
Laboratoire d'Algorithmique,
Complexité et Logique (LACL)
Université Paris 12 — Val de Marne
Faculté des Sciences et Technologie
61, Av. du Gén. de Gaulle
94010 CRETEIL cedex
FRANCE
Tel: (33 1) 45 17 16 47, Fax: (33 1) 45 17 16 49

A Prediate Logi Frameworkfor Mehanial Veri�ationof Real-Time Abstrat State Mahines:A Case Study with PVS.Dani�ele Beauquier Tristan Crolard Anatol SlissenkoOtober 2000TR{00{25

INFORMATIQUEUniversit�e Paris 12 { Val de Marne, Fault�e des Siene et Tehnologie61, Avenue du G�en�eral de Gaulle, 94010 Cr�eteil edex, FraneTel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 16 49, Telex: UPVMINT 264 167 F

Laboratory of Algorithmis, Complexity and LogiUniversity Paris 12Tehnial Report 00{25D. Beauquier, T. Crolard A. Slissenko.A prediate logi framework for mehanial veri�ationof real-time Gurevih Abstrat State Mahines:A ase study with PVS.Otober, 2000.

A Prediate Logi Frameworkfor Mehanial Veri�ationof Real-time Gurevih Abstrat State Mahines:A ase study with PVSDani�ele BeauquierE-mail: beauquier�univ-paris12.fr Tristan CrolardE-mail: rolard�univ-paris12.frAnatol Slissenko℄E-mail: slissenko�univ-paris12.frLaboratory of Algorithmis, Complexity and Logi,Department of Informatis, University Paris-12, Frane1
AbstratWe desribe general priniples and a tool that permit to get a rather short and lear PVS proof ofveri�ation of the Generalized Railroad Crossing Problem. The problem is treated ompletely followingthe initial spei�ation pratially without any modi�ations. Suh a diret, omplete and easy tounderstand formal treatment of the problem has never been done before. The framework we use israther general and we believe it an be used for veri�ation of other real-time systems.1 IntrodutionThe paper desribes a methodology of veri�ation of timed abstrat state mahines with the help of theoremprovers within a prediate logi framework. This approah is oriented onto using tools like PVS [PVS℄,Isabelle [Pau94℄ and towards development of more advaned ones that take into onsideration the experieneaumulated in the domain of logi based veri�ation.Veri�ation presumes an interation of two spei�ations: a spei�ation of requirements (briey, re-quirements) and a spei�ation of algorithm (briey, algorithm). Requirements, generally, onsist of twoparts: desription of the environment and demands to the funtioning. Suppose that these spei�ations arerepresented by logi formulas �Env (environment), �Fun (funtioning) and �Runs (exeutions or runs ofthe algorithm) respetively. Thus, the veri�ation in this situation is to prove � (�Env ^�Runs)! �Fun �.Logi approahes to veri�ation have their advantages and disadvantages, say, with respet to model-heking. Their advantages: (1) they use (relatively) easily omprehensible languages to embed user'sspei�ations without imposing on the latter new languages, (2) logi languages are very expressive, thatpermits to represent the initial spei�ation diretly, ompletely and without exessive e�orts, (3) whilere�ning the spei�ations the user hanges his/her spei�ation languages but the veri�ation environmentremains the same. The main disadvantage of the approah is that in its general setting the logis used areundeidable, and the searh of a veri�ation proof is not fully automati in the general ase. Our goal is todevelop methods to augment the automated part of the proof searh. To do it we pursue a more theoretialway of looking for deidable lasses (e. g. [BS00℄) and a more pratial way of seeking heuristis for eÆientveri�ation. Here we present a work in the latter diretion. With respet to model-heking (e. g. [CGP99℄)1Address: Dept. of Informatis, University Paris 12, 61 Av. du G�en. de Gaulle, 94010, Cr�eteil, Frane.℄Member of St-Petersburg Institute for Informatis and Automation, Aademy of Sienes of Russia.

