsspe
i�
ations without any modelisation whi
h 
ould introdu
e a lot of errors.Railroad Crossing Controller.The part of the vo
abulary of the ASM spe
i�
 to this example 
onsists ofStati
 fun
tions:� dmin; dopen; d
lose; as above in the logi
 signature.External fun
tions:� CT the 
urrent time has type ! T .
6



� Cmg : Tra
ks ! Bool is an input fun
tion giving for every tra
k its status (
oming or empty).Internal fun
tions:� DirOP says that the signal to open the gate is being generated by the algorithm, its type is ! Bool.� DL : Tra
ks ! T is the �rst moment of appearan
e of a train on a given tra
k plus WaitT ime, andthis value is then used as a DeadLine to de
ide on 
ontrol of the gate, see SafeToOpen 
ondition below.� NoDL : Tra
ks ! Bool says that there is no deadline on a given tra
k.Notation:SafeToOpen=df 8x � :Cmg(x) _ NoDL(x) _ CT < DL(x) �.Remark that this SafeToOpen is presumed to represent adequately the SafeToOpenSp 
ondition, butit is to be proved.An algorithm to 
ontrol the railroad 
rossing is given below. To distinguish it from that of [GH96℄ wewill name it Symmetri
 Controller as it uses our version of SafeToOpen 
ondition in a symmetri
 way.Below we will refer to this algorithm simply as Controller.The initial values of internal fun
tions are de�ned by the 
onditionInit=df 8x � NoDL(x) ^ DL(x) = 0 � ^ DirOpRepeatForAll x 2 Tra
ksInParallelDoIf Cmg(x) and NoDL(x)Then NoDL(x) := false;DL(x) := CT +WT EndIfIf :Cmg(x) and :NoDL(x)Then NoDL(x) := trueEndIfIf DirOp and :SafeToOpen Then DirOp := false EndIfIf :DirOp and SafeToOpen Then DirOp := true EndIfEndInParallelDoEndForAllEndRepeatFigure 1: Railroad Crossing Controller3 Automati
 Translation of ASM runs into PVSWe des
ribe here how ASM runs are represented by FOTL-formulas. We show how to generate automati
allythese formulas using the translator that we developed for this purpose2. The target of the translation is
urrently a PVS theory.3.1 FOTL Representation of Runs of Timed ASMIt turns out that on 
an 
hara
terize the set of total runs of an ASM by an FOTL formula ([BS00℄).Before giving this formula, we need to introdu
e some notations. Let W be the vo
abulary of a blo
k ASM(W; Init; P rog) with the program of the form given above.Denote by Wk the set of terms that appear to the left of := in the assignment blo
k Ak(!), and denote by�k;v the term of the assignment of Ak(!) with the left hand side v. Without loss of generality we assumethat there are no two assignments of the form v := � and v := �0 in Ak(!). Thus, the assignments of Ak(!)are of the form v := �k;v ; v 2 Wk. Denote by W Æ the `timed' vo
abulary obtained from the vo
abulary Wby repla
ing ea
h dynami
 fun
tion symbol f 2W of the type X ! Z by fÆ of the type T � X ! Z.De�ne operation "b" whi
h transforms a term � over W and t 2 T into a term b�(t) over W Æ by thefollowing re
ursion (a){(
):(a) bu(t) = u if u is a variable or a stati
 fun
tion symbol (
onstant).2Available at http://www.univ-paris12.fr/la
l/
rolard. 7



(b) For terms � over W of the form f(�1; : : : ; �n), where f is a stati
 fun
tion symbol, b�(t) =f( b�1(t); : : : ;
�n(t)).(
) For terms � over W of the form f(�1; : : : ; �n), where f is a dynami
 fun
tion symbol, b�(t) =fÆ(t; b�1(t); : : : ;
�n(t)).For a formula F over W we denote by bF (t) the formula over W Æ obtained from F by repla
ing all terms� by b�(t).Notations:� Fun
(v) is the outmost fun
tion symbol of a term v, i. e. Fun
(f(�1; : : : ; �n)) = f .� If is the set of indi
es k in f1; : : : ;mg for whi
h a term � with Fun
(�) = f , that is of the formf(�1; : : : ; �n), is in Wk .� Arg(�) is the list of arguments of a term �, i. e. Arg(f(�1; : : : ; �n)) = (�1; : : : ; �n). For lists of termsthe operations Æ and bare 
omponentwise, as well as the equality.Below we assume that a fun
tion symbol f 2 VIntrn has the type X ! Z, where X is a dire
t produ
t ofsorts, and by X we will denote a ve
tor of variables of the sort X ; to remind it we will write also X 2 dom(f).To des
ribe the total run 
orresponding to a given input we express the following properties related to agiven moment of time t.First some notations:NoGrds(t; !)=df Vk :\Gk(!)(t)NoGrds(t)=df 8! NoGrds(t; !)For every f 2 VIntrn:NoGrdsf (t; !)=df Vk2If :\Gk(!)(t)where If = fk j 9 v 2 Wk Fun
(v) = fg.[NoGrdsf (t)=df 8! NoGrdsf (t; !)We give here a list of properties, the 
onjun
tion of whi
h 
hara
terizes the set of total runs of an ASM.� If no guard is valid at t then no guard is valid in some neighborhood of t :OpnNoGrds(t)=df � NoGrds(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! NoGrds(�)) � � :	0(t)=df OpnNoGrds(t):� If a guard is valid at t for some ! then no guard is valid in some neighborhood of t ex
ept t itself:PointWiseNoGrds(t)=df 8! Vk �\Gk(!)(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 �(Neib(t1; �; t2) ! (� = t _ NoGrds(�))) � � :	1(t)=df PointWiseNoGrds(t):� The value of an internal fun
tion at time t is equal to its value at the left of t:For every f 2 VIntrn:LeftOpnf (t)=df � t > 0 ! 9 t1 < t 8 � 2 (t1; t)8X 2 dom(f) fÆ(�;X) = fÆ(t;X) � :LeftOpn(t)=df Vf2VIntrn LeftOpnf (t)	2(t)=df LeftOpn(t).� Values of internal fun
tions do not 
hange as long as related guards remain false:NoGrdNoChangef (t)=df� 8 t1 > t (8 � 2 [t; t1)NoGrdsf (�) ! 8 � 2 (t; t1℄8X 2 dom(f) fÆ(�;X) = fÆ(t;X)) �NoGrdNoChange(t)=df Vf2VIntrn NoGrdNoChangef (t):	3(t)=df NoGrdNoChange(t).� If some guard related to the internal fun
tion f is true at t, f is updated in a

