- yz 2 Laboratoire d'Algorithmique,

Université Complexité et Logique (LACL)

PARIS 12 R Université Paris 12 — Val de Marne

- Faculté des Sciences et Technologie
61, Av. du Gén. de Gaulle

Val de SCIENCES 94010 CRETEIL cedex

MARNE et TECHNOLOGIE ERANCE

Tel: (33 1) 4517 16 47, Fax: (33 1) 45 17 16 49

A Predicate Logic Framework

for Mechanical Verification
of Real-Time Abstract State Machines:

A Case Study with PVS.
Daniele Beauquier Tristan Crolard Anatol Slissenko

October 2000
TR-00-25

INFORMATIQUE
Université Paris 12 — Val de Marne, Faculté des Science et Technologie
61, Avenue du Général de Gaulle, 94010 Créteil cedex, France
Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 16 49, Telex: UPVMINT 264 167 F

Laboratory of Algorithmics, Complexity and Logic
University Paris 12

Technical Report 00—25

D. Beauquier, T. Crolard A. Slissenko.
A predicate logic framework for mechanical verification
of real-time Gurevich Abstract State Machines:
A case study with PVS.
October, 2000.

A Predicate Logic Framework
for Mechanical Verification
of Real-time Gurevich Abstract State Machines:
A case study with PVS

Daniele Beauquier Tristan Crolard
E-mail: beauquier@Quniv-paris12.fr E-mail: crolardQuniv-paris12.fr

Anatol Slissenkof
E-mail: slissenko@Quniv-paris12.fr

Laboratory of Algorithmics, Complexity and Logic,
Department of Informatics, University Paris-12, France*

Abstract

We describe general principles and a tool that permit to get a rather short and clear PVS proof of
verification of the Generalized Railroad Crossing Problem. The problem is treated completely following
the initial specification practically without any modifications. Such a direct, complete and easy to
understand formal treatment of the problem has never been done before. The framework we use is
rather general and we believe it can be used for verification of other real-time systems.

1 Introduction

The paper describes a methodology of verification of timed abstract state machines with the help of theorem
provers within a predicate logic framework. This approach is oriented onto using tools like PVS [PVS],
Isabelle [Pau94] and towards development of more advanced ones that take into consideration the experience
accumulated in the domain of logic based verification.

Verification presumes an interaction of two specifications: a specification of requirements (briefly, re-
quirements) and a specification of algorithm (briefly, algorithm). Requirements, generally, consist of two
parts: description of the environment and demands to the functioning. Suppose that these specifications are
represented by logic formulas ® gy, (environment), ® gy, (functioning) and ®gy,s (executions or runs of
the algorithm) respectively. Thus, the verification in this situation is to prove ((®gny A ® Runs) = ®runc).

Logic approaches to verification have their advantages and disadvantages, say, with respect to model-
checking. Their advantages: (1) they use (relatively) easily comprehensible languages to embed user’s
specifications without imposing on the latter new languages, (2) logic languages are very expressive, that
permits to represent the initial specification directly, completely and without excessive efforts, (3) while
refining the specifications the user changes his/her specification languages but the verification environment
remains the same. The main disadvantage of the approach is that in its general setting the logics used are
undecidable, and the search of a verification proof is not fully automatic in the general case. Our goal is to
develop methods to augment the automated part of the proof search. To do it we pursue a more theoretical
way of looking for decidable classes (e. g. [BS00]) and a more practical way of seeking heuristics for efficient
verification. Here we present a work in the latter direction. With respect to model-checking (e. g. [CGP99])

1 Address: Dept. of Informatics, University Paris 12, 61 Av. du Gén. de Gaulle, 94010, Créteil, France.
#Member of St-Petersburg Institute for Informatics and Automation, Academy of Sciences of Russia.

we gain in the quality of the verification result, in particular in completeness, and a faster preparation of a
given problem for verification, but loose in automation of the final phase.

We develop the approach described in [BS00] (and other papers available at
http://www.univ-paris12.fr/lacl/) towards using proof search tools. To check how it works we analyze a
well-known academic example, namely, the Generalized Railroad Crossing Problem (abbreviated to GRCP
below) introduced in [HL94]. We take the version of [GH96] that is practically equivalent to the original one.
The GRCP was studied in many papers, e. g. see [HM96]. A PVS verification of GRCP has been done in 70-
page report [AH98]. This report is very hard to read because it uses not sufficiently efficient formalism that
demands a complicated modeling. We use richer, simpler and more general languages for the specifications, in
particular, First Order Timed Logic (FOTL) for requirements and timed Gurevich Abstract State Machines
(ASM) [Gur95] to specify algorithms. The latter are closer to programming languages, and much stronger
and much easier to use than automata based formalisms (the approach works as well for other specification
languages with clear semantics). Our approach is ideologically closer to that of [MMP*96] where the authors
use some kind of first order logic to specify the requirements and Petri nets to specify algorithms.

Here we present our analysis of the entire problem, based on the initial, almost unmodified specification.
We clearly separate the specifications to analyze: requirements to functioning, specification of environment
and specification of controller, and give a direct PVS proof that the controller verifies the requirements
to functioning under the specification of environment. In our solution the requirements, including the
environment, are described on 1-page easy to read formulas, the controller is specified by, in fact, 4-line
algorithm as a Gurevich ASM (that we take with some minor modifications and rectifications from [GH96]),
and our PVS proof is 3-page long. Succinctness and clarity of our solution distinguish it from [AH98].
The efficiency of our proof is based, in particular, on general, automatically generated properties of timed
Gurevich ASM that, in particular, ‘pre-process’ some inductions to use.

New results of this paper are the following ones: an efficient embedding of runs of timed block Gurevich
ASM in First Order Timed Logic (FOTL), an automatic tool to transform such an ASM into PVS formulas,
and a short PVS proof of safety for the GRCP (liveness is somehow simpler to prove).

The paper is organized as follows. In section 2 we describe our logic framework for verification of real-time
algorithms, in particular FOTL and timed block Gurevich ASM. Section 2.3 contains specifications of the
GRCP. In section 3 we give FOTL formulas describing ASM runs and how to translate automatically an
ASM into such formulas in PVS format. Section 4 presents the concluding part of PVS proof of (Safety) for
the GRCP.

2 Background

We start with a brief summary of our methodology to verify a real-time system:

— Write down environment and requirement specifications as FOTL formulas ®g,, and ®pypn.. Using
FOTL permits, without much effort, to remain very close to the initial specifications given usually in a
language close to natural ones and to avoid errors appearing in less direct modelings.

— Specify the algorithm as a timed ASM. The ASM formalism permits to be close to programming
language and to express directly our algorithmic ideas.

— Automatically translate the ASM into FOTL formulas describing its runs with the help of the translator.
(Notice that our method can easily be applied to another formalism than ASMs, we chosed this formalism
for its clarity and its conciseness.)

— Use and develop strategies to automate partially the verification which consists in the proof of
((CDEnU A (I)Runs) = Prunc)

In this section below we remind the predicate logic framework for real-time verification from [BS97],
[BS00] and the notion of timed block Gurevich ASM [GH96].

2.1 First Order Timed Logic (FOTL)

A First Order Timed Logic used in this framework is constructed in two steps. Firstly, we choose a simple,
if possible decidable theory to deal with concrete mathematical objects (the underlying theory), like reals,

and, secondly, we extend it in a ‘minimal’ way by abstract functions to deal with our specifications. Here we
take as the underlying theory the theory of real addition and unary multiplications by rational numbers, and

extend it by functions with at most one time argument and with other arguments being of finite abstract
sorts. Precisions are given below.

Syntax of FOTL.

The vocabulary W° of a FOTL consists of a finite set of sorts and of a set of function symbols. Predicates
are treated as a particular case of functions, sure except equalities for each sort.

Sorts are classified as predefined and abstract. Predefined sorts are those which interpretation is fixed.
Here we consider only finite abstract sorts (though the cardinality of such a sort may be fixed, bounded or
arbitrary).

We limit predefined sorts to real numbers R, time T=4 R>¢ treated as a subsort of R, and boolean values
Bool. We explicitely mention just variables for time: t and 7 with indices. For other sorts we will use any

letter with explicit indication of its sort. For example, VX € X', where X is a list of n variables and X is a
direct product of n sorts, will mean that ith variable of X is of the ith sort of X.

As usually, each function has its type (profile) which determines also its arity.

The functions are classified as predefined and abstract on the one hand, and as dynamic and static on the
other hand. We explain these notions just below.

The predefined functions are completely interpreted. We take as predefined functions the Boolean con-
stants true and false of the type — Bool, rational numbers Q treated as reals, i. e. an infinite set of
functions of the type — R, addition + and substraction — of reals, infinite number of unary multiplications
by rational numbers, usual binary predicates over reals: =, <, <, equality for each abstarct sort and at last,
identity function over time that will represent the “current time”; we will denote it by CT° as it will appear
in examples.

The set of abstract function symbols is finite and any abstract function symbol has at most one time
argument, and the other arguments, if any, are of finite sorts.

The dynamic functions are those that have a time argument, and the static ones are those that have no
such an argument.
A vocabulary W° being fixed, the notion of term and that of formula over W° are defined in a usual way.

Remark 1. We treat predicates as functions, nevertheless, to give more succint descriptions and avoid
excessive use of equality we will use often for these functions the predicate notation.

To apply the logic to verification one needs more detailed classification of abstract symbols, in particular,
one needs to distinguish input functions and output functions. We will do it when necessary.

Semantics of FOTL.

A priori we impose no constraints on the admissible interpretations. Thus, the notions of interpretation,
model, satisfiability and validity are treated as in first order predicate logic modulo preinterpreted part of
the vocabulary. Thus M |= F, M [# F and = F where M is an interpretation and F is a formula,
denote respectively that M is a model of F'; M is a counter-model of F' and F' is valid.