we gain in the quality of the veri�ation result, in partiular in ompleteness, and a faster preparation of agiven problem for veri�ation, but loose in automation of the �nal phase.We develop the approah desribed in [BS00℄ (and other papers available athttp://www.univ-paris12.fr/lal/) towards using proof searh tools. To hek how it works we analyze awell-known aademi example, namely, the Generalized Railroad Crossing Problem (abbreviated to GRCPbelow) introdued in [HL94℄. We take the version of [GH96℄ that is pratially equivalent to the original one.The GRCP was studied in many papers, e. g. see [HM96℄. A PVS veri�ation of GRCP has been done in 70-page report [AH98℄. This report is very hard to read beause it uses not suÆiently eÆient formalism thatdemands a ompliated modeling. We use riher, simpler and more general languages for the spei�ations, inpartiular, First Order Timed Logi (FOTL) for requirements and timed Gurevih Abstrat State Mahines(ASM) [Gur95℄ to speify algorithms. The latter are loser to programming languages, and muh strongerand muh easier to use than automata based formalisms (the approah works as well for other spei�ationlanguages with lear semantis). Our approah is ideologially loser to that of [MMP+96℄ where the authorsuse some kind of �rst order logi to speify the requirements and Petri nets to speify algorithms.Here we present our analysis of the entire problem, based on the initial, almost unmodi�ed spei�ation.We learly separate the spei�ations to analyze: requirements to funtioning, spei�ation of environmentand spei�ation of ontroller, and give a diret PVS proof that the ontroller veri�es the requirementsto funtioning under the spei�ation of environment. In our solution the requirements, inluding theenvironment, are desribed on 1-page easy to read formulas, the ontroller is spei�ed by, in fat, 4-linealgorithm as a Gurevih ASM (that we take with some minor modi�ations and reti�ations from [GH96℄),and our PVS proof is 3-page long. Suintness and larity of our solution distinguish it from [AH98℄.The eÆieny of our proof is based, in partiular, on general, automatially generated properties of timedGurevih ASM that, in partiular, `pre-proess' some indutions to use.New results of this paper are the following ones: an eÆient embedding of runs of timed blok GurevihASM in First Order Timed Logi (FOTL), an automati tool to transform suh an ASM into PVS formulas,and a short PVS proof of safety for the GRCP (liveness is somehow simpler to prove).The paper is organized as follows. In setion 2 we desribe our logi framework for veri�ation of real-timealgorithms, in partiular FOTL and timed blok Gurevih ASM. Setion 2.3 ontains spei�ations of theGRCP. In setion 3 we give FOTL formulas desribing ASM runs and how to translate automatially anASM into suh formulas in PVS format. Setion 4 presents the onluding part of PVS proof of (Safety) forthe GRCP.2 BakgroundWe start with a brief summary of our methodology to verify a real-time system:{ Write down environment and requirement spei�ations as FOTL formulas �Env and �Fun. UsingFOTL permits, without muh e�ort, to remain very lose to the initial spei�ations given usually in alanguage lose to natural ones and to avoid errors appearing in less diret modelings.{ Speify the algorithm as a timed ASM. The ASM formalism permits to be lose to programminglanguage and to express diretly our algorithmi ideas.{ Automatially translate the ASM into FOTL formulas desribing its runs with the help of the translator.(Notie that our method an easily be applied to another formalism than ASMs, we hosed this formalismfor its larity and its oniseness.){ Use and develop strategies to automate partially the veri�ation whih onsists in the proof of� (�Env ^ �Runs)! �Fun �.In this setion below we remind the prediate logi framework for real-time veri�ation from [BS97℄,[BS00℄ and the notion of timed blok Gurevih ASM [GH96℄.2.1 First Order Timed Logi (FOTL)A First Order Timed Logi used in this framework is onstruted in two steps. Firstly, we hoose a simple,if possible deidable theory to deal with onrete mathematial objets (the underlying theory), like reals,and, seondly, we extend it in a `minimal' way by abstrat funtions to deal with our spei�ations. Here wetake as the underlying theory the theory of real addition and unary multipliations by rational numbers, and2