ording with the updaterule of this guard, and the update holds as long as the guards related to f remain false:UpDatef (t; !)=df Vk2If �\Gk(!)(t) !8 t1 > t (8 � 2 (t; t1)NoGrdsf (�)) ! 8 � 2 (t; t1℄Vv2Wk; Fun
(v)=f dv(!)(�) = \�k;v(!)(t)) �UpDate(t)=df 8! Vf2VIntrn UpDatef (t; !) 8



	4(t)=df UpDate(t).� If some guard related to the internal fun
tion f is true at t, values of f not updated remain the same aslong as the guards related to f remain false:NoChangef (t;X)=df 8! Vk2If ; v2Wk; Fun
(v)=f \Arg(v(!))(t) = X ! :\Gk(!)(t)NoUpDatef (t)=df 9! Wk2If \Gk(!)(t) ! 8 t1 > t � 8 � 2 (t; t1)NoGrdsf (t) !8X 2 dom(f)(NoChangef (t;X) ! 8 � 2 (t; t1℄ fÆ(�;X) = fÆ(t;X)) �NoUpDate(t)=df Vf2VIntrn NoUpDatef (t):	5(t)=df NoUpDate(t).Finally, the total runs are des
ribed by the formula 		 =df dInit(0) ^i=0;:::;58 t	i(t)In other words we have the following theorem [BS00℄:Theorem 1. Every model of 	 is a total run of A, and 
onversely, every total run of A is a model of 	.Theoreti
ally, every property satis�ed by a run of the ASM 
an be dedu
ed from 	. Nevertheless, from apra
ti
al point of view, formulas involved in 	 are not always the most 
onvenient ones. For this reason ari
her library of formulas dedu
ible from �Runs has been developed.Library of formulas dedu
ible from �Runs.We des
ribe these formulas in a natural language. The exa
t formulas are in Appendix D.� OpnNoGrds(t): The set of time moments t when some guard is false is an open set.� NotIntG: A guard G 
annot be true on an open interval.� PointWiseNoGrds(t): Guards are pointwise.� FirstChangef (t): If an internal fun
tion f has not the same value in t and t0, there is a �rst momentbetween t and t0 when it 
hanges its value.� LastChangef (t): If an internal fun
tion f has di�erent values at t and t0, there is a last momentbetween t and t0 when it 
hanges its value.� UpDateLo
f (t): If some guard related to the internal fun
tion f is true at t, then f is updated a

ordingto the update rule of this guard at the right of t.Well Parametrized GASM.The veri�
ation of the Railroad Crossing Problem has emphasized the fa
t that some spe
ial ASM haveinteresting properties. Sure, these properties 
an be dedu
ed from �Runs, but it is more 
onvenient to writethem dire
tly and automati
ally.De�nition. An ASM is well-parametrized if(a) every internal fun
tion f has a type X ! Z or 
 � X ! Z , where X is a produ
t of �nite sortsdi�erent from 
;(b) in every update 
on
erning f , i. e. of the form f(�) := �0, with f of the type 
� X ! Z the �rstargument is the variable ! of sort 
, mentioned expli
itly in the general form of ASM given in subse
tion 2.2,that is f(�) has the form f(!; �1; :::; �n).For a well parametrized blo
k ASM, one 
an prove a property that is not true in the general 
ase: internalfun
tions depend only "lo
ally" on the parameter ! 2 
.More pre
isely, for every internal fun
tion f , for every k 2 If let us de�ne:UpDateParf;k(t; !)=df8 t1 (t < t1 ^Gk(t; !) ^ (8 � 2 (t; t1)NoGrdsf (t; !)) !8 � 2 (t; t1℄Vv2Wk; Funv(v)=f dv(!)(�) = \�k;v(!)(t))Theorem 2 If an ASM is well-parametrized then the following property holdsVf2VIntrn Vk2If 8 t8!UpDateParf;k(t; !): 9



The proof of this theorem is by indu
tion on the number of time moments � between t and t1 whenNoGrdsf (�) is false. Using 	3, we prove that due to the fa
t that the ASM is well-parametrized, insu
h time moments the value of dv(!)(�) remains equal to \�k;v(!)(t).3.2 Automati
 Generation of Des
ription of ASM RunsThe main task of the translator is to manipulate abstra
t terms and formulas, it is thus easier to programin a language with 
on
rete data types and a powerful type system like ML (we used O
aml 3.0 [Ler00℄).Composition of the Translator.The translator is 
omposed of a parser, a type 
he
ker, a library of fun
tions whi
h a
tually perform thetranslation and a printer whi
h 
an generate a 
orre
t PVS theory from de�nitions and axioms (or lemmas)given in our abstra
t syntax (see below). Be
ause of this modular design, it is quite simple to extend thesyntax of ASM, to generate new lemmas or to use another prover than PVS.The input �le.An example of input �le for the Railroad Crossing Problem as well as the formal grammar are given inAppendix C and Appendix B respe
tively.The input �le 
ontaining the des
ription of the ASM is three-fold:� The �rst part 
ontains the signature, where we de
lare the type of every fun
tion or predi
ate symbol.A type has either the form �0 or �1 � : : :� �n ! �0 where ea
h �i is an atomi
 type (i.e. a name). Then wegive the (optional) list of stati
 fun
tions and the (optional) list of internal fun
tions.� The se
ond part 
ontains the signature of logi
al variables (variables whi
h may o