Remark that an interpretation f* of a function f of type 7 x X — Z describes a family of temporal
processes parametrized by the elements of interpretation X™* of X.

2.2 Timed Gurevich Abstract State Machines

To represent the algorithms we use Gurevich Abstract State Machine (ASM) [Gur95]. This formalism is
powerful, gives a clear vision of semantics of timed algorithms and permits to easily change the level of
abstraction. In principle, Gurevich ASM may serve as an intermediate language between user’s languages
for algorithm specification and a logic framework. (This claim is supported by numerous applications of
Gurevich ASM, see http://www.eecs.umich.edu/gasm/.)

A timed block ASM is a tuple of the form (W, Init, Prog), where W is a vocabulary, Init is a closed
formula describing the initial state and Prog is a program.

Sorts, variables and functions are like in subsection 2.1 except that time cannot be an argument of
functions. We classify the functions using the same terms as in subsection 2.1, namely abstract or predefined
on the one hand and static or dynamic on the other hand. Sure, to reason about the behavior of an ASM we

are to embed the functions of the vocabulary of the machine into FOTL. And at this moment, time becomes
explicit to represent our vision of the functioning of the machine. To ‘time’ the dynamic functions of an
ASM we proceed as follows.

If f is a dynamic function of type X — Z in the vocabulary of an ASM, the corresponding logical
function is denoted by f° and is of type 7 x X — Z. We assume that any ASM vocabulary contains a
predefined dynamic function CT of type — 7 which becomes C'T°, that is the identity: CT°(t) = t.

Dynamic functions are classified into ezternal and internal. External functions are not changed by the
ASM, internal functions, on the contrary, are computed by the ASM and are obviously abstract and dynamic.
The function CT is external and predefined.

Predefined static functions have a fixed interpretation valid for every ¢ € 7. The interpretation of
a predefined dynamic function, though changing with time, does not depend on the functioning of the
machine.

The initial condition Init is a closed formula over W presumed to have the following property: given an
interpretation of abstract sorts and abstract external functions (for time 0), there is a unique interpretation
of internal functions such that the condition Init is satisfied. This unique interpretation of internal functions
defines their value at time O.

We consider a particular case of ASM, namely block ASM that consists of a set of If-Then-operators
(rules). This case is, however, a very practical one. The notations of ASM are self-explanatory so we give
the form of ASM we consider (our notation slightly differs from that of [Gur95] to diminish explanations).

Repeat
ForAllw € Q)
InParallelDo
If Gi(w) Then A;(w)EndIf
If G2(w) Then A(w)EndIf
If G, (w) Then A, (w) EndIf
EndInParallelDo
EndForAll
EndRepeat

Here each G; is a guard, i. e. a formula over the vocabulary described above, not having free variables
different from w, and each A; is a list of assignments (called updates) whose terms also do not have free
variables different from w. Each assignment is of the form f(T') := 6, where f is an internal function, 6 is a
term and T is a list of terms of the size corresponding to the arity of f.

Informally all guards are checked simultaneously and instantaneously, and all the updates of rules with true
guards are executed also simultaneously and instantaneously.

Semantics of an ASM.

Precise semantics is given in [BS00] and follows [GH96]. We give here just an intuitive description. For a
given interpretation of abstract sorts we define the semantics of the program in terms of runs (executions).
Informally, given an input, that is an interpretation of external functions for each moment of time, the
machine computes a run which is an interpretation of internal functions for each moment of time or at
least for an initial segment of 7. Notice that external functions which are classified as static have the same
interpretation for every moment of time.

The behavior of the machine is deterministic. All the If-Then-statements are executed simultaneously
in parallel and instantaneously as well as all the assignments in any Then-part if the corresponding guard
is true. Sure, if they are inconsistent, the execution is interrupted, and the run of the algorithm becomes
undefined. Notice that the effect of an assignment executed at time t takes place after time ¢ but not at
time t.

We consider only total runs, i.e. those defined on whole 7. Below “run” means “total run”.

As we mentioned in Introduction, the set of runs can be described by FOTL-formulas. In the next
section 3 we discuss some features of these formulas describing runs in a way apt to verification and how to
produce them automatically for PVS proof checker. Before that, we illustrate this staff with the Generalized
Railroad Crossing Problem.

2.3 Generalized Railroad Crossing Problem (GRCP)

Informal Description of GRCP.

We take the description of GRCP from [GH96]. A railroad crossing has several one-directional tracks and
a common gate. Each track admits two sensors, one at some distance of the crossing in order to detect
incoming of a train and another one just after the crossing in order to detect the train is leaving. An
automatic controller receives the signals from the sensors and on the basis of these signals, decides to send to
the gate a signal close or open. The environment of the functioning of the controller to construct is described
by the following assumptions. It is assumed that a train cannot arrive on a track (i. e. in the zone of control)
before the previous one has left this track. The situation when a train does not leave the crossing is not
formally excluded. It takes at least time d,,;, for a train to reach the crossing after the sensor has detected
its incoming. And it takes at most dypen, (respectively dejose) to the gate to be really opened (respectively
closed) after the reception of signal to open (respectively, to close) if the opposite signal has not been sent
in between. To exclude degenerated case, it is assumed that 0 < d¢jpse < dmin- The time is presumed to be
continuous.

The requirements to the controller to construct are the following ones:
(Safety). If a train is in the crossing, the gate is closed.
(Liveness). The gate is open as much as possible.

Liveness in this formulation implies second order quantifiers (for discussion see [BS00]) and has never been
treated in literature in this form. So we will take below a first order formulation in terms of input/output
signals (one can show that it gives the liveness in the initial formulation, but it is out the scope of this

paper).
Formal Specification of the Requirements to GRCP.

FOTL permits to represent the informal requirements directly without any changes (modulo our remark
concerning liveness).

The predefined part of vocabulary W was described above in subsection 2.1. So we define only the
abstract part of W.

Abstract sorts consist of one sort T'racks that represents the set of tracks which number is finite but not
fixed. The wvariables for Tracks are x and x with indices.

The part of vocabulary containing abstract functions consists of abstract constants (static functions of
zero arity) dmin, dopens deiose, all of the type — T, and of abstract dynamic functions. The latter are the
following ones:

e Cmg® : T x Tracks — Bool means a presence (coming) of a train on a track at a given time moment;

e DirOp°® : T — Bool means that a signal to open the gate takes place at a given time moment, and
—DirOp° means that the signal is to close the gate;

e InCr°: T — Bool says that there is a train in the crossing at a given time moment;

e GtClsd® : T — Bool says that the gate is closed at a given time moment;

e GtOpnd® : T — Bool says that the gate is opened at a given time moment. (GtOpnd® is not the
negation of GtClsd® as we know only that the gate cannot be opened and closed at the same time.)

Requirements Specifications of GRCP.

Requirements consist of 2 parts: environment (formula @ g, mentioned at the beginning of section 2) and
demands to the functioning (formula @ gyp.).

We have no formal notion of train within the given syntax. We assume that for a given track a new train
reaches the sensor launching C'mg° only after the previous one has left the crossing making the track status
—Cmg°. The alternation ~Cmg°/ Cmg°®/ =Cmg° ... corresponds to appearance of successive trains on a
given track.

Notations:

o WaitTime = WT=, dmin — dciose Will be used to describe a period of time when a train, though having
been detected, is far enough from the crossing to permit to open or to not to close the gate.

e For every function f of type 7 x X —)Y, every term X of type X and every term Y of type)
LimPlusg(t, X, Y)=4 Fti (t1 >t AVT(t<T7<t) = f(1,X)=Y))

LimMoins(t, X, Y) =4 Ft1 t1 <t AVT((t1 <7 <t) = f(1,X)=Y))

e A notion describing when the controller may open the gate is stated as follows:
SafeToOpenSp(t)=.

Va [=Cmg°(t,z) V VT <t (V7' €[r,t)Cmg°(7',z) = t <7+ WaitTime)].

Specification of the Environment.
(TrStInit) Y2 —-Cmg°(0,z)
(At the initial moment there are no trains on any track.)
(GtStInit) GtOpnd®(0)
(At the initial moment the gate is opened.)
(GtSt) Vi —~(GtOpnd°(t) A GtClsd®(t))
(The gate cannot be closed and opened at the same time, but it can be neither opened nor closed.)
(DirInit) DirOp°(0)
(At the initial moment the signal controlling the gate is opened.)
(CrCm) Vt (InCr°(t) = (t > dpmin A 2V T € [t — dimin, t] Cmg°(7,)))
(If a train is in the crossing it had been detected on one of the tracks at least d,;, time before the current
moment.)
(OpnOpnd) Vt (V7 € (t,t + dopen]DirOp° (1) — GtOpnd® (t + dopen))
(If at time t + dopen, the command has been open for at least a duration dype,, then the gate is opened at
this time.)

(ClsClsd) Vi (V7 € (t, t + dejose)mDirOp° (1) — GtClsd® (t + deiose))
(If at time t + dejose the command has been close for at least a duration dg,se then the gate is closed at this
time.)

(Cmg)
VoVt [Cmg°(t,z) —
Jto (0 <ty <t AVTE [to,t] Cmg®(r,2) A LimMoinscmgr(to, z, false)) |

(The last property expresses that the predicate Cmg° is true on intervals closed on the left and opened on
the right and that the set of points where the value changes has no accumulation points.)

(dIneq) 0 < deiose < dmin A0 < dopen
(These is trivial constraints on the durations involved, the time for closing is smaller than the minimum time
of reaching the crossing by any train detected as coming.)

Specification of the Control.

These specifications concern requirements on the functioning.
(Safety): Vit (InCr°(t) — GtClsd®(t)).

When a train is in the crossing, the gate is closed).