extend it by funtions with at most one time argument and with other arguments being of �nite abstratsorts. Preisions are given below.Syntax of FOTL.The voabulary W Æ of a FOTL onsists of a �nite set of sorts and of a set of funtion symbols. Prediatesare treated as a partiular ase of funtions, sure exept equalities for eah sort.Sorts are lassi�ed as prede�ned and abstrat. Prede�ned sorts are those whih interpretation is �xed.Here we onsider only �nite abstrat sorts (though the ardinality of suh a sort may be �xed, bounded orarbitrary).We limit prede�ned sorts to real numbers R, time T =df R�0 treated as a subsort of R, and boolean valuesBool. We expliitely mention just variables for time: t and � with indies. For other sorts we will use anyletter with expliit indiation of its sort. For example, 8X 2 X , where X is a list of n variables and X is adiret produt of n sorts, will mean that ith variable of X is of the ith sort of X .As usually, eah funtion has its type (pro�le) whih determines also its arity.The funtions are lassi�ed as prede�ned and abstrat on the one hand, and as dynami and stati on theother hand. We explain these notions just below.The prede�ned funtions are ompletely interpreted. We take as prede�ned funtions the Boolean on-stants true and false of the type ! Bool, rational numbers Q treated as reals, i. e. an in�nite set offuntions of the type ! R, addition + and substration � of reals, in�nite number of unary multipliationsby rational numbers, usual binary prediates over reals: =; �; <, equality for eah abstart sort and at last,identity funtion over time that will represent the \urrent time"; we will denote it by CT Æ as it will appearin examples.The set of abstrat funtion symbols is �nite and any abstrat funtion symbol has at most one timeargument, and the other arguments, if any, are of �nite sorts.The dynami funtions are those that have a time argument, and the stati ones are those that have nosuh an argument.A voabularyW Æ being �xed, the notion of term and that of formula overW Æ are de�ned in a usual way.Remark 1. We treat prediates as funtions, nevertheless, to give more suint desriptions and avoidexessive use of equality we will use often for these funtions the prediate notation.To apply the logi to veri�ation one needs more detailed lassi�ation of abstrat symbols, in partiular,one needs to distinguish input funtions and output funtions. We will do it when neessary.Semantis of FOTL.A priori we impose no onstraints on the admissible interpretations. Thus, the notions of interpretation,model, satis�ability and validity are treated as in �rst order prediate logi modulo preinterpreted part ofthe voabulary. Thus M j= F , M 6j= F and j= F where M is an interpretation and F is a formula,denote respetively that M is a model of F , M is a ounter-model of F and F is valid.Remark that an interpretation f� of a funtion f of type T � X ! Z desribes a family of temporalproesses parametrized by the elements of interpretation X � of X .2.2 Timed Gurevih Abstrat State MahinesTo represent the algorithms we use Gurevih Abstrat State Mahine (ASM) [Gur95℄. This formalism ispowerful, gives a lear vision of semantis of timed algorithms and permits to easily hange the level ofabstration. In priniple, Gurevih ASM may serve as an intermediate language between user's languagesfor algorithm spei�ation and a logi framework. (This laim is supported by numerous appliations ofGurevih ASM, see http://www.ees.umih.edu/gasm/.)A timed blok ASM is a tuple of the form (W; Init; P rog), where W is a voabulary, Init is a losedformula desribing the initial state and Prog is a program.Sorts, variables and funtions are like in subsetion 2.1 exept that time annot be an argument offuntions. We lassify the funtions using the same terms as in subsetion 2.1, namely abstrat or prede�nedon the one hand and stati or dynami on the other hand. Sure, to reason about the behavior of an ASM we3

are to embed the funtions of the voabulary of the mahine into FOTL. And at this moment, time beomesexpliit to represent our vision of the funtioning of the mahine. To `time' the dynami funtions of anASM we proeed as follows.If f is a dynami funtion of type X ! Z in the voabulary of an ASM, the orresponding logialfuntion is denoted by fÆ and is of type T � X ! Z. We assume that any ASM voabulary ontains aprede�ned dynami funtion CT of type ! T whih beomes CT Æ, that is the identity: CT Æ(t) = t.Dynami funtions are lassi�ed into external and internal. External funtions are not hanged by theASM, internal funtions, on the ontrary, are omputed by the ASM and are obviously abstrat and dynami.The funtion CT is external and prede�ned.Prede�ned stati funtions have a �xed interpretation valid for every t 2 T . The interpretation ofa prede�ned dynami funtion, though hanging with time, does not depend on the funtioning of themahine.The initial ondition Init is a losed formula over W presumed to have the following property: given aninterpretation of abstrat sorts and abstrat external funtions (for time 0), there is a unique interpretationof internal funtions suh that the ondition Init is satis�ed. This unique interpretation of internal funtionsde�nes their value at time 0.We onsider a partiular ase of ASM, namely blok ASM that onsists of a set of If-Then-operators(rules). This ase is, however, a very pratial one. The notations of ASM are self-explanatory so we givethe form of ASM we onsider (our notation slightly di�ers from that of [Gur95℄ to diminish explanations).RepeatForAll ! 2
InParallelDoIf G1(!) Then A1(!) EndIfIf G2(!) Then A2(!) EndIf: : : : : : : : : : : :If Gm(!) Then Am(!) EndIfEndInParallelDoEndForAllEndRepeatHere eah Gi is a guard, i. e. a formula over the voabulary desribed above, not having free variablesdi�erent from !, and eah Ai is a list of assignments (alled updates) whose terms also do not have freevariables di�erent from !. Eah assignment is of the form f(T) := �, where f is an internal funtion, � is aterm and T is a list of terms of the size orresponding to the arity of f .Informally all guards are heked simultaneously and instantaneously, and all the updates of rules with trueguards are exeuted also simultaneously and instantaneously.Semantis of an ASM.Preise semantis is given in [BS00℄ and follows [GH96℄. We give here just an intuitive desription. For agiven interpretation of abstrat sorts we de�ne the semantis of the program in terms of runs (exeutions).Informally, given an input, that is an interpretation of external funtions for eah moment of time, themahine omputes a run whih is an interpretation of internal funtions for eah moment of time or atleast for an initial segment of T . Notie that external funtions whih are lassi�ed as stati have the sameinterpretation for every moment of time.The behavior of the mahine is deterministi. All the If-Then-statements are exeuted simultaneouslyin parallel and instantaneously as well as all the assignments in any Then-part if the orresponding guardis true. Sure, if they are inonsistent, the exeution is interrupted, and the run of the algorithm beomesunde�ned. Notie that the e�et of an assignment exeuted at time t takes plae after time t but not attime t.We onsider only total runs, i.e. those de�ned on whole T . Below \run" means \total run".As we mentioned in Introdution, the set of runs an be desribed by FOTL-formulas. In the nextsetion 3 we disuss some features of these formulas desribing runs in a way apt to veri�ation and how toprodue them automatially for PVS proof heker. Before that, we illustrate this sta� with the GeneralizedRailroad Crossing Problem. 4