ur only bound bya quanti�er or as formal parameters in a de�nition) and the de�nitions of some fun
tions (or predi
ates).The general form of su
h a de�nition is: f(x1; : : : ; xn) : � = t, where x1; : : : ; xn are variables, � is an atomi
type and t is a term.� The third part 
ontains the rules of the ASM following the syntax given in subse
tion 2.2. Eventually, alist of symbols that should be exported (i.e. sin
e they were not de�ned in the environment) 
an be spe
i�ed.Abstra
t syntax.Parsing the input �le results in abstra
t synta
ti
 trees whi
h belong to the following ML data types. Sin
ethis abstra
t syntax 
orresponds dire
tly to the 
on
rete syntax de�ned by the formal grammar, it doesnot require mu
h 
omment. Note however that we do not distinguish between terms and formulas at thesynta
ti
 level (formulas are just boolean terms) and that the ASM may or not be parametrized.type asm type = name list * name;;type term = Constant of rational| Apply of (name * term list)| Forall of (variable list * term)| Exists of (variable list * term);;type rule = term * (term * term) list;;type prog = f de
l : (variable * asm type) list;stati
 : variable list;internal : variable list;var : (variable * asm type) list;def : (term * name * term) list;body : (variable * asm type) option * rule list;export : variable list g;;Type 
he
king.When the parsing stage is over, the abstra
t synta
ti
 tree is 
he
ked. We 
he
k that no fun
tion is de
laredboth stati
 and internal, that no external fun
tion is assigned in the ASM and �nally we type 
he
k thede�nitions and the 
onditional rules. Note that sin
e some provers (su
h as PVS) use stronger type systems10



(possibly generating TCC), a type error during the translation does not stop the pro
essing (but should be
onsidered as a warning).Prede�ned atomi
 types are bool, rational (for 
onstants), time and real. The types of the prede�nedfun
tions and predi
ates enumerated in se
tion 2.1 are also known by the translator:Prede�ned stati
 fun
tions:+ : time * time -> time= : time * time -> bool/ : rational * rational -> rational* : real * rational -> real+ : real * real -> real- : real * real -> real= : real * real -> bool< : real * real -> bool=> : bool * bool -> bool= : bool * bool -> boolAND : bool * bool -> boolOR : bool * bool -> boolNOT : bool -> booltrue : boolfalse : boolPrede�ned dynami
 fun
tionCT : timeSubtyping.A very simple but 
onvenient form of subtyping is provided. The usual typing rule of appli
ation is generalizedto the following rule: ti : �i �i � � 0i f : � 01 � : : :� � 0n ! �f(t1; : : : ; tn) : �As expe
ted, the prede�ned types obey the following in
lusion: time�real and rational�real.Overloading.Two kinds of overloading are allowed: a fun
tion 
an be re-de
lared either if the type of its arguments arein
omparable with those of the �rst de
laration (true overloading), or if the type of its arguments and resultsare subtypes of those of the �rst de
laration (restri
tion). An example of true overloading is = : bool* bool -> bool and = : real * real -> bool. An example of restri
tion is given by + : time *time -> time and + : real * real -> real.The translation.The implementation of the translation is very 
lose to its mathemati
al de�nition given in subse
tion 3.1.For instan
e, a fun
tion hat : name list -> term -> term -> term implements \^". Its parametersare the list of dynami
 fun
tions, a term (whi
h is usually a variable of type time) and the term to betransformed. Likewise, some fun
tions 
ir
, fun
 and arg implements \Æ", Fun
 and Arg exa
tly as theyare de�ned in se
tion 3. A few auxilliary fun
tions are also needed to generate generalized quanti�
ationslike 8X 2 dom(f) (whi
h o

ur for instan
e in the de�nition of NoGrdNoChange) a

ording to the a
tualtype of f . For that purpose, the variables named x1; x2; x3; : : : might be used by the translator and thusthey should not o

ur in the input �le (to avoid any 
apture). For the same reason, the variables t; t1; t2; t3are also reserved.Sin
e the details of the translation are rather te
hni
al, we will just des
ribe the main steps:� we translate the signature of the ASM (we use 
ir
 to make the time expli
it in the type of dynami
fun
tions) 11



� we translate the de�nitions of the ASM (we use hat to add a time argument when dynami
 fun
tionsare applied)� we build de�nitions named:{ Guardi for ea
h guard i .{ NoGrdsF and NoChangeF for ea
h internal fun
tion F.{ LimPlusF and LimMinusF for ea
h dynami
 fun
tion F.� we build axioms named:{ OpnNoGi and PointWisei for ea
h guard i.{ NoGrdNoChangeF and LeftOpnNoF for ea
h internal fun
tion F.{ UpDateNoFi and NoUpDateNoFi for ea
h o

urren
ei of an update of the internal fun
tion F.� we build lemmas named:{ OpenNoGrds{ NotIntGi and PointWiseNoGrdsi for ea
h guard i.{ FirstChangeF and LastChangeF for ea
h internal fun
tion F.{ UpDateLo
Fi for any o

urren
e i of an update of the internal fun
tion F.� eventually, we 
he
k if the ASM is well parametrized a

ording to the 
riterion de�ned in se
tion 3and if so, we generate additional lemmas named:{ UpDateParFi for any o

urren
e i of an update of the internal fun
tion F.About Higher Order Logi
.We 
hose to translate the �rst order theory whi
h 
hara
terizes runs of an ASM dire
tly as a �rst ordertheory in PVS. Thus we do not bene�t from the full logi
 of PVS (whi
h is a Higher Order Logi
). We
ould use fun
tionals (for the de�nition of limits) and axiom s
hemes to translate the general theory of runsparametrized by some en
oding of the ASM. The proofs of properties of a spe
i�
 ASM would not be madeeasier, but the generated theory would be shorter and far more elegant (2-page theory instead of a 9-pageone). Moreover, we 
ould 
onsider to try and derive our lemmas from the axioms in PVS (sin
e FOTL isunde
idable, the su