(
(LIveness) or (Utility): Vit (SafeToOpenSp(t) — DirOp°(t)).
(If the zone of control is safe to open at time ¢ then the control signal must be to open the gate).
One can notice that using FOTL permits us to rewrite almost directly the environment and requirements
specifications without any modelisation which could introduce a lot of errors.

Railroad Crossing Controller.

The part of the vocabulary of the ASM specific to this example consists of
Static functions:

® diin, dopen, delose; as above in the logic signature.
External functions:

e CT the current time has type — 7.

e Cmg : Tracks — Bool is an input function giving for every track its status (coming or empty).

Internal functions:
e DirOP says that the signal to open the gate is being generated by the algorithm, its type is — Bool.

e DL : Tracks — T is the first moment of appearance of a train on a given track plus WaitTime, and
this value is then used as a DeadLine to decide on control of the gate, see SafeToOpen condition below.

e NoDL : Tracks — Bool says that there is no deadline on a given track.
Notation:

SafeToOpen=,Vz (~Cmg(z) V NoDL(z) v CT < DL(z)).

Remark that this SafeT0oOpen is presumed to represent adequately the SafeToOpenSp condition, but
it is to be proved.

An algorithm to control the railroad crossing is given below. To distinguish it from that of [GH96] we
will name it Symmetric Controller as it uses our version of SafeToOpen condition in a symmetric way.
Below we will refer to this algorithm simply as Controller.

The initial values of internal functions are defined by the condition

Init=,4 VYo (NoDL(z) A DL(z) =0) A DirOp

Repeat
ForAll z € Tracks
InParallelDo
If Cmg(z) and NoDL(z) Then NoDL(z) := false;
DL(z) := CT + WT EndIf
If =Cmg(z) and ~NoDL(z) Then NoDL(z) := true EndIf
If DirOp and —SafeToOpen Then DirOp := false EndIf
If =DirOp and SafeToOpen Then DirOp := true EndIf
EndInParallelDo
EndForAll
EndRepeat

Figure 1: Railroad Crossing Controller

3 Automatic Translation of ASM runs into PVS

We describe here how ASM runs are represented by FOTL-formulas. We show how to generate automatically
these formulas using the translator that we developed for this purpose?. The target of the translation is
currently a PVS theory.

3.1 FOTL Representation of Runs of Timed ASM

It turns out that on can characterize the set of total runs of an ASM by an FOTL formula ([BS00]).
Before giving this formula, we need to introduce some notations. Let W be the vocabulary of a block ASM
(W, Init, Prog) with the program of the form given above.
Denote by W, the set of terms that appear to the left of := in the assignment block Ay (w), and denote by
Ok, the term of the assignment of Aj(w) with the left hand side v. Without loss of generality we assume
that there are no two assignments of the form v := 6 and v := 6’ in Ay (w). Thus, the assignments of A (w)
are of the form v := 6, v € Wj. Denote by W° the ‘timed’ vocabulary obtained from the vocabulary W
by replacing each dynamic function symbol f € W of the type X — Z by f° of the type T x X — Z.

Define operation ”~” which transforms a term 6 over W and ¢ € T into a term 6(t) over W° by the
following recursion (a)—(c):

(a) u(t) = u if u is a variable or a static function symbol (constant).

2 Available at http://www.univ-paris12.fr/lacl/crolard.

(b) For terms 6 over W of the form f(6y,...,6,), where f is a static function symbol, a(t) =
f(B1(t), ..., 6n(t)). N
(c) For terms 6 over W of the form f(6y,...,6,), where f is a dynamic function symbol, 6(t) =
P, ... Ba(1)). .
For a formula F over W we denote by F(t) the formula over W° obtained from F by replacing all terms
0 by 6(t).

Notations:

e Func(v) is the outmost function symbol of a term v, i. e. Func(f(61,...,6,)) =

e [; is the set of indices k in {1,...,m} for which a term 6 with Func(§) = f hat is of the form
f(b1,...,0y),is in Wy.

o Arg(ﬂ) is the list of arguments of a term 6, i. e. Arg(f(61,...,60,)) = (61,...,6,). For lists of terms
the operations ° and ~are componentwise, as well as the equality.

Below we assume that a function symbol f € Vi, has the type X — Z, where X is a direct product of
sorts, and by X we will denote a vector of variables of the sort X’; to remind it we will write also X € dom(f).

To describe the total run corresponding to a given input we express the following properties related to a
given moment of time ¢.
First some notations:
NoGrds(t,w) =. N —|Gk()(¢)
NoGrds(t) =4 Yw NoGrds(t,w)
For every f € Vintrn:
NoGrdsy(t,w) =4 /\kelf -G (w)(t)
where Iy = {k| v € Wy, Func(v) = f}.
[NoGrdsy(t) =4 Yw NoGrdsy(t,w)
We give here a list of properties, the conjunction of which characterizes the set of total runs of an ASM.
e If no guard is valid at ¢ then no guard is valid in some neighborhood of ¢ :
OpnNoGrds(t) =, [NoGrds(t) —
i1ty (Neib(ty, t,t2) A V71 (Neib(t,7,t2) = NoGrds(r))) |.
Uy (t)=4 OpnNoGrds(t).
e If a guard is valid at ¢ for some w then no guard is valid in some neighborhood of t except ¢ itself:
PointWiseNoGrds(t) =, Yw A, [Ge(w)(t) —
ity (Neib(ti, t,t2) A VT(Neib(ty,,t2) = (=1t V NoGrds(r)))) |-
U, (t)=4 PointWiseNoGrds(t).
e The value of an internal function at time t is equal to its value at the left of ¢:
For every f € Vintrn:
LeftOpng(t)=, (t>0 — It; <tV7 € (t1,t)VX €dom(f) fo(r,X) = f°(t, X)) .
LeftOpn(t) =4 /\fEVIntr-n LeftOpny(t)
(1) =, LeftOpn(t).
e Values of internal functions do not change as long as related guards remain false:
NoGrdNoChangey(t) =4
(Vi1 >t(V7 € [t,t1) NoGrdsy (1) — V1 € (t,t]VX € dom(f) f°(r,X) = f°(t,X)))

NoGrdNoChange(t) =4 Ajevs,,,,. NoGrdNoChangey(t).
U3(t) =4 NoGrdNoChange(t).

e If some guard related to the internal function f is true at ¢, f is updated in according with the update
rule of this guard, and the update holds as long as the guards related to f remain false:

UpDate(t,w) =4 /\kelf (Gk(w)(t) —
Vit >t(Vr € (t,t1)NoGrdss (1)) = V1 € (1] Ayew,, Func(v)=p VW)(T) = Ok, (w)(2)))
UpDate(t) =4 Yw Asevy,,.. UpDates(t,w)

U, (t) =4 UpDate(t).

e If some guard related to the internal function f is true at ¢, values of f not updated remain the same as
long as the guards related to f remain false:

NoChangey(t,X) =4 Yw /\kelf’vewk’punc(v):f Arg(v(w))(t) = X — =G (w)(t)
NoUpDatey(t) =4 Jw vkelf Cm(t) = Yty >t (V7 € (t,t1)NoGrdsy(t)
VX € dom(f)(NoChanges(t,X) = V7 € (t,t1] fo(r,X) = f°(t, X)))
NoUpDate(t) =4 Njcvs,,,,. NoUpDateg(t).
U5 (t) =4 NoUpDate(t).
Finally, the total runs are described by the formula ¥

%

U=, Init(0) N\ Vt¥)
1=0,...,5
In other words we have the following theorem [BS00]:

Theorem 1. FEvery model of ¥ is a total run of A, and conversely, every total run of A is a model of U.

Theoretically, every property satisfied by a run of the ASM can be deduced from ¥. Nevertheless, from a
practical point of view, formulas involved in ¥ are not always the most convenient ones. For this reason a
richer library of formulas deducible from ®g,,,,s has been developed.

Library of formulas deducible from ®g,,;.

We describe these formulas in a natural language. The exact formulas are in Appendix D.

e OpnNoGrds(t): The set of time moments ¢ when some guard is false is an open set.

e NotInts: A guard G cannot be true on an open interval.

e PointWiseNoGrds(t): Guards are pointwise.

e FirstChanges(t): If an internal function f has not the same value in ¢ and t', there is a first moment
between t and ' when it changes its value.

e LastChangey(t): If an internal function f has different values at ¢ and ¢', there is a last moment
between t and ¢’ when it changes its value.

e UpDateLocy(t): If some guard related to the internal function f is true at ¢, then f is updated according
to the update rule of this guard at the right of ¢.

Well Parametrized GASM.

The verification of the Railroad Crossing Problem has emphasized the fact that some special ASM have
interesting properties. Sure, these properties can be deduced from ® g5, but it is more convenient to write
them directly and automatically.

Definition. An ASM is well-parametrized if

(a) every internal function f has a type X = Z or Q@ x X' — Z, where X is a product of finite sorts
different from ;

(b) in every update concerning f, i. e. of the form f(©) := @', with f of the type Q x X — Z the first
argument is the variable w of sort 2, mentioned explicitly in the general form of ASM given in subsection 2.2,
that is f(©) has the form f(w, 6y, ..., 6,).

For a well parametrized block ASM, one can prove a property that is not true in the general case: internal
functions depend only ”locally” on the parameter w € (.

More precisely, for every internal function f, for every k € I let us define:

UpDatePary ;(t,w) =4
Vi (t <t1 AGr(t,w) A (YT € (t,t1) NoGrdsy(t,w)) —

vt € (tvtl] /\vEWk,Funv(v):f ’U((U)(T) = 6k7v(w) (t))
Theorem 2 If an ASM is well-parametrized then the following property holds

Nfevimmn /\kelf VtYwUpDatePar; (t,w).