2.3 Generalized Railroad Crossing Problem (GRCP)Informal Desription of GRCP.We take the desription of GRCP from [GH96℄. A railroad rossing has several one-diretional traks anda ommon gate. Eah trak admits two sensors, one at some distane of the rossing in order to detetinoming of a train and another one just after the rossing in order to detet the train is leaving. Anautomati ontroller reeives the signals from the sensors and on the basis of these signals, deides to send tothe gate a signal lose or open. The environment of the funtioning of the ontroller to onstrut is desribedby the following assumptions. It is assumed that a train annot arrive on a trak (i. e. in the zone of ontrol)before the previous one has left this trak. The situation when a train does not leave the rossing is notformally exluded. It takes at least time dmin for a train to reah the rossing after the sensor has detetedits inoming. And it takes at most dopen (respetively dlose) to the gate to be really opened (respetivelylosed) after the reeption of signal to open (respetively, to lose) if the opposite signal has not been sentin between. To exlude degenerated ase, it is assumed that 0 < dlose < dmin. The time is presumed to beontinuous.The requirements to the ontroller to onstrut are the following ones:(Safety). If a train is in the rossing, the gate is losed.(Liveness). The gate is open as muh as possible.Liveness in this formulation implies seond order quanti�ers (for disussion see [BS00℄) and has never beentreated in literature in this form. So we will take below a �rst order formulation in terms of input/outputsignals (one an show that it gives the liveness in the initial formulation, but it is out the sope of thispaper).Formal Spei�ation of the Requirements to GRCP.FOTL permits to represent the informal requirements diretly without any hanges (modulo our remarkonerning liveness).The prede�ned part of voabulary W was desribed above in subsetion 2.1. So we de�ne only theabstrat part of W .Abstrat sorts onsist of one sort Traks that represents the set of traks whih number is �nite but not�xed. The variables for Traks are x and x with indies.The part of voabulary ontaining abstrat funtions onsists of abstrat onstants (stati funtions ofzero arity) dmin, dopen, dlose, all of the type ! T , and of abstrat dynami funtions. The latter are thefollowing ones:� CmgÆ : T � Traks! Bool means a presene (oming) of a train on a trak at a given time moment;� DirOpÆ : T ! Bool means that a signal to open the gate takes plae at a given time moment, and:DirOpÆ means that the signal is to lose the gate;� InCrÆ : T ! Bool says that there is a train in the rossing at a given time moment;� GtClsdÆ : T ! Bool says that the gate is losed at a given time moment;� GtOpndÆ : T ! Bool says that the gate is opened at a given time moment. (GtOpndÆ is not thenegation of GtClsdÆ as we know only that the gate annot be opened and losed at the same time.)Requirements Spei�ations of GRCP.Requirements onsist of 2 parts: environment (formula �Env mentioned at the beginning of setion 2) anddemands to the funtioning (formula �Fun).We have no formal notion of train within the given syntax. We assume that for a given trak a new trainreahes the sensor launhing CmgÆ only after the previous one has left the rossing making the trak status:CmgÆ. The alternation :CmgÆ= CmgÆ= :CmgÆ : : : orresponds to appearane of suessive trains on agiven trak.Notations:�WaitT ime =WT=df dmin�dlose will be used to desribe a period of time when a train, though havingbeen deteted, is far enough from the rossing to permit to open or to not to lose the gate.� For every funtion f of type T � X ! Y , every term X of type X and every term Y of type YLimPlusf(t; X; Y)=df 9 t1 (t1 > t ^ 8 � ((t < � � t1) ! f(�;X) = Y))
5