ess of su
h an attempt depends on the lemmas). In fa
t, we 
hose to restri
t ourselvesto �rst order theories be
ause it is the only 
ommon part for a variety of existing provers.3.3 Generating a PVS theoryPVS.PVS is a proof 
he
ker with some fa
ilities of theorem prover, see [PVS℄. It permits to introdu
e ri
hly typedlogi
 syntax of any order. PVS has a type 
he
ker that is very useful. There is some number basi
 strategiesand a limited language to write down user's strategies. The intera
tion with the user is well done that makesthe system a rather eÆ
ient proof 
he
ker. There are in
orporated de
ision algorithms, automati
 rewritingand other pro
edures.The resulting �le of our translation is a PVS theory whi
h has the following form:ASM : THEORYBEGINIMPORTING Environment% Signature% Definitions% Axioms and LemmasEND ASMIn the signature part, we only de
lare fun
tions whi
h are exported by the ASM (whi
h follow the keywordexport), the other fun
tions should be de
lared in the theory \Environment".12



4 A Case Study: Veri�
ation of the Generalized Railroad Cross-ing ProblemIn this se
tion we give the main steps of a PVS proof of (Safety) for GRCP.4.1 PVS Proof of Safety for the GRCPThe PVS 
he
ked proof is based on three lemmas (InCrArr), (ArrDL) and (NotSfDirCl).Lemma (InCrArr) says that if a train is in the 
rossing at time t then there exists a time t1 � dminbefore t su
h that this train was arriving at t1 and remained in the zone of 
ontrol during the period [t1; t℄.Lemma (ArrDL) expresses the fa
t that if a train arrives at time t on tra
k x, and remains in the zoneof 
ontrol during a period [t; t1℄, then there is no deadline for x at time t but on the interval (t; t1℄, there isa deadline for x equal to t+WT .Lemma (NotSfDirCl) says that if during a period [t; t1℄ with t < t1 it is not safe to open (from the pointof view of the algorithm) then during the period (t; t1℄ there is a 
ommand to 
lose the gate.As shown by the lemmas introdu
ed, an important event is the arrival of a train on some tra
k x at timemoment t, this event 
an be expressed as an FOTL formula Arrive(t; x).The proof of ea
h lemma was 
he
ked with the help of PVS. The 
omplete proof is less than 4-page, it isgiven in Appendix E. As an illustration, we 
ompare a sket
h of our hand proof of (Safety) that uses theabove lemmas and the 
orresponding PVS proof.Remind that (Safety) means8t (InCrÆ(t)! GtClsdÆ(t)).Hand Proof of Safety.(Sf0) �Env 
ontains an axiom (dIneq): 0 < d
lose < dmin ^ 0 < dopen that we will use.(Sf1) Fix a time moment t1 and suppose InCrÆ(t1), our goal is to proveGtClsdÆ(t1).(Sf2) From environment formulas (ClsClsd) and (InCr) given at the end of se
tion 2.1 (using basi
 �rst orderproof sear
h 
onsiderations) we redu
e our goal to � t1 � d
lose ^ 8� 2 (t1 � d
lose; t1℄:DirOpÆ(�) �.(Sf3) Applying Lemma (InCrArr) at time t1 we get that there is some tra
k x0 and some time t2 su
h that(Sf3.1): t2 � t1 � dmin,(Sf3.2): Arrives(t2; x0) and(Sf3.3): 8� 2 [t2; t1℄CmgÆ(�; x0).(Sf4) Applying Lemma (ArrDL) for t1; x0; t2 we get8 � 2 (t2; t1℄ (:NoDLÆ(�; x0) ^DLÆ(�; x0) = t2 +WT )(Sf5) The �rst part of our goal stated in (Sf2), i. e. t1 � d
lose, follows from (Sf3.1) and axiom (dIneq)mentioned in (Sf0).(Sf6) To prove the se
ond part of the goal (Sf2) we apply Lemma (NotSfDirCl) for t1 � d
lose; t1 and get� t1 � d
lose < t1 ^ 8� 2 [t1 � d
lose; t1℄: \SafeToOpen(�) �! 8� 2 (t1 � d
lose; t1℄:DirOpÆ(�).(Sf7) To �nish the proof of goal (Sf2) it is enough to prove(Sf7.1): t1 � d
lose < t1 and(Sf7.2): 8� 2 [t1 � d
lose; t1℄: \SafeToOpen(�).(Sf8) If we expand the de�nition of \SafeToOpen formula (Sf7.2) be
omes8� 2 [t1 � d
lose; t1℄ 9x � CmgÆ(�; x) ^ :NoDLÆ(�; x) ^ CT Æ(�) � DLÆ(�; x) �.13