The proof of this theorem is by induction on the number of time moments 7 between ¢ and t; when
NoGrdsy(7) is false. Using ¥3, we prove that due to the fact that the ASM is well-parametrized, in

such time moments the value of v(w)(7) remains equal to Gm) (t).

3.2 Automatic Generation of Description of ASM Runs

The main task of the translator is to manipulate abstract terms and formulas, it is thus easier to program
in a language with concrete data types and a powerful type system like ML (we used Ocaml 3.0 [Ler00]).

Composition of the Translator.

The translator is composed of a parser, a type checker, a library of functions which actually perform the
translation and a printer which can generate a correct PVS theory from definitions and axioms (or lemmas)
given in our abstract syntax (see below). Because of this modular design, it is quite simple to extend the
syntax of ASM, to generate new lemmas or to use another prover than PVS.

The input file.

An example of input file for the Railroad Crossing Problem as well as the formal grammar are given in
Appendix C and Appendix B respectively.

The input file containing the description of the ASM is three-fold:

e The first part contains the signature, where we declare the type of every function or predicate symbol.
A type has either the form 79 or 74 x ... x 7, — 79 where each 7; is an atomic type (i.e. a name). Then we
give the (optional) list of static functions and the (optional) list of internal functions.

e The second part contains the signature of logical variables (variables which may occur only bound by
a quantifier or as formal parameters in a definition) and the definitions of some functions (or predicates).
The general form of such a definition is: f(z1,...,z,) : 7 = ¢, where x4, ..., z, are variables, 7 is an atomic
type and ¢ is a term.

e The third part contains the rules of the ASM following the syntax given in subsection 2.2. Eventually, a
list of symbols that should be exported (i.e. since they were not defined in the environment) can be specified.

Abstract syntax.

Parsing the input file results in abstract syntactic trees which belong to the following ML data types. Since
this abstract syntax corresponds directly to the concrete syntax defined by the formal grammar, it does
not require much comment. Note however that we do not distinguish between terms and formulas at the
syntactic level (formulas are just boolean terms) and that the ASM may or not be parametrized.

type asm_type = name list * name;;

type term = Constant of rational

| Apply of (name * term list)

| Forall of (variable list * term)

| Exists of (variable list * term);;

= term * (term * term) list;;

{ decl : (variable * asm type) list;
static : variable list;

type rule
type prog

internal : variable list;

var : (variable * asm_type) list;

def : (term * name * term) list;

body : (variable * asm_type) option * rule list;
export : variable list };;

Type checking.

When the parsing stage is over, the abstract syntactic tree is checked. We check that no function is declared
both static and internal, that no external function is assigned in the ASM and finally we type check the
definitions and the conditional rules. Note that since some provers (such as PVS) use stronger type systems

10

(possibly generating TCC), a type error during the translation does not stop the processing (but should be
considered as a warning).

Predefined atomic types are bool, rational (for constants), time and real. The types of the predefined
functions and predicates enumerated in section 2.1 are also known by the translator:

Predefined static functions:

+ time * time -> time

= time * time -> bool

/ rational * rational -> ratiomnal
* real * rational -> real

+ real * real -> real

- real * real -> real

= real * real -> bool

< : real * real -> bool

=> : bool * bool -> bool
= : bool * bool -> bool
AND : bool * bool -> bool
OR : bool * bool -> bool
NOT : bool -> bool

true : Dbool

false : Dbool

Predefined dynamic function
CT : time

Subtyping.

A very simple but convenient form of subtyping is provided. The usual typing rule of application is generalized
to the following rule:
titm T, CT] fiTX...XT,—>T
f(tla"'ztn) ' T
As expected, the predefined types obey the following inclusion: timeCreal and rationalCreal.

Overloading.

Two kinds of overloading are allowed: a function can be re-declared either if the type of its arguments are
incomparable with those of the first declaration (true overloading), or if the type of its arguments and results

are subtypes of those of the first declaration (restriction). An example of true overloading is = : bool
* bool -> bool and = : real * real -> bool. An example of restriction is given by + : time *
time -> time and + : real * real -> real.

The translation.

The implementation of the translation is very close to its mathematical definition given in subsection 3.1.
For instance, a function hat : name list -> term -> term -> term implements “*”. Its parameters
are the list of dynamic functions, a term (which is usually a variable of type time) and the term to be
transformed. Likewise, some functions circ, func and arg implements “°”, Func and Arg exactly as they
are defined in section 3. A few auxilliary functions are also needed to generate generalized quantifications
like VX € dom(f) (which occur for instance in the definition of NoGrdNoChange) according to the actual
type of f. For that purpose, the variables named x1,zs,z3,... might be used by the translator and thus
they should not occur in the input file (to avoid any capture). For the same reason, the variables ¢, ¢1,t2, t3
are also reserved.
Since the details of the translation are rather technical, we will just describe the main steps:

e we translate the signature of the ASM (we use circ to make the time explicit in the type of dynamic
functions)

11

e we translate the definitions of the ASM (we use hat to add a time argument when dynamic functions
are applied)

e we build definitions named:

— Guardi for each guard i .
— NoGrdsF and NoChangeF for each internal function F.

— LimPlusF and LimMinusF for each dynamic function F.
¢ we build axioms named:

— OpnNoGi and PointWisei for each guard i.
— NoGrdNoChangeF and Left0pnNoF for each internal function F.
— UpDateNoFi and NoUpDateNoFi for each occurrence: of an update of the internal function F.

e we build lemmas named:

— OpenNoGrds

NotIntGi and PointWiseNoGrdsi for each guard .

FirstChangeF and LastChangeF for each internal function F.
— UpDateLocFi for any occurrence ¢ of an update of the internal function F.

e eventually, we check if the ASM is well parametrized according to the criterion defined in section 3
and if so, we generate additional lemmas named:

— UpDateParFi for any occurrence i of an update of the internal function F.

About Higher Order Logic.

We chose to translate the first order theory which characterizes runs of an ASM directly as a first order
theory in PVS. Thus we do not benefit from the full logic of PVS (which is a Higher Order Logic). We
could use functionals (for the definition of limits) and axiom schemes to translate the general theory of runs
parametrized by some encoding of the ASM. The proofs of properties of a specific ASM would not be made
easier, but the generated theory would be shorter and far more elegant (2-page theory instead of a 9-page
one). Moreover, we could consider to try and derive our lemmas from the axioms in PVS (since FOTL is
undecidable, the success of such an attempt depends on the lemmas). In fact, we chose to restrict ourselves
to first order theories because it is the only common part for a variety of existing provers.

3.3 Generating a PVS theory

PVS.

PVS is a proof checker with some facilities of theorem prover, see [PVS]. It permits to introduce richly typed
logic syntax of any order. PVS has a type checker that is very useful. There is some number basic strategies
and a limited language to write down user’s strategies. The interaction with the user is well done that makes
the system a rather efficient proof checker. There are incorporated decision algorithms, automatic rewriting
and other procedures.

The resulting file of our translation is a PVS theory which has the following form:
ASM : THEORY
BEGIN
IMPORTING Environment
% Signature
% Definitions
% Axioms and Lemmas
END ASM
In the signature part, we only declare functions which are exported by the ASM (which follow the keyword
export), the other functions should be declared in the theory “Environment”.

12

4 A Case Study: Verification of the Generalized Railroad Cross-
ing Problem

In this section we give the main steps of a PVS proof of (Safety) for GRCP.

4.1 PVS Proof of Safety for the GRCP

The PVS checked proof is based on three lemmas (InCrArr), (ArrDL) and (NotS fDirCl).

Lemma (InCrArr) says that if a train is in the crossing at time ¢ then there exists a time ¢, > dpnin
before ¢ such that this train was arriving at ¢; and remained in the zone of control during the period [t;,].

Lemma (ArrDL) expresses the fact that if a train arrives at time ¢ on track z, and remains in the zone
of control during a period [t, 1], then there is no deadline for z at time ¢ but on the interval (¢,¢], there is
a deadline for x equal to t + WT.

Lemma (NotSfDirCl) says that if during a period [t, ;] with ¢ < ¢; it is not safe to open (from the point
of view of the algorithm) then during the period (¢,¢;] there is a command to close the gate.

As shown by the lemmas introduced, an important event is the arrival of a train on some track = at time
moment ¢, this event can be expressed as an FOTL formula Arrive(t, z).

The proof of each lemma was checked with the help of PVS. The complete proof is less than 4-page, it is
given in Appendix E. As an illustration, we compare a sketch of our hand proof of (Safety) that uses the
above lemmas and the corresponding PVS proof.

Remind that (Safety) means

YVt (InCr°(t) — GtClsd®(t)).

Hand Proof of Safety.
(S10) ® gy, contains an axiom (dIneq): 0 < dejose < dmin A0 < dopen that we will use.
(Sf1) Fix a time moment t; and suppose InCr°(t1), our goal is to prove

GtClsd®(t1).

(Sf2) From environment formulas (ClsClsd) and (InCr) given at the end of section 2.1 (using basic first order
proof search considerations) we reduce our goal to (t1 > dejose N VT € (t1 — dejose, t1] 7 DirOp° (1))

(Sf3) Applying Lemma (InCrArr) at time ¢; we get that there is some track xzy and some time ¢5 such that
(S£3.1): to < t1 — dimin,
(S£3.2): Arrives(ts, zo) and
(S£3.3): V7 € [ta,t1] Cmg® (T, xo).
(Sf4) Applying Lemma (ArrDL) for ¢, zq, t2 we get
V1 € (ta,t1] ("NoDL°(1,29) AN DL°(T,20) =t + WT)

(Sf5) The first part of our goal stated in (Sf2), i. e. #1 > dejose, follows from (Sf3.1) and axiom (dIneq)
mentioned in (Sf0).