LimMoinsf (t; X; Y)=df 9 t1 (t1 < t ^ 8 � ((t1 � � < t) ! f(�;X) = Y))� A notion desribing when the ontroller may open the gate is stated as follows:SafeToOpenSp(t)=df8x � :CmgÆ(t; x) _ 8� � t � 8� 0 2 [�; t)CmgÆ(� 0; x) ! t < � +WaitT ime � � :Spei�ation of the Environment.(TrStInit) 8x:CmgÆ(0; x)(At the initial moment there are no trains on any trak.)(GtStInit) GtOpndÆ(0)(At the initial moment the gate is opened.)(GtSt) 8 t :(GtOpndÆ(t) ^ GtClsdÆ(t))(The gate annot be losed and opened at the same time, but it an be neither opened nor losed.)(DirInit) DirOpÆ(0)(At the initial moment the signal ontrolling the gate is opened.)(CrCm) 8t � InCrÆ(t) ! (t � dmin ^ 9x8 � 2 [t� dmin; t℄CmgÆ(�; x)) �(If a train is in the rossing it had been deteted on one of the traks at least dmin time before the urrentmoment.)(OpnOpnd) 8 t � 8 � 2 (t; t+ dopen℄DirOpÆ(�) ! GtOpndÆ(t+ dopen) �(If at time t + dopen the ommand has been open for at least a duration dopen then the gate is opened atthis time.)(ClsClsd) 8t � 8� 2 (t; t+ dlose℄:DirOpÆ(�) ! GtClsdÆ(t+ dlose) �(If at time t+ dlose the ommand has been lose for at least a duration dlose then the gate is losed at thistime.)(Cmg)8x8t � CmgÆ(t; x)!9 t0 � 0 < t0 � t ^ 8� 2 [t0; t℄CmgÆ(�; x) ^ LimMoinsCmgL(t0; x; false) � �(The last property expresses that the prediate CmgÆ is true on intervals losed on the left and opened onthe right and that the set of points where the value hanges has no aumulation points.)(dIneq) 0 < dlose < dmin ^ 0 < dopen(These is trivial onstraints on the durations involved, the time for losing is smaller than the minimum timeof reahing the rossing by any train deteted as oming.)Spei�ation of the Control.These spei�ations onern requirements on the funtioning.(Safety): 8t (InCrÆ(t)! GtClsdÆ(t)).(When a train is in the rossing, the gate is losed).(LIveness) or (Utility): 8t (SafeToOpenSp(t) ! DirOpÆ(t)).(If the zone of ontrol is safe to open at time t then the ontrol signal must be to open the gate).One an notie that using FOTL permits us to rewrite almost diretly the environment and requirementsspei�ations without any modelisation whih ould introdue a lot of errors.Railroad Crossing Controller.The part of the voabulary of the ASM spei� to this example onsists ofStati funtions:� dmin; dopen; dlose; as above in the logi signature.External funtions:� CT the urrent time has type ! T .
6

� Cmg : Traks ! Bool is an input funtion giving for every trak its status (oming or empty).Internal funtions:� DirOP says that the signal to open the gate is being generated by the algorithm, its type is ! Bool.� DL : Traks ! T is the �rst moment of appearane of a train on a given trak plus WaitT ime, andthis value is then used as a DeadLine to deide on ontrol of the gate, see SafeToOpen ondition below.� NoDL : Traks ! Bool says that there is no deadline on a given trak.Notation:SafeToOpen=df 8x � :Cmg(x) _ NoDL(x) _ CT < DL(x) �.Remark that this SafeToOpen is presumed to represent adequately the SafeToOpenSp ondition, butit is to be proved.An algorithm to ontrol the railroad rossing is given below. To distinguish it from that of [GH96℄ wewill name it Symmetri Controller as it uses our version of SafeToOpen ondition in a symmetri way.Below we will refer to this algorithm simply as Controller.The initial values of internal funtions are de�ned by the onditionInit=df 8x � NoDL(x) ^ DL(x) = 0 � ^ DirOpRepeatForAll x 2 TraksInParallelDoIf Cmg(x) and NoDL(x)Then NoDL(x) := false;DL(x) := CT +WT EndIfIf :Cmg(x) and :NoDL(x)Then NoDL(x) := trueEndIfIf DirOp and :SafeToOpen Then DirOp := false EndIfIf :DirOp and SafeToOpen Then DirOp := true EndIfEndInParallelDoEndForAllEndRepeatFigure 1: Railroad Crossing Controller3 Automati Translation of ASM runs into PVSWe desribe here how ASM runs are represented by FOTL-formulas. We show how to generate automatiallythese formulas using the translator that we developed for this purpose2. The target of the translation isurrently a PVS theory.3.1 FOTL Representation of Runs of Timed ASMIt turns out that on an haraterize the set of total runs of an ASM by an FOTL formula ([BS00℄).Before giving this formula, we need to introdue some notations. Let W be the voabulary of a blok ASM(W; Init; P rog) with the program of the form given above.Denote by Wk the set of terms that appear to the left of := in the assignment blok Ak(!), and denote by�k;v the term of the assignment of Ak(!) with the left hand side v. Without loss of generality we assumethat there are no two assignments of the form v := � and v := �0 in Ak(!). Thus, the assignments of Ak(!)are of the form v := �k;v ; v 2 Wk. Denote by W Æ the `timed' voabulary obtained from the voabulary Wby replaing eah dynami funtion symbol f 2W of the type X ! Z by fÆ of the type T � X ! Z.De�ne operation "b" whih transforms a term � over W and t 2 T into a term b�(t) over W Æ by thefollowing reursion (a){():(a) bu(t) = u if u is a variable or a stati funtion symbol (onstant).2Available at http://www.univ-paris12.fr/lal/rolard. 7