(Sf9) Let �1 2 [t1 � d
lose; t1℄. We are to prove:9x � CmgÆ(�; x) ^ :NoDLÆ(�; x) ^ CT Æ(�) � DLÆ(�; x) �.(Sf10) To prove (Sf9) it is enough to prove� CmgÆ(�1; x0) ^ :NoDLÆ(�1; x0) ^ CT Æ(�1) � DLÆ(�1; x0)) �.(Sf11) Instantiating (Sf3.3) and (Sf4) with �1 and using (dIneq) we dedu
e from the de�nition of CT Æ thedesired result.PVS Proof of Safety.We brie
y 
omment PVS 
ommands and strategies used below: SKOSIMP is a skolemization followed bya disjun
tive simpli�
ation, GRIND is a 
at
h-all strategy used to automati
ally 
omplete a proof bran
h,GROUND is a less powerful 
ommand whi
h invokes propositional simpli�
ation and de
ision pro
edures,APPLY LEMMA is a strategy (its de�nition is given in Appendix E.1) we have written whi
h permits toapply some lemma of the form 8X(�(X)!  (X)), instantiating it, and then splitting it.Numbers in square bra
kets are added by us to show the 
orresponden
e between hand-made proof aboveand the PVS proof below.;;; Proof for formula verif.Safety(""[0℄(APPLY_LEMMA "dIneq" NIL)[1℄(SKOSIMP*)[2℄(APPLY_LEMMA "InCrArr" ("t!1"))(("1"[3℄ (APPLY_LEMMA "ClsClsd" ("t!1"))(("1" (GRIND))("2"(SKOSIMP*)[4℄ (APPLY_LEMMA "ArrDL" ("t3!1" "t!1" "x!1"))(("1"[6℄ (LEMMA "NotSfDirCl")(INST -1 "t!1-d
lose" "t!1")(("1"[7℄ (CASE "(FORALL tau:((t!1 - d
lose <= tau AND tau <= t!1) =>SafeToOpen(tau) = FALSE))")(("1" (GRIND))("2"[8℄ (EXPAND "SafeToOpen")[9℄ (SKOSIMP 1)[10℄ (INST -3 "x!1")[11℄ (INST -6 "tau!2")(INST -11 "tau!2")(GRIND))))[5℄ ("2" (ASSERT))))("2" (GROUND)))))) Con
lusionThe result presented in this paper shows that a rather 
omplete logi
 based veri�
ation of real-time systemsis feasible and that this approa
h has quite visible advantages with respe
t to other ones. To make thiste
hnique more pra
ti
al we are developing proof sear
h strategies that 
onsiderably augment the automatedpart of the proof sear
h. Besides that we plan to extend our approa
h to other algorithm spe
i�
ationlanguages (in parti
ular, fragments of programming languages) and to use more powerful logi
s (se
ondorder and with probability operator) that permit to treat ri
her 
lasses of veri�
ation problems.
14
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Appendi
esA Library of formulas dedu
ible from �Runs� The set of time moments t when some guard is false is an open set:OpnNoGk(t; !)=df � :\Gk(!)(t) ! 9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! :\Gk(!)(�)) � �OpnNoGk =df 8t8!OpnNoGk(t; !)We have the following property: k̂ OpnNoGk :� Guards are pointwise : PointWiseGk(t; !)=df �\Gk(!)(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! (� = t _ :\Gk(!)(�))) � �PointWiseGk=df 8t8!PointWiseGk(t; !)We have: k̂ PointWiseGk:� If some guard related to the internal fun
tion f is true at t, f is updated in a

ording with the updaterule of this guard at the right of t.UpDateLo
f (t; !)=df k̂2If �\Gk(!)(t) ! ^v2Wk; Fun
(v)=f LimPlusdv(!)(t; \�k;v(!)(t)) �UpDateLo
(t)=df 8! ^f2VIntrn UpDateLo
f (t; !)We have:8 t UpDateLo
(t):� A guard 
annot be true on an open interval:NotIntGk(t; !)=df 8 t1 � t < t1 ! :(8 � 2 (t; t1) Gk(�; !) �NotIntGrd(t)=df 8! k̂ NotIntGk(t; !)We have8 t NotIntGrd(t):� If an internal fun
tion f has not the same value in t and t0, there is a �rst moment between t and t0 whenit 
hanges its value:Changef (t;X)=df _k2If \Gk(!)(t) ^ 9 y (LimMoins[f(X)(t; y) ^ y 6= fÆ(t;X))
i



FirstChangef (t; t0; X)=df (t < t0 ^ fÆ(t;X) 6= fÆ(t0; X)) !(9 t" 2 [t; t0)(Changef (t"; X) ^ 8 � 2 [t; t") k̂2If 8!:\Gk(!)(�))We have : Vf2VIntrn 8tt0 8X 2 dom(f) FirstChangef (t; t0; X).� If an internal fun
tion f has not the same value in t and t0, there is a last moment between t and t0 whenit 
hanges its value: LastChangef(t; t0; X)=df (t < t0 ^ fÆ(t;X) 6= fÆ(t0; X)) !(9 t" 2 [t; t0)(Changef (t"; X) ^ 8 � 2 (t"; t0) k̂2If 8!:\Gk(!)(�))

ii



B Con
rete syntax of an input �le (ASM) for the translatorprog ::= "Signature" ident de
l-list def-body export-listde
l-list ::= "End"| "Internal" ident var-list "End"| "Stati
" ident var-list internal-list| de
l de
l-listinternal-list ::= "End"| "Internal" ident var-list "End"export-list ::= "End"| "Export" ident var-list "End"de
l ::= ident ":" ident type| string ":" ident typevar-list ::= ";"| "," ident var-listtype ::= "->" ident ";"| "*" ident type| ";"def-body ::= "Variables" typed-var var-list def-list body "EndRepeat"| "Define" def-list body "EndRepeat"| "Repeat" body "EndRepeat"typed-var ::= "Define"| de
l typed-vardef-list ::= "Repeat"| definition ";" def-listdefinition ::= term ":" ident "=" termbody ::= "Forall" ident "in" ident "InParallelDo" if-list "EndForall"| "InParallelDo" if-listif-list ::= "EndDo"| "If" if if-listif ::= term "Then" assign-listassign-list ::= "EndIf"| assign ";" assign-listassign ::= term ":=" termterm-list ::= ")"| "," term term-list| op term op-list
iii



term ::= int| float| ident arg-list| "(" term op-list| "not" term| "forall" ident term| "exists" ident termop-list ::= ")"| op term op-listarg-list ::= "(" term term-listop ::= "AND" | "OR" | "=>" | "=" | "<" | ">" | "<=" | ">="| "*" | "/" | "+" | "-"