(Sf6) To prove the second part of the goal (Sf2) we apply Lemma (NotSfDirCl) for ¢; — dejose, t1 and get
(t1 — deiose < t1 AVT € [t1 — deiose, t1] ﬁSafﬁ“o\Open(T))
— V1 € (t1 — delose, t1] 7 DirOp° (7).
(Sf7) To finish the proof of goal (Sf2) it is enough to prove
(Sf71) tl — dclose < t1 and
(S£7.2): V7 € [t1 — detose, t1] ~SafeToOpen(r).
(S8) If we expand the definition of SafeToOpen formula (Sf7.2) becomes
V7 € [t1 — detose, t1] 3T (Cmg°(t,2) N =NoDL°(r,2) NCT®°(7) > DL°(r,x))

13

(Sf9) Let 71 € [t1 — deiose, t1]. We are to prove:
3z (Cmg°(1,2) A =NoDL°(r,2) ACT®(r) > DL°(7,x)).

(Sf10) To prove (Sf9) it is enough to prove
(Cmg°(t1,20) N "NoDL°(71,20) ANCT®°(11) > DL°(11,10)))

(Sf11) Instantiating (Sf3.3) and (Sf4) with 71 and using (dIneq) we deduce from the definition of CT° the
desired result.

PVS Proof of Safety.

We briefly comment PVS commands and strategies used below: SKOSIMP is a skolemization followed by
a disjunctive simplification, GRIND is a catch-all strategy used to automatically complete a proof branch,
GROUND is a less powerful command which invokes propositional simplification and decision procedures,
APPLY_LEMMA is a strategy (its definition is given in Appendix E.1) we have written which permits to
apply some lemma, of the form VX (¢(X) — (X)), instantiating it, and then splitting it.

Numbers in square brackets are added by us to show the correspondence between hand-made proof above
and the PVS proof below.

;35 Proof for formula verif.Safety

(nn

[0] (APPLY_LEMMA "dIneq" NIL)

[1] (SKOSIMP*)

[2] (APPLY_LEMMA "InCrArr" ("t!1"))
(1

[3] (APPLY_LEMMA "ClsClsd" ("t!'1"))

(("1" (GRIND))

(mon
(SKOSIMP*)
[4] (APPLY_LEMMA "ArrDL" ("£3!1" "t!1" "x!1"))
@
[6] (LEMMA "NotSfDirCl")
(INST -1 "t!i-dclose" "t!1")
((ram
[7] (CASE " (FORALL tau:((t!1 - dclose <= tau AND tau <= t!1) =>
SafeToOpen(tau) = FALSE))")
(("1" (GRIND))
(|12|1
[8] (EXPAND "SafeToOpen")
[9] (SKOSIMP 1)
[10] (INST -3 "x!1")
[11] (INST -6 "tau!2")
(INST -11 "tau!2")
(GRIND))))
[5] ("2" (ASSERT))))

("2" (GROUND))))))

Conclusion

The result presented in this paper shows that a rather complete logic based verification of real-time systems
is feasible and that this approach has quite visible advantages with respect to other ones. To make this
technique more practical we are developing proof search strategies that considerably augment the automated
part of the proof search. Besides that we plan to extend our approach to other algorithm specification
languages (in particular, fragments of programming languages) and to use more powerful logics (second
order and with probability operator) that permit to treat richer classes of verification problems.

14

References

[AHOS]

[BS97]

[BSO0]

[CGPYY]
[GHOI6]

[Gur95)

[HL94]

[HLI6]

[HMO96]

[Ler00]

[MMP+96]

[Pau94]

[PVS]

M. Archer and C. Heitmeyer. Mechanical verification of timed automata: A case study. Tech-
nical Report 5546-98-8180, University Paris-12, Department of Informatics, Naval Reserach
Laboratory, Washington, 1998. NRL Memorandum Report.

D. Beauquier and A. Slissenko. On semantics of algorithms with continuous time. Technical
Report 97-15, Revised version., University Paris 12, Department of Informatics, 1997. Available
at http://www.eecs.umich.edu/gasm/.

D. Beauquier and A. Slissenko. A first order logic for specification of timed algorithms: Basic
properties and a decidable class. 36 pages. To appear in Annals of Pure and Applied Logic.,
2000.

E. Clarke, O. Grumberg, and D. Peleg. Model Checking. MIT Press, Boston, MA., 1999.

Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment with instanta-
neous actions and immediate reactions. In H. K. Buening, editor, Computer Science Logics,
Selected papers from CSL’95, pages 266-290. Springer-Verlag, 1996. Lect. Notes in Comput.
Sci., vol. 1092.

Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. Borger, editor, Specification and
Validation Methods, pages 9-93. Oxford University Press, 1995.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: a case study in formal verification
of real-time systems. In Proc. of Real-Time Systems Symp., San Juan, Puerto Rico. IEEE, 1994.

C. Heitmeyer and N. Lynch. Formal verification of real-time systems using timed automata.
In C. Heitmeyer and D. Mandrioli, editors, Formal Methods for Real-Time Computing, pages
83-106. John Wiley & Sons, 1996.

C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Computing, volume 5
of Trends in Software. John Wiley & Sons, 1996.

X. Leroy et al. The Objective Caml system release 3.00. Documentation and user ’s manual.
INRIA, April 2000. ftp://ftp.inria.fr/lang/caml-light /ocaml-3.00-refman.ps.gz.

D. Mandrioli, A. Morzenti, M. Pezze, P. San Pietro, and S. Silva. A Petri net and logic approach
to the specification and verification of real-time systems. In C. Heitmeyer and D. Mandrioli,
editors, Formal Methods for Real-Time Computing, pages 135-165. John Wiley & Sons, 1996.

L. C. Paulson. Isabelle. A generic Theorem Prover. Springer-verlag, 1994. Lect. Notes in
Comput. Sci., vol. 828.

PVS. WWW site of PVS papers. http://www.csl.sri.com/sri-csl-fm.html.

15

Appendices

A Library of formulas deducible from ®p,,

e The set of time moments ¢ when some guard is false is an open set:

W i))

OpnN oGy, (t, w) =4 <—| pW)(t) = Ftits (Neib(tr, t,t2) AVT (Neib(ty, 7,t2) = ~Gr(w)(1)))

OpnNoGj, =4 YtV wOpnN oGy (t,w)

We have the following property:
/\ OpnNoGy,.
k

e Guards are pointwise :

PointWiseGy(t,w) =4 (Gk(w)(t) -
Styty (Neib(ty, t,t) AV T (Neib(t, 7,t) = (1=t V ~Gp(w)(r)))))

PointWiseGy, =4 VYtV w PointWiseGy(t,w)

We have:
/\ PointWiseGy,.
k

e If some guard related to the internal function f is true at ¢, f is updated in according with the update
rule of this guard at the right of ¢.

UpDateLocy (t,w) =4 /\ (m(t) — /\ LimPlusv’@)(t, Hm)(t)))
kel vEW, Func(v)=f

UpDateLoc(t) =4 Yw /\ UpDateLocy (t,w)
FE€ Vintrn
We have:
V't UpDateLoc(t).

e A guard cannot be true on an open interval:

NotIntGr(t,w) =44 VYt (t<ti = =(V1 € (t,t1) Gi(r,w))

NotIntGrd(t) =4, Vw /\ NotIntGy(t,w)
k

We have
V¢t NotIntGrd(t).

e If an internal function f has not the same value in ¢ and #', there is a first moment between ¢ and ¢’ when
it changes its value:

Changey(t, X) =4 \/ Cm(t) A dy (LimMoins}T)?)(t,y) ANy # f°(t, X))
kely

FirstChangeys(t,t', X) =, (t <t' A f°(t, X) £ f°(t', X)) =

(3t € [t,')(Changes (", X) AT € [t,7) J\ Vw-Gr(w)(r))
kGIf

We have : Aoy, . Vit' VX € dom(f) FirstChangey(t,t', X).
e If an internal function f has not the same value in ¢ and #', there is a last moment between ¢ and ¢' when
it changes its value:

LastChanges(t,t', X) =, (¢t <t' A fo(t,X) # f°(t', X)) =

3t € [t,t')(Change;s(t", X) AV T € (t7,1) VwﬂG/k(;)(T))
f
kely

ii

B Concrete syntax of an input file (ASM) for the translator

prog ::= "Signature" ident decl-list def-body export-list
decl-list ::= "End"
| "Internal" ident var-list "End"
| "Static" ident var-list internal-list
| decl decl-list
internal-list ::= "End"
| "Internal" ident var-list "End"
export-list ::= "End"
| "Export" ident var-list "End"
decl ::= ident ":" ident type
| string ":" ident type
var-list ::= ";"
| "," ident var-list
type ::= "->" ident ";"
| "x" ident type
| n.n
’
def-body ::= "Variables" typed-var var-list def-list body "EndRepeat"
| "Define" def-list body "EndRepeat"
| "Repeat" body "EndRepeat"
typed-var ::= "Define"
| decl typed-var
def-list ::= "Repeat"
| definition ";" def-list
definition ::= term ":" ident "=" term
body ::= "Forall" ident "in" ident "InParallelDo" if-list "EndForall"
| "InParallelDo" if-list
if-list ::= "EndDo"
| "If" if if-list
if ::= term "Then" assign-list
assign-list ::= "EndIf"
| assign ";" assign-list
assign ::= term ":=" term
term-list ::= ")"

| "," term term-list
| op term op-list

iii

term ::

op-list

arg-list

op

int

float

ident arg-list

"(" term op-list
"not" term

"forall" ident term
"exists" ident term

ll)ll
op term op-list

"(" term term-list

"AND" | "QR" | "=>"

My | n/n | nyn | "_

l|<l|

l|>l|

ng=n

ny=n

C The Railroad Crossing Problem ASM (input file for the trans-
lator)

Signature Railroad

WT : time;

dclose : time;

dmin : time;

DL : Tracks -> time;
NoDL : Tracks -> bool;
Cmg : Tracks -> bool;
DirOp : Dbool;
SafeToOpen : bool;
Init : bool;

Static WT, dmin, dclose;

Internal NoDL, DL, Dir(Op;
End

Variables
x : Tracks;
Define

WT : time = (dmin - dclose);
SafeToOpen : bool = forall x (not Cmg(x) or NoDL(x) or CT < DL(x));
Init : bool = forall x (DirOp and NoDL(x) and DL(x) = 0);

Repeat
Forall x in Tracks
InParallelDo
If (Cmg(x) and NoDL(x)) Then DL(x) := (CT +WT); NoDL(x) := false;
EndIf
If (not Cmg(x) and not NoDL(x)) Then NoDL(x) := true;
EndIf
If (DirOp and not SafeToOpen) Then Dir0Op := false;
EndIf
If (not Dir0Op and SafeToOpen) Then DirOp := true;
EndIf
EndDo
EndForall
EndRepeat

Export DL, NoDL;

End

D PVS Theories for the Generalized Railroad Crossing Problem

There are four theories, de ftime which contains the definitions related to time, Environment which contains
the specifications of the environment and imports de ftime, Railroad which is automatically produced from
the ASM by our translator program modeling the control system and which imports Environment and at
last verif which imports Railroad and contains the lemmas to prove.