(b) For terms � over W of the form f(�1; : : : ; �n), where f is a stati funtion symbol, b�(t) =f(b�1(t); : : : ;�n(t)).() For terms � over W of the form f(�1; : : : ; �n), where f is a dynami funtion symbol, b�(t) =fÆ(t; b�1(t); : : : ;�n(t)).For a formula F over W we denote by bF (t) the formula over W Æ obtained from F by replaing all terms� by b�(t).Notations:� Fun(v) is the outmost funtion symbol of a term v, i. e. Fun(f(�1; : : : ; �n)) = f .� If is the set of indies k in f1; : : : ;mg for whih a term � with Fun(�) = f , that is of the formf(�1; : : : ; �n), is in Wk .� Arg(�) is the list of arguments of a term �, i. e. Arg(f(�1; : : : ; �n)) = (�1; : : : ; �n). For lists of termsthe operations Æ and bare omponentwise, as well as the equality.Below we assume that a funtion symbol f 2 VIntrn has the type X ! Z, where X is a diret produt ofsorts, and by X we will denote a vetor of variables of the sort X ; to remind it we will write also X 2 dom(f).To desribe the total run orresponding to a given input we express the following properties related to agiven moment of time t.First some notations:NoGrds(t; !)=df Vk :\Gk(!)(t)NoGrds(t)=df 8! NoGrds(t; !)For every f 2 VIntrn:NoGrdsf (t; !)=df Vk2If :\Gk(!)(t)where If = fk j 9 v 2 Wk Fun(v) = fg.[NoGrdsf (t)=df 8! NoGrdsf (t; !)We give here a list of properties, the onjuntion of whih haraterizes the set of total runs of an ASM.� If no guard is valid at t then no guard is valid in some neighborhood of t :OpnNoGrds(t)=df � NoGrds(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! NoGrds(�)) � � :	0(t)=df OpnNoGrds(t):� If a guard is valid at t for some ! then no guard is valid in some neighborhood of t exept t itself:PointWiseNoGrds(t)=df 8! Vk �\Gk(!)(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 �(Neib(t1; �; t2) ! (� = t _ NoGrds(�))) � � :	1(t)=df PointWiseNoGrds(t):� The value of an internal funtion at time t is equal to its value at the left of t:For every f 2 VIntrn:LeftOpnf (t)=df � t > 0 ! 9 t1 < t 8 � 2 (t1; t)8X 2 dom(f) fÆ(�;X) = fÆ(t;X) � :LeftOpn(t)=df Vf2VIntrn LeftOpnf (t)	2(t)=df LeftOpn(t).� Values of internal funtions do not hange as long as related guards remain false:NoGrdNoChangef (t)=df� 8 t1 > t (8 � 2 [t; t1)NoGrdsf (�) ! 8 � 2 (t; t1℄8X 2 dom(f) fÆ(�;X) = fÆ(t;X)) �NoGrdNoChange(t)=df Vf2VIntrn NoGrdNoChangef (t):	3(t)=df NoGrdNoChange(t).� If some guard related to the internal funtion f is true at t, f is updated in aording with the updaterule of this guard, and the update holds as long as the guards related to f remain false:UpDatef (t; !)=df Vk2If �\Gk(!)(t) !8 t1 > t (8 � 2 (t; t1)NoGrdsf (�)) ! 8 � 2 (t; t1℄Vv2Wk; Fun(v)=f dv(!)(�) = \�k;v(!)(t)) �UpDate(t)=df 8! Vf2VIntrn UpDatef (t; !) 8