iv



C The Railroad Crossing Problem ASM (input �le for the trans-lator)Signature RailroadWT : time;d
lose : time;dmin : time;DL : Tra
ks -> time;NoDL : Tra
ks -> bool;Cmg : Tra
ks -> bool;DirOp : bool;SafeToOpen : bool;Init : bool;Stati
 WT, dmin, d
lose;Internal NoDL, DL, DirOp;EndVariablesx : Tra
ks;DefineWT : time = (dmin - d
lose);SafeToOpen : bool = forall x (not Cmg(x) or NoDL(x) or CT < DL(x));Init : bool = forall x (DirOp and NoDL(x) and DL(x) = 0);RepeatForall x in Tra
ksInParallelDoIf (Cmg(x) and NoDL(x)) Then DL(x) := (CT +WT); NoDL(x) := false;EndIfIf (not Cmg(x) and not NoDL(x)) Then NoDL(x) := true;EndIfIf (DirOp and not SafeToOpen) Then DirOp := false;EndIfIf (not DirOp and SafeToOpen) Then DirOp := true;EndIfEndDoEndForallEndRepeatExport DL, NoDL;End
v



D PVS Theories for the Generalized Railroad Crossing ProblemThere are four theories, deftime whi
h 
ontains the de�nitions related to time, Environment whi
h 
ontainsthe spe
i�
ations of the environment and imports deftime, Railroad whi
h is automati
ally produ
ed fromthe ASM by our translator program modeling the 
ontrol system and whi
h imports Environment and atlast verif whi
h imports Railroad and 
ontains the lemmas to prove.D.1 Theory: deftimedeftime: theorybegintime: type = ft: real | t � 0gt, t1, t2, a, b, 
: var time;CT(t): time = tNeigh(t1, t, t2): bool = (t = 0 ^ t1 = 0 ^ t2 > 0) _ (t1 < t ^ t < t2)P: var [time ! bool℄union int: lemma(8 t: ((a � t ^ t � b))P(t)) ^ (8 t: (b�t^t�
)) P(t)) ^ (a �b ^ b � 
)) )(8 t: (a � t ^ t � 
) ) P(t))end deftimeD.2 Theory: EnvironmentEnvironment: theorybeginimporting deftimeTra
ks: type;d
lose: time;dmin: time;InCr, GtClsd, GtOpnd: [time ! bool℄Cmg: [time, Tra
ks ! bool℄;DirOp: [time ! bool℄;t, t0, t1, t2, t3, �: var time;x: var Tra
ks;dopen: time;LimMinusCmg(t: time, x1: Tra
ks, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t) ) Cmg(t3, x1) = y))))
vi



dIneq: axiom d
lose > 0 ^ dmin > 0 ^ dmin > d
lose ^ dopen > 0TrStInit: axiom Cmg(0, x) = falseGtStInit: axiom GtOpnd(0) = trueGtSt: axiom : (GtOpnd(t) = true ^ GtClsd(t) = true)CrCm: axiomInCr(t) = true )(t � dmin ^(9 x: 8 �: (t� dmin � � ^ � � t) ) Cmg(�, x) = true))OpnOpnd: axiom(t � dopen ^ (8 �: ((� > t� dopen ^ � � t) ) DirOp(�) = true))) )GtOpnd(t) = trueClsClsd: axiom(t � d
lose ^ (8 �: ((� > t� d
lose ^ � � t) ) DirOp(�) = false))) )GtClsd(t) = trueComing: axiomCmg(t, x) = true )(9 t0:(0 < t0 ^t0 � t ^(8 �: (t0 � � ^ � � t) ) (Cmg(�, x) ^ LimMinusCmg(t0, x, false))) ^(9 t1:(t1 > t ^(8 �: (((Neigh(t, �, t1)) ) Cmg(�, x) = true)))))))end Environment

vii



D.3 Theory: RailroadThis theory is generated automati
ally by our translator from the ASM spe
i�
ation of Appendix C.%%% Parsing : ok%%% Type Che
king :%%% Type error in de�nition WT=(dmin - d
lose)%%% Stati
 : x, WT, dmin, d
lose,%%% Internal : NoDL, DL, DirOp,Railroad: theorybeginimporting Environment% d
lose : time;% dmin : time;DL: [time, Tra
ks ! time℄;NoDL: [time, Tra
ks ! bool℄;% Cmg : [time, Tra
ks -> bool℄;% DirOp : [time -> bool℄;x: var Tra
ks;t, t1, t2, t3: var time;WT: time = (dmin� d
lose)SafeToOpen(t): bool =(8 x: (: Cmg(t, x) _ (NoDL(t, x) _ CT(t) < DL(t, x))))Init(t): bool = (8 x: (DirOp(t) ^ (NoDL(t, x) ^ DL(t, x) = 0)))Grd1(t: time, x: Tra
ks): bool = (Cmg(t, x) ^ NoDL(t, x))Grd2(t: time, x: Tra
ks): bool = (: Cmg(t, x) ^ : NoDL(t, x))Grd3(t: time, x: Tra
ks): bool = (DirOp(t) ^ : SafeToOpen(t))Grd4(t: time, x: Tra
ks): bool = (: DirOp(t) ^ SafeToOpen(t))NoGrdsNoDL(t: time, x: Tra
ks): bool = (: Grd1(t, x) ^ : Grd2(t, x))NoGrdsDL(t: time, x: Tra
ks): bool = : Grd1(t, x)NoGrdsDirOp(t: time, x: Tra
ks): bool = (: Grd3(t, x) ^ : Grd4(t, x))
viii