D.1 Theory: deftime

deftime: THEORY
BEGIN

time: TYPE = {t: real | ¢t > 0}
t, t1, ta, a, b, c: VAR time;
CT(): time = ¢
Neigh(t1, t, t2): bool = (t = 0 At =0 At >0V (1 <t At < ty)
P: var [time — bool]
union_int: LEMMA
Vit: (a<tANt < b=

P)) AN (Vit: (b<int<e)= PU)) AN (a<bADb< @) =>Wt: (a<tANt<e)= P())
END deftime

D.2 Theory: Environment

Environment: THEORY
BEGIN

IMPORTING deftime

Tracks: TYPE;

dclose: time;

dmin: time;

InCr, GtClsd, GtOpnd: [time — bool]
Cmg: [time, Tracks — bool];

DirOp: [time — bool];

t, to, t1, ta, t3, T: VAR time;

x: VAR Tracks;

dopen: time;

LimMinusCmg(¢: time, z1: Tracks, y: bool): bool =
ty: U <t AN Y itg: (G < tg Atz < t) = Cmglts, 1) = y))))

vi

dIneq: AxioMm dclose > 0 A dmin > 0 A dmin > dclose A dopen > 0
TrStInit: AxioM Cmg(0, z) = FALSE
GtStInit: AxioMm GtOpnd(0) = TRUE

GtSt: axiom - (GtOpnd(t)

TRUE A GtClsd(t) = TRUE)

CrCm: AXIOM
InCr(t) = TRUE =
(t > dmin A
(3 x2: V 7: (t—dmin

IA

T AT <t) = Cmg(r,) = TRUE))

OpnOpnd: AXIOM
(t > dopen A (VW 7: ((r > t—dopen A 7 < t) = DirOp(r) = TRUE))) =
GtOpnd(t) = TRUE

ClsClsd: AxioMm
(¢t > dclose A (VW 7: ((r > t—dclose A 7 < t) = DirOp(r) = FALSE))) =
GtClsd(t) = TRUE

Coming: AXIOM
Cmg(t,) = TRUE =
(E' to:
0 < tg A
to < t A
V1 (g <7 AT<)= (Cog(r,) A LimMinusCmg(ty, =, FALSE))) A
(E' tli
(t1 >t A
(Y 7: (((Neigh(t, 7, t1)) = Cmg(r,) = TRUE)))))))
END Environment

vii

D.3 Theory: Railroad
This theory is generated automatically by our translator from the ASM specification of Appendix C.

%%% Parsing : ok

%%% Type Checking :

%ht% Type error in definition WT=(dmin - dclose)
%%% Static : x, WT, dmin, dclose,

%%% Internal : NoDL, DL, DirOp,

Railroad: THEORY
BEGIN

IMPORTING Environment

% dclose : time;

% dmin : time;

DL: [time, Tracks — time];
NoDL: [time, Tracks — booll;

% Cmg : [time, Tracks -> bool];
% DirOp : [time -> bool];

x: VAR Tracks;

t, t1, ta, t3: VAR time;

WT: time = (dmin — dclose)

SafeToOpen(t): bool =
~ z: (= Cmg(t, z) V (NoDL(¢, z) vV CT() < DL(t, x))))

Init(t): bool = (V z: (DirOp(t) A (NoDL(t, z) A DL(t, z) = 0)))
Grd1(¢: time, z: Tracks): bool = (Cmg(t, z) A NoDL(¢, z))

Grd2(¢: time, x: Tracks): bool = (= Cmg(t, z) A = NoDL(, x))
Grd3(¢: time, z: Tracks): bool = (DirOp(¢t) A — SafeToOpen(t))

Grd4(¢: time, z: Tracks): bool = (= DirOp(¢) A SafeToOpen(t))
NoGrdsNoDL(¢: time, z: Tracks): bool = (= Grdl(t, z) A = Grd2(t, z))
NoGrdsDL (¢: time, z: Tracks): bool = = Grdl (¢, z)

NoGrdsDirOp(¢: time, z: Tracks): bool = (= Grd3(t, z) A = Grd4(t, z))

viii

LimMinusNoDL(¢: time, x;: Tracks, y: bool): bool =
Ft1: G <t N t3: ((ty < t3 Aty <) = NODL(t3, T1) = y))))

LimMinusDL(¢: time, z7: Tracks, y: time): bool =
(3 ti: (tl <t ANV t3: ((t1 S t3 A 13 < t) = DL(t3, 1‘1) = y))))

LimMinusDirOp(¢: time, y: bool): bool =
(Ft1: (41 <t ANVt (4 < t3 Aty < t) = Dil“op(tg) = y))))

LimPlusNoDL (¢: time, z;: Tracks, y: bool): bool =
(4 tq: (tl >t AN (VY t3: (@ < t3 N i3 S tl) = NODL(t3, 1‘1) = y))))

LimPlusDL(¢: time, z;: Tracks, y: time): bool =
(Ft1: (G >t N Vit (<t A ts < t1) = DL(t3, z1) = y))))

LimPlusDirOp(¢: time, y: bool): bool =
(4 ti: (tl >t AN (VY t3: (@ < t3 N i3 S tl) = D1rOp(t3) = y))))

ChangeNoDL(¢: time, x7: Tracks): bool =
(3 z: (Grd1(t, =) Vv Grd2(t, z))) A
(3 (y: bool): (LimMinusNoDL (¢, 1, y) A = y = NoDL(¢, z1))))

ChangeDL (¢: time, z1: Tracks): bool =
(3 z: Grdl(t, z)) A
(3 (y: time): (LimMinusDL(¢, z1, y) A =y = DL, z1))))

ChangeDirOp(¢: time): bool =
(3 z: (Grd3(t, z) VvV Grdd(t, z))) A
(3 (y: bool): (LimMinusDirOp(t, y) A = y = DirOp(¢))))

NoChangeNoDL (¢: time, z;: Tracks): bool =
Vo ((x =2 = - Grdlt, 2)) AN (x = 21 = - Grd2(, 2))))

NoChangeDL(¢: time, zi: Tracks): bool = (V z: (z = z; = - Grdl(¢, x)))

NoChangeDirOp(¢: time): bool =
(VY z: ((TRUE = - Grd3(t, 2)) A (TRUE = — Grd4(t, x))))

SomeGrd (¢: time, z: Tracks): bool =
(((Grd1(t,) Vv Grd2(t, z)) V Grd3(t, x)) Vv Grdd(t, z))

NoGrds(t: time): bool =
vV z2:(((= Grdl(t,) A = Grd2(t, z))AN - Grd3(t, 2)) A = Grdd(t,z)))

Init: AXIoM Init(0)

OpnNoG1: AXIOM
(- Grdl(t, z) =
(E' tl, tQI
(Neigh(ty, t, t2) A
(V tz: (Neigh(ty, t3, t2) = = Grdl(tz, x))))))

OpnNoG2: AXIOM
(- Grd2(t, z) =

(3 t1, ta:
(Neigh(tl, t, t2) A
(VW t3: (Neigh(ti, tz, t2) = - Grd2(t3, 2))))))

OpnNoG3: AXIOM
(= Grd3(¢, =) =
(E| tl, tQI
(Neigh(ty, t, t2) A
v t3: (Neigh(tl, ts, ty) = = Grd3(t3, z))))))

OpnNoG4: AXIOM
(- Grdd(t, z) =
(E| tl, tQI
(Neigh(ty, t, t2) A
(V t3: (Neigh(ty, ts, t2) = — Grdd(tz, x))))))

PointWisel: AXIOM
(Grd1(t, z) =
(E| tl, tQI
(Neigh(t1, t, t2) A
(V t3: (Nelgh(tl, t3, tg) =

~
o~
I

&
<
il

Grd1(tz, x)))))))

PointWise2: AXIOM
(Grd2(t, =) =
(E| tl, tQI
(Neigh(t1, t, t2) A
(V t3: (Nelgh(tl, t3,

0y
)
~
o~
[
s
<
il

Grd2(t3, x)))))))

PointWise3: AXIOM
(Grd3(t, z) =
(E| tl, tQI
(Neigh(t1, t, t2) A

(V t3: (Neigh(ty, t3, t2) = (& Grd3(t3,)))))))

t3 V

il

PointWised4: AXIOM
(Grd4(t, =) =
(E' tl, tg:
(Neigh(t1, t, t2) A

(V t3: (Nelgh(tl, t3, tg) = (t = t3 \Y Grd4(t3, a:)))))))

il

NoGrdNoChangeNoDL: AXioMm
(V t1:
(t1 >t =
(VW t3: ((t < t3 AN tg < t1) = (V x: NoGrdsNoDL(t3, z)))) =
(\V/ t3:
((t<t3/\t3§t1):>
(V (x1: Tracks): NoDL(t, z1) = NoDL(t3, 21)))))))