	4(t)=df UpDate(t).� If some guard related to the internal funtion f is true at t, values of f not updated remain the same aslong as the guards related to f remain false:NoChangef (t;X)=df 8! Vk2If ; v2Wk; Fun(v)=f \Arg(v(!))(t) = X ! :\Gk(!)(t)NoUpDatef (t)=df 9! Wk2If \Gk(!)(t) ! 8 t1 > t � 8 � 2 (t; t1)NoGrdsf (t) !8X 2 dom(f)(NoChangef (t;X) ! 8 � 2 (t; t1℄ fÆ(�;X) = fÆ(t;X)) �NoUpDate(t)=df Vf2VIntrn NoUpDatef (t):	5(t)=df NoUpDate(t).Finally, the total runs are desribed by the formula 		 =df dInit(0) ^i=0;:::;58 t	i(t)In other words we have the following theorem [BS00℄:Theorem 1. Every model of 	 is a total run of A, and onversely, every total run of A is a model of 	.Theoretially, every property satis�ed by a run of the ASM an be dedued from 	. Nevertheless, from apratial point of view, formulas involved in 	 are not always the most onvenient ones. For this reason ariher library of formulas deduible from �Runs has been developed.Library of formulas deduible from �Runs.We desribe these formulas in a natural language. The exat formulas are in Appendix D.� OpnNoGrds(t): The set of time moments t when some guard is false is an open set.� NotIntG: A guard G annot be true on an open interval.� PointWiseNoGrds(t): Guards are pointwise.� FirstChangef (t): If an internal funtion f has not the same value in t and t0, there is a �rst momentbetween t and t0 when it hanges its value.� LastChangef (t): If an internal funtion f has di�erent values at t and t0, there is a last momentbetween t and t0 when it hanges its value.� UpDateLof (t): If some guard related to the internal funtion f is true at t, then f is updated aordingto the update rule of this guard at the right of t.Well Parametrized GASM.The veri�ation of the Railroad Crossing Problem has emphasized the fat that some speial ASM haveinteresting properties. Sure, these properties an be dedued from �Runs, but it is more onvenient to writethem diretly and automatially.De�nition. An ASM is well-parametrized if(a) every internal funtion f has a type X ! Z or
 � X ! Z , where X is a produt of �nite sortsdi�erent from
;(b) in every update onerning f , i. e. of the form f(�) := �0, with f of the type
� X ! Z the �rstargument is the variable ! of sort
, mentioned expliitly in the general form of ASM given in subsetion 2.2,that is f(�) has the form f(!; �1; :::; �n).For a well parametrized blok ASM, one an prove a property that is not true in the general ase: internalfuntions depend only "loally" on the parameter ! 2
.More preisely, for every internal funtion f , for every k 2 If let us de�ne:UpDateParf;k(t; !)=df8 t1 (t < t1 ^Gk(t; !) ^ (8 � 2 (t; t1)NoGrdsf (t; !)) !8 � 2 (t; t1℄Vv2Wk; Funv(v)=f dv(!)(�) = \�k;v(!)(t))Theorem 2 If an ASM is well-parametrized then the following property holdsVf2VIntrn Vk2If 8 t8!UpDateParf;k(t; !): 9

The proof of this theorem is by indution on the number of time moments � between t and t1 whenNoGrdsf (�) is false. Using 	3, we prove that due to the fat that the ASM is well-parametrized, insuh time moments the value of dv(!)(�) remains equal to \�k;v(!)(t).3.2 Automati Generation of Desription of ASM RunsThe main task of the translator is to manipulate abstrat terms and formulas, it is thus easier to programin a language with onrete data types and a powerful type system like ML (we used Oaml 3.0 [Ler00℄).Composition of the Translator.The translator is omposed of a parser, a type heker, a library of funtions whih atually perform thetranslation and a printer whih an generate a orret PVS theory from de�nitions and axioms (or lemmas)given in our abstrat syntax (see below). Beause of this modular design, it is quite simple to extend thesyntax of ASM, to generate new lemmas or to use another prover than PVS.The input �le.An example of input �le for the Railroad Crossing Problem as well as the formal grammar are given inAppendix C and Appendix B respetively.The input �le ontaining the desription of the ASM is three-fold:� The �rst part ontains the signature, where we delare the type of every funtion or prediate symbol.A type has either the form �0 or �1 � : : :� �n ! �0 where eah �i is an atomi type (i.e. a name). Then wegive the (optional) list of stati funtions and the (optional) list of internal funtions.� The seond part ontains the signature of logial variables (variables whih may our only bound bya quanti�er or as formal parameters in a de�nition) and the de�nitions of some funtions (or prediates).The general form of suh a de�nition is: f(x1; : : : ; xn) : � = t, where x1; : : : ; xn are variables, � is an atomitype and t is a term.� The third part ontains the rules of the ASM following the syntax given in subsetion 2.2. Eventually, alist of symbols that should be exported (i.e. sine they were not de�ned in the environment) an be spei�ed.Abstrat syntax.Parsing the input �le results in abstrat syntati trees whih belong to the following ML data types. Sinethis abstrat syntax orresponds diretly to the onrete syntax de�ned by the formal grammar, it doesnot require muh omment. Note however that we do not distinguish between terms and formulas at thesyntati level (formulas are just boolean terms) and that the ASM may or not be parametrized.type asm type = name list * name;;type term = Constant of rational| Apply of (name * term list)| Forall of (variable list * term)| Exists of (variable list * term);;type rule = term * (term * term) list;;type prog = f del : (variable * asm type) list;stati : variable list;internal : variable list;var : (variable * asm type) list;def : (term * name * term) list;body : (variable * asm type) option * rule list;export : variable list g;;Type heking.When the parsing stage is over, the abstrat syntati tree is heked. We hek that no funtion is delaredboth stati and internal, that no external funtion is assigned in the ASM and �nally we type hek thede�nitions and the onditional rules. Note that sine some provers (suh as PVS) use stronger type systems10