LimMinusNoDL(t: time, x1: Tra
ks, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t) ) NoDL(t3, x1) = y))))LimMinusDL(t: time, x1: Tra
ks, y: time): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t) ) DL(t3, x1) = y))))LimMinusDirOp(t: time, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t) ) DirOp(t3) = y))))LimPlusNoDL(t: time, x1: Tra
ks, y: bool): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1) ) NoDL(t3, x1) = y))))LimPlusDL(t: time, x1: Tra
ks, y: time): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1) ) DL(t3, x1) = y))))LimPlusDirOp(t: time, y: bool): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t3) = y))))ChangeNoDL(t: time, x1: Tra
ks): bool =((9 x: (Grd1(t, x) _ Grd2(t, x))) ^(9 (y: bool): (LimMinusNoDL(t, x1, y) ^ : y = NoDL(t, x1))))ChangeDL(t: time, x1: Tra
ks): bool =((9 x: Grd1(t, x)) ^(9 (y: time): (LimMinusDL(t, x1, y) ^ : y = DL(t, x1))))ChangeDirOp(t: time): bool =((9 x: (Grd3(t, x) _ Grd4(t, x))) ^(9 (y: bool): (LimMinusDirOp(t, y) ^ : y = DirOp(t))))NoChangeNoDL(t: time, x1: Tra
ks): bool =(8 x: ((x = x1 ) : Grd1(t, x)) ^ (x = x1 ) : Grd2(t, x))))NoChangeDL(t: time, x1: Tra
ks): bool = (8 x: (x = x1 ) : Grd1(t, x)))NoChangeDirOp(t: time): bool =(8 x: ((true ) : Grd3(t, x)) ^ (true ) : Grd4(t, x))))SomeGrd(t: time, x: Tra
ks): bool =(((Grd1(t, x) _ Grd2(t, x)) _ Grd3(t, x)) _ Grd4(t, x))NoGrds(t: time): bool =(8 x:(((: Grd1(t, x) ^ : Grd2(t, x))^ : Grd3(t, x)) ^ : Grd4(t,x)))Init: axiom Init(0)OpnNoG1: axiom(: Grd1(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) : Grd1(t3, x))))))OpnNoG2: axiom(: Grd2(t, x) ) ix



(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) : Grd2(t3, x))))))OpnNoG3: axiom(: Grd3(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) : Grd3(t3, x))))))OpnNoG4: axiom(: Grd4(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) : Grd4(t3, x))))))PointWise1: axiom(Grd1(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : Grd1(t3, x)))))))PointWise2: axiom(Grd2(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : Grd2(t3, x)))))))PointWise3: axiom(Grd3(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : Grd3(t3, x)))))))PointWise4: axiom(Grd4(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : Grd4(t3, x)))))))NoGrdNoChangeNoDL: axiom(8 t1:(t1 > t )((8 t3: ((t � t3 ^ t3 < t1) ) (8 x: NoGrdsNoDL(t3, x)))) )(8 t3:((t < t3 ^ t3 � t1) )(8 (x1: Tra
ks): NoDL(t, x1) = NoDL(t3, x1)))))))NoGrdNoChangeDL: axiom(8 t1:(t1 > t )((8 t3: ((t � t3 ^ t3 < t1) ) (8 x: NoGrdsDL(t3, x)))) )(8 t3:((t < t3 ^ t3 � t1) ) x



(8 (x1: Tra
ks): DL(t, x1) = DL(t3, x1)))))))NoGrdNoChangeDirOp: axiom(8 t1:(t1 > t )((8 t3: ((t � t3 ^ t3 < t1) ) (8 x: NoGrdsDirOp(t3, x)))) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t) = DirOp(t3))))))UpDateNoDL1: axiom(Grd1(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsNoDL(t3, x)))) )(8 t3: ((t < t3 ^ t3 � t1) ) NoDL(t3, x) = false))))))UpDateNoDL2: axiom(Grd2(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsNoDL(t3, x)))) )(8 t3: ((t < t3 ^ t3 � t1) ) NoDL(t3, x) = true))))))UpDateDL1: axiom(Grd1(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDL(t3, x)))) )(8 t3:((t < t3 ^ t3 � t1) )DL(t3, x) = (CT(t) +WT)))))))UpDateDirOp1: axiom(Grd3(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDirOp(t3, x)))) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t3) = false))))))UpDateDirOp2: axiom(Grd4(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDirOp(t3, x)))) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t3) = true))))))NoUpDateNoDL1: axiom(NoGrds(t) _(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsNoDL(t3, x)))) )(8 (x1: Tra
ks):(NoChangeNoDL(t3, x1) )(8 t3:((t < t3 ^ t3 � t1) ) xi



(8 (x1: Tra
ks):NoDL(t, x1) = NoDL(t3, x1))))))))))NoUpDateNoDL2: axiom(NoGrds(t) _(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsNoDL(t3, x)))) )(8 (x1: Tra
ks):(NoChangeNoDL(t3, x1) )(8 t3:((t < t3 ^ t3 � t1) )(8 (x1: Tra
ks):NoDL(t, x1) = NoDL(t3, x1))))))))))NoUpDateDL1: axiom(NoGrds(t) _(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDL(t3, x)))) )(8 (x1: Tra
ks):(NoChangeDL(t3, x1) )(8 t3:((t < t3 ^ t3 � t1) )(8 (x1: Tra
ks): DL(t, x1) = DL(t3, x1))))))))))NoUpDateDirOp1: axiom(NoGrds(t) _(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDirOp(t3, x)))) )(NoChangeDirOp(t3) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t) = DirOp(t3))))))))NoUpDateDirOp2: axiom(NoGrds(t) _(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) (8 x: NoGrdsDirOp(t3, x)))) )(NoChangeDirOp(t3) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t) = DirOp(t3))))))))LeftOpnNoDL: axiom(t > 0 )(9 t1:(t1 < t ^(8 t3:((t1 < t3 ^ t3 < t) )(8 (x1: Tra
ks): NoDL(t, x1) = NoDL(t3, x1)))))))LeftOpnDL: axiom(t > 0 )(9 t1:(t1 < t ^ xii