NoGrdNoChangeDL: AXIioM
(V t1:
(ty >t =
(Y tg: ((t < t3 Atz < t1) = (V z: NoGrdsDL(t3, z)))) =
(V t3:
((t < t3 AN tg < 1) =

(Y (z1: Tracks): DL(¢, z1) = DL(t3, 71)))))))

NoGrdNoChangeDirOp: AXIOM
(V t1:
(t1 >t =
(VW t3: ((t < t3 ANty < t1) = (V x2: NoGrdsDirOp(t3, x)))) =
WV t3: ((t < t3 A t3 < t1) = DirOp(t) = Derp(tg,))))))

UpDateNoDL1: AXiom
(Grd1(t, z) =
(V tli
(ty >t =
(Vt3: (< t3 ANty < t1) = (V z: NoGrdsNoDL(t3, z)))) =
(V t3: ((t < t3 A t3 < t1) = NoDL(t3,) = FALSE))))))

UpDateNoDL2: AXioM
(Grd2(t, =) =
(\V/ tll
(ty >t =
(Vt3: ((t <tz ANty < t1) = (V z: NoGrdsNoDL(t3, z)))) =
(V t3: ((t < tz3 Atz < t;) = NoDL(t3,) = TRUE))))))

UpDateDL1: AXiOM
(Grd1(t, z) =
(\V/ tll
(t1 >t =
(VW t3: ((t < t3 AN tg < t1) = (VY x: NoGrdsDL(t3, x)))) =
(V t3:
((t<t3/\t3§t1):>
DL(t3,) = (CT(t) + WT)))))))

UpDateDirOpl: AXioM
(Grd3(t, z) =
(\V/ tll
(ty >t =
(¥ tg: ((t < t3 A tg < t1) = (V z: NoGrdsDirOp(ts3, z)))) =
v t3: (@ < t3 N i3 S tl) = D1rOp(t3) = FALSE))))))

UpDateDirOp2: AXIioM
(Grd4(t, z) =
(\V/ tll
(t1 >t =
(VW t3: ((t < t3 AN tg < t1) = (V x: NoGrdsDirOp(t3, z)))) =
(VW t3: ((t < t3 A tg < t;) = DirOp(#3) = TRUE))))))

NoUpDateNoDL1: AXiOM
(NoGrds(t) V
(V tli
(t1 >t =
(Vt3: (< t3 ANtg < t1) = (V z: NoGrdsNoDL(t3, z)))) =
(V (z1: Tracks):
(NoChangeNoDL(t3, 1) =
(V t3:
(@t < t3 ANtz < tg) =

xi

(V (x1: Tracks):
NoDL(t, z1) = NoDL(t3, £1))))))))))

NoUpDateNoDL2: AXioMm
(NoGrds(t) Vv
(V tli
(t1 >t =
(Vt3: ((t <tz ANty < t1) = (V z: NoGrdsNoDL(t3, z)))) =
(V (z1: Tracks):
(NoChangeNoDL(t3, 1) =
(V t3:
(< t3 ANtz < t1) =
(V (z1: Tracks):
NoDL(t, z1) = NoDL(t3, £1))))))))))

NoUpDateDL1: AXioM
(NoGrds(t) Vv
(\V/ tll
(ty >t =
(VY tg: ((t < t3 ANtz < t1) = (¥ z: NoGrdsDL(t3, z)))) =
(V (x1: Tracks):
(NoChangeDL(t3, x1) =
(V t3:
((t < tg Nty < t1) =
(V (x1: Tracks): DL(¢, z1) = DL(t3, 21))))))))))

NoUpDateDirOpl: AXIOM
(NoGrds(t) Vv
(\V/ tll
(ty >t =
(¥ tg: ((t < t3 A tg < t1) = (V z: NoGrdsDirOp(ts3, z)))) =
(NoChangeDirOp (t3) =
V t3: ((t < t3 A tg < t1) = DirOp(t) = DirOp(#3))))))))

NoUpDateDirOp2: AXIOM
(NoGrds(t) V
(V tli
(t1 >t =
(Y t3: ((t < t3 Atz < t1) = (V z: NoGrdsDirOp(t3, z)))) =
(NoChangeDirOp (t3) =
VWV tz: ((t < t3 A tg < t1) = DirOp(t) = DirOp(#3))))))))

LeftOpnNoDL: AXiom
t>0=
(E' tll
(t1 <t A
(\V/ t3:
(1 < tz3 Ntz < t) =
(V (x1: Tracks): NoDL(t, z;) = NoDL(t3, 21)))))))

LeftOpnDL: AXxiOoM
t>0=
(E' tli
(t1 <t A

xii

(V t3:
((ty < t3 ANtz < t) =
(V (xq: Tracks): DL(t, z1) = DL(t3, z1)))))))

LeftOpnDirOp: AXIOM
t>0=
(E' tll
(ty <t N (Vitg: ((tp <tz Atz < t) = DirOp(t) = Derp(t3))))))

NotIntGl: LEMMA
Vit <ty = = ((Vig: (K <ty Aty < t1) = Grdl(ts, 2))))))

NotIntG2: LEMMA
Viti: <ty = (Vg (E <ty ANtz < t1) = Grd23, 2))))))

NotIntG3: LEMMA

Vitr: <ty = = ((Vig: (¢ <tz Atz <t1) = Grd3(tz, ©))))))

il

NotIntG4: LEMMA

VMt <t = (¥ tg: (< tg ANtg < t1) = Grdd(ts, 2))))))

]

OpnNoGrds: LEMMA
(NoGrds(t) =
(E| tl, tQI
(Neigh(t;, t, t2) A (V¥ t3: (Neigh(t;, t3, t2) = NoGrds(t3))))))

PointWiseNoGrdsl: LEMMA
(Grd1(t, z) =
(E| tl, tQI
(Neigh(ty, t, t2) A
v t3: (Neigh(tl, ts,) = (t = t3 V

]

NoGrds(¢3)))))))

PointWiseNoGrds2: LEMMA
(Grd2(t, z) =
(E| tl 5 tQI
(Neigh(tl, t, t2) A
(V t3: (Nelgh(tl, t3, tg)

)
~
o~
[
s
<
il

NoGrds(23)))))))

PointWiseNoGrds3: LEMMA
(Grd3(t, z) =
(E| tl, tQI
(Neigh(t1, t, t2) A

(V tg: (Neigh(ty, t3, t2) = (& = t3 V NoGrds(#3)))))))

il

PointWiseNoGrds4: LEMMA
(Grd4(t, z) =
(E| tl, tQI
(Neigh(t1, t, t2) A

(V tg: (Neigh(ty, t3, t2) = (¢ = t3 V NoGrds(#3)))))))

il

FirstChangeNoDL: LEMMA
(V (x1: Tracks):
((t < t1 A = NoDL(t, ;) = NoDL(t;, 1)) =
(E' t2:

xiii

((t§t2/\t2<t1)/\
(ChangeNoDL(ty, 1) A
(\V/ t3:
((t§t3/\t3<t2):>
(Y z: (V z: NoGrdsNoDL(t3, 2))))))))))

FirstChangeDL: LEMMA
(V (x1: Tracks):
((t < t1 A = DL(t, z1) = DL(t1, z1)) =
(E' t2:
(< tyg Nty < t1) A
(ChangeDL(t5, x1) A
(\V/ t3:
((t§t3/\t3<t2):>
(V z: (V z: NoGrdsDL(t3, 2))))))))))

FirstChangeDirOp: LEMMA
((t < ty A = DirOp(#) = DirOp(t1)) =
(E' t2:
(t <ty ANty < t1) A
(ChangeDirOp (t2) A
(V t3:
((t < tg ANty < t3) =
(V z: (VY z: NoGrdsDirOp(tz, £)))))))))

LastChangeNoDL: LEMMA
(V (x1: Tracks):
((t < t; AN = NoDL(¢, 1) = NoDL(t1, z1)) =
(E' tg:
((tftg/\t2<t1)/\
(ChangeNoDL(ty, 1) A
(V t3:
(2 < tz3 ANtz < t1) =
(Y z: (V z: NoGrdsNoDL(t3,))))))))))

LastChangeDL: LEMMA
(V (x1: Tracks):
((t < t1 AN = DL(t, z1) = DL(t1, z1)) =
(E' t2:

((tftg/\t2<t1)/\
(ChangeDL(t2, z1) A

(V t3:

((ty < t3 Ntz < t1) =
(VY z: (V z: NoGrdsDL(t3, 2))))))))))

LastChangeDirOp: LEMMA
(t < t; A = DirOp(t) = DirOp (1)) =
(E' tg:
((t <ty ANty < t1) A
(ChangeDirOp (t2) A
(V t3:
((ts < t3 N t3 < t1) =
YV xz: (V x: NoGrdsDirOp(t3, x)))))))))

Xiv

UpDateLocNoDL1: LEMMA (Grdl(¢, z) = LimPlusNoDL(¢, x, FALSE))
UpDateLocNoDL2: LEMMA (Grd2(t, z) = LimPlusNoDL(¢, z, TRUE))
UpDateLocDL1: LEMMA (Grdl(¢, z) = LimPlusDL(¢, =, (CT(¢) + WT)))
UpDateLocDirOpl: LEMMA (Grd3(¢t, z) = LimPlusDirOp(¢, FALSE))
UpDateLocDirOp2: LEMMA (Grd4(¢t, z) = LimPlusDirOp(¢, TRUE))

UpDateParNoDL1: LEMMA
(Grd1(t, z) =
(\V/ tll
(ty >t =
(¥ t3: ((t < t3 N t3 < t1) = NoGrdsNoDL(t3, z))) =
(V t3: ((t < t3 A tg < t;) = NoDL(¢3,) = FALSE))))))

UpDateParNoDL2: 1LEMMA
(Grd2(t, z) =
(\V/ tll
(ty >t =
(¥ t3: ((t < t3 A t3 < t1) = NoGrdsNoDL(t3, z))) =
(V t3: ((t < tz3 A tz3 < t;) = NoDL(t3,) = TRUE))))))

UpDateParDL1: LEMMA
(Grd1(t, z) =
(V tli
(ty >t =
(V¥ tg: ((t < tz3 A tz3 < t1) = NoGrdsDL(t3, z))) =
(V t3:
((t<t3/\t3§t1):>
DL(t3, z) = (CT(¢t) + WT)))))))

UpDateParDirOpl: LEMMA
(Grd3(t, z) =
(\V/ tll
(t1 >t =
(VW t3: ((t < t3 A t3 < t1) = NoGrdsDirOp(t3, z))) =
(V t3: ((t < t3 A t3 < t1) = D1rOp(t3) = FALSE))))))

UpDateParDirOp2: LEMMA
(Grd4(t, =) =
(V tli
(ty >t =
(VY tg: ((t < t3 A tz3 < t;) = NoGrdsDirOp(t3, z))) =
(V t3: ((t < tz3 A tz3 < t;) = DirOp(¢3) = TRUE))))))
END Railroad

XV

D.4 Theory: verif

verif: THEORY
BEGIN
IMPORTING Railroad
t, to, t1, ta, t3, T: VAR time;
x: VAR Tracks;
Arrives(t, x): bool = Cmg(t,) A LimMinusCmg(¢, =, FALSE)

LemArr: LEMMA Arrives(t, z) = t > 0

InCrArr: LEMMA
InCr(t) =
(E' t3:
d x:
(t3 < t—dmin A

Arrives(t3,) N (V 7: ((i3 TAT<t) = Cmglr, £)))))

IN

ArrDL: LEMMA
(Arrives(t,) Nt < tg3 AN WV 7: (< T AT
(NoDL(t, =) A
v 1
(<1t ANAT<13) =
(= NoDL(7r, z) A DL(7, z) = t+ WT))))

IN

t3) = Cmg(r, z)))) =

NotSfDirCl: LEMMA
(t <ts N V71: (¢t <717 AT <t3) = SafeToOpen(r) = FALSE))) =
VW r1: (¢t <717 AT < t3) = DirOp(r) = FALSE))

Safety: THEOREM InCr(t) = TRUE = GtClsd(t) = TRUE
END verif

xvi

E PVS Proof of the Verification for the Generalized Railroad
Crossing Problem

Here we give the strategy APPLY_LEMMA and the complete proof of (Safety) which consists of proofs of 3
lemmas: InCrArr, ArrDL, NotSfDirCl and at last of that of (Safety).

E.1 A Strategy

(defstep apply_lemma (lem args)
(let ((x(cons ’inst(cons -1 args))))
(then (lemma lem) x (split -1)))

" " "applying some lemma to some argument"

)

E.2 Proof of Lemma InCrArr

;33 Proof for formula verif.InCrArr
;35 developed with old decision procedures
(Il n
(SKOSIMP 1)
(APPLY_LEMMA "CrCm" ("t!1"))
((" 1 "
(FLATTEN)
(SKOSIMP -2)
(APPLY_LEMMA "Coming" ("t!1-dmin" "x!1"))
(1
(SKOLEM -1 "t1i")
(INST 1 "ti" "x!1")

(FLATTEN)
(CASE "FORALL tau:(tl <= tau AND tau <= t!1 - dmin)=>(Cmg(tau,x!1))")
((n 1 n
(CASE "FORALL tau: ((t1 <= tau AND tau <= t!1) => Cmg(tau, x!1))")
((" 1 "
(SPLIT 1)

(("1" (PROPAX))
("2" (INST -1 "t1") (EXPAND "Arrives") (GRIND))
("3" (PROPAX))))

(m2n

(MERGE-FNUMS (-1 -7))

(SKOSIMP 1)

(APPLY_LEMMA "union_int"
("lambda (tau:time): Cmg(tau,x!'1)" "t1" "t!i-dmin" "t!1"))

(("1" (GRIND)) ("2" (GRIND)) ("3" (GROUND))))))

("2" (SKOSIMP 1) (INST -5 "tau!1") (GROUND))))
("2" (GRIND)) ("3" (GRIND))))
("2" (GROUND))))

E.3 Proof of Lemma ArrDL

;33 Proof for formula verif.ArrDL

;33 developed with new decision procedures

(nn

(SKOSIMP 1)

(CASE "not NoDL(t!'1,x!1)")

(1
(APPLY_LEMMA "LeftOpnNoDL" ("t!1"))
(("1"

xvil

(APPLY_LEMMA "LemArr" ("t!'1" "x!1"))
(EXPAND "Arrives")
(FLATTEN)
(EXPAND "LimMinusCmg")
(SKOSIMP -2)
(SKOSIMP -5)
(NAME "maximum" "if t1!2> t1!1 then t1!2 else t1!1 endif")
(APPLY_LEMMA "NotIntG2" ("maximum" "x!1" "t!1"))
(("1" (SKOSIMP 1) (INST -6 "t3!2") (INST -9 "t3!2") (GRIND))
("2" (GRIND))))
("2" (GRIND))))

(l|2l|
(APPLY_LEMMA "UpDateLocNoDL1" ("t!1" "x!1"))
(("1"
(APPLY_LEMMA "UpDateLocDL1" ("t!1" "x!1i"))
(("1"
(CASE "forall tau:((t!1<tau AND tau <t3!1)=>(NoGrdsNoDL(tau,x!1) AND NoGrdsDL(tau,x!1)))")
((lllll
(SPLIT 1)
(("1" (PROPAX))
(ll2l|
(SKOSIMP 1)
(SPLIT 1)
(("1"
(APPLY_LEMMA "UpDateParNoDL1" (Mmerar mx!l1m))
(("1"
(INST -1 "t3!1")
(SPLIT -1)

(("1" (GRIND))
("2" (SKOSIMP 1) (INST -6 "t3!2") (GRIND))
("3" (GROUND))))

("2" (GRIND))))

(n2n
(APPLY_LEMMA "UpDateParDL1" ("t!1" "x!1"))
(("1"
(INST -1 "t3!1")
(SPLIT -1)

((m1" (INST -1 "tau!1") (GRIND))
("2" (SKOSIMP 1) (INST -5 "t3!2") (GRIND))
("3" (GROUND))))
("2" (GRIND))))))))
(Il2ll
(SKOSIMP 1)
(INST-CP -8 "tau!l")
(EXPAND "NoGrdsNoDL")
(EXPAND "NoGrdsDL")
(CASE "(NOT Grdi(tau'l, x!'1) AND NOT Grd2(tau'l, x!1))")
(("1" (GRIND))
(m2"
(SPLIT 1)
(("1"
(APPLY_LEMMA "LeftOpnNoDL" ("tau!1"))
((an
(SKOSIMP -1)
(NAME "borne" "if t1!1>t!1 then t1!1l else t!l endif")
(APPLY_LEMMA "NotIntG1" ("borne" "x!1" "tau!i"))
((Illll
(SKOSIMP 1)
(INST -5 "t3!2")

xviii

(INST -14 "t3!2")
(GRIND))
("2" (GRIND))))
("2" (GROUND))))
("2" (GRIND))))))))
("2" (GRIND))))
("2" (GRIND))))))

E.4 Proof of Lemma NotSfDirCl

;33 Proof for formula verif.NotSfDirCl
;33 developed with old decision procedures
(Illl
(SKOSIMP*)
(APPLY_LEMMA "LeftOpnDirOp" ("tau!1l"))
((Illll
(SKOSIMP -1)
(NAME "1im" "if t1!1>t!1 then t1!1 else t!1 endif")
(NAME "1im1" " (lim+tau!l)/2")
(CASE "DirOp(1imi1)")
(("1"
(CASE "SafeToOpen(liml)=FALSE")
((an
(EXPAND " SafeToOpen")
(SKOSIMP 1)
(APPLY_LEMMA "UpDateLocDirOpi" ("liml" "x!1"))
((Illll
(EXPAND "LimPlusDirOp")
(SKOSIMP -1)
(NAME "sup" "if t1!2>tau!l then tau!l else t1!2 endif")
(INST -3 "sup")
(GRIND))
("2" (GRIND))))
("2" (INST -7 "1limi") (GRIND))))
("2" (GRIND))))
("2" (GROUND))))

E.5 Proof of Safety

;33 Proof for formula verif.Safety
;33 developed with old decision procedures

(un

(APPLY_LEMMA "dIneq" NIL)
(SKOSIMP*)

(APPLY_LEMMA "InCrArr" ("t!1"))
(("1"

(APPLY_LEMMA "C1lsClsd"("t!1"))
(("1" (GRIND))
(man
(SKOSIMP*)
(APPLY_LEMMA "ArrDL" ("t3!1" "g!{i" "x!i"))
(&
(LEMMA "NotSfDirCl")
(INST -1 "t!1-dclose" "t!1")
((ram
(CASE " (FORALL tau:((t!1 - dclose <= tau AND tau <= t!1) =>
SafeToOpen(tau) = FALSE))")
(("1" (GRIND))
(o

xix

(EXPAND "SafeToOpen")
(SKOSIMP 1)
(INST -3 "x!1")
(INST -6 "tau!2")
(INST -11 "tau!2")
(GRIND))))
("2" (ASSERT))))
("2" (GROUND))))))
("2" (GROUND))))

XX