(possibly generating TCC), a type error during the translation does not stop the proessing (but should beonsidered as a warning).Prede�ned atomi types are bool, rational (for onstants), time and real. The types of the prede�nedfuntions and prediates enumerated in setion 2.1 are also known by the translator:Prede�ned stati funtions:+ : time * time -> time= : time * time -> bool/ : rational * rational -> rational* : real * rational -> real+ : real * real -> real- : real * real -> real= : real * real -> bool< : real * real -> bool=> : bool * bool -> bool= : bool * bool -> boolAND : bool * bool -> boolOR : bool * bool -> boolNOT : bool -> booltrue : boolfalse : boolPrede�ned dynami funtionCT : timeSubtyping.A very simple but onvenient form of subtyping is provided. The usual typing rule of appliation is generalizedto the following rule: ti : �i �i � � 0i f : � 01 � : : :� � 0n ! �f(t1; : : : ; tn) : �As expeted, the prede�ned types obey the following inlusion: time�real and rational�real.Overloading.Two kinds of overloading are allowed: a funtion an be re-delared either if the type of its arguments areinomparable with those of the �rst delaration (true overloading), or if the type of its arguments and resultsare subtypes of those of the �rst delaration (restrition). An example of true overloading is = : bool* bool -> bool and = : real * real -> bool. An example of restrition is given by + : time *time -> time and + : real * real -> real.The translation.The implementation of the translation is very lose to its mathematial de�nition given in subsetion 3.1.For instane, a funtion hat : name list -> term -> term -> term implements \^". Its parametersare the list of dynami funtions, a term (whih is usually a variable of type time) and the term to betransformed. Likewise, some funtions ir, fun and arg implements \Æ", Fun and Arg exatly as theyare de�ned in setion 3. A few auxilliary funtions are also needed to generate generalized quanti�ationslike 8X 2 dom(f) (whih our for instane in the de�nition of NoGrdNoChange) aording to the atualtype of f . For that purpose, the variables named x1; x2; x3; : : : might be used by the translator and thusthey should not our in the input �le (to avoid any apture). For the same reason, the variables t; t1; t2; t3are also reserved.Sine the details of the translation are rather tehnial, we will just desribe the main steps:� we translate the signature of the ASM (we use ir to make the time expliit in the type of dynamifuntions) 11

� we translate the de�nitions of the ASM (we use hat to add a time argument when dynami funtionsare applied)� we build de�nitions named:{ Guardi for eah guard i .{ NoGrdsF and NoChangeF for eah internal funtion F.{ LimPlusF and LimMinusF for eah dynami funtion F.� we build axioms named:{ OpnNoGi and PointWisei for eah guard i.{ NoGrdNoChangeF and LeftOpnNoF for eah internal funtion F.{ UpDateNoFi and NoUpDateNoFi for eah ourrenei of an update of the internal funtion F.� we build lemmas named:{ OpenNoGrds{ NotIntGi and PointWiseNoGrdsi for eah guard i.{ FirstChangeF and LastChangeF for eah internal funtion F.{ UpDateLoFi for any ourrene i of an update of the internal funtion F.� eventually, we hek if the ASM is well parametrized aording to the riterion de�ned in setion 3and if so, we generate additional lemmas named:{ UpDateParFi for any ourrene i of an update of the internal funtion F.About Higher Order Logi.We hose to translate the �rst order theory whih haraterizes runs of an ASM diretly as a �rst ordertheory in PVS. Thus we do not bene�t from the full logi of PVS (whih is a Higher Order Logi). Weould use funtionals (for the de�nition of limits) and axiom shemes to translate the general theory of runsparametrized by some enoding of the ASM. The proofs of properties of a spei� ASM would not be madeeasier