(8 t3:((t1 < t3 ^ t3 < t) )(8 (x1: Tra
ks): DL(t, x1) = DL(t3, x1)))))))LeftOpnDirOp: axiom(t > 0 )(9 t1:(t1 < t ^ (8 t3: ((t1 < t3 ^ t3 < t) ) DirOp(t) = DirOp(t3))))))NotIntG1: lemma(8 t1: (t < t1 ) : ((8 t3: ((t < t3 ^ t3 < t1) ) Grd1(t3, x))))))NotIntG2: lemma(8 t1: (t < t1 ) : ((8 t3: ((t < t3 ^ t3 < t1) ) Grd2(t3, x))))))NotIntG3: lemma(8 t1: (t < t1 ) : ((8 t3: ((t < t3 ^ t3 < t1) ) Grd3(t3, x))))))NotIntG4: lemma(8 t1: (t < t1 ) : ((8 t3: ((t < t3 ^ t3 < t1) ) Grd4(t3, x))))))OpnNoGrds: lemma(NoGrds(t) )(9 t1, t2:(Neigh(t1, t, t2) ^ (8 t3: (Neigh(t1, t3, t2) ) NoGrds(t3))))))PointWiseNoGrds1: lemma(Grd1(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds2: lemma(Grd2(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds3: lemma(Grd3(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds4: lemma(Grd4(t, x) )(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2) ) (t = t3 _ : NoGrds(t3)))))))FirstChangeNoDL: lemma(8 (x1: Tra
ks):((t < t1 ^ : NoDL(t, x1) = NoDL(t1, x1)) )(9 t2: xiii



((t � t2 ^ t2 < t1) ^(ChangeNoDL(t2, x1) ^(8 t3:((t � t3 ^ t3 < t2) )(8 x: (8 x: NoGrdsNoDL(t3, x))))))))))FirstChangeDL: lemma(8 (x1: Tra
ks):((t < t1 ^ : DL(t, x1) = DL(t1, x1)) )(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDL(t2, x1) ^(8 t3:((t � t3 ^ t3 < t2) )(8 x: (8 x: NoGrdsDL(t3, x))))))))))FirstChangeDirOp: lemma((t < t1 ^ : DirOp(t) = DirOp(t1)) )(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDirOp(t2) ^(8 t3:((t � t3 ^ t3 < t2) )(8 x: (8 x: NoGrdsDirOp(t3, x)))))))))LastChangeNoDL: lemma(8 (x1: Tra
ks):((t < t1 ^ : NoDL(t, x1) = NoDL(t1, x1)) )(9 t2:((t � t2 ^ t2 < t1) ^(ChangeNoDL(t2, x1) ^(8 t3:((t2 < t3 ^ t3 < t1) )(8 x: (8 x: NoGrdsNoDL(t3, x))))))))))LastChangeDL: lemma(8 (x1: Tra
ks):((t < t1 ^ : DL(t, x1) = DL(t1, x1)) )(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDL(t2, x1) ^(8 t3:((t2 < t3 ^ t3 < t1) )(8 x: (8 x: NoGrdsDL(t3, x))))))))))LastChangeDirOp: lemma((t < t1 ^ : DirOp(t) = DirOp(t1)) )(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDirOp(t2) ^(8 t3:((t2 < t3 ^ t3 < t1) )(8 x: (8 x: NoGrdsDirOp(t3, x)))))))))
xiv



UpDateLo
NoDL1: lemma (Grd1(t, x) ) LimPlusNoDL(t, x, false))UpDateLo
NoDL2: lemma (Grd2(t, x) ) LimPlusNoDL(t, x, true))UpDateLo
DL1: lemma (Grd1(t, x) ) LimPlusDL(t, x, (CT(t) +WT)))UpDateLo
DirOp1: lemma (Grd3(t, x) ) LimPlusDirOp(t, false))UpDateLo
DirOp2: lemma (Grd4(t, x) ) LimPlusDirOp(t, true))UpDateParNoDL1: lemma(Grd1(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) NoGrdsNoDL(t3, x))) )(8 t3: ((t < t3 ^ t3 � t1) ) NoDL(t3, x) = false))))))UpDateParNoDL2: lemma(Grd2(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) NoGrdsNoDL(t3, x))) )(8 t3: ((t < t3 ^ t3 � t1) ) NoDL(t3, x) = true))))))UpDateParDL1: lemma(Grd1(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) NoGrdsDL(t3, x))) )(8 t3:((t < t3 ^ t3 � t1) )DL(t3, x) = (CT(t) +WT)))))))UpDateParDirOp1: lemma(Grd3(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) NoGrdsDirOp(t3, x))) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t3) = false))))))UpDateParDirOp2: lemma(Grd4(t, x) )(8 t1:(t1 > t )((8 t3: ((t < t3 ^ t3 < t1) ) NoGrdsDirOp(t3, x))) )(8 t3: ((t < t3 ^ t3 � t1) ) DirOp(t3) = true))))))end Railroad
xv



D.4 Theory: verifverif: theorybeginimporting Railroadt, t0, t1, t2, t3, �: var time;x: var Tra
ks;Arrives(t, x): bool = Cmg(t, x) ^ LimMinusCmg(t, x, false)LemArr: lemma Arrives(t, x) ) t > 0InCrArr: lemmaInCr(t) )(9 t3:9 x:(t3 � t� dmin ^Arrives(t3, x) ^ (8 �: ((t3 � � ^ � � t) ) Cmg(�, x)))))ArrDL: lemma(Arrives(t, x) ^ t < t3 ^ (8 �: ((t � � ^ � � t3) ) Cmg(�, x)))) )(NoDL(t, x) ^(8 �:((t < � ^ � � t3) )(: NoDL(�, x) ^ DL(�, x) = t+WT))))NotSfDirCl: lemma(t < t3 ^ (8 �: ((t � � ^ � � t3) ) SafeToOpen(�) = false))) )(8 �: ((t < � ^ � � t3) ) DirOp(�) = false))Safety: theorem InCr(t) = true ) GtClsd(t) = trueend verif
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E PVS Proof of the Veri�
ation for the Generalized RailroadCrossing ProblemHere we give the strategy APPLY LEMMA and the 
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ision pro
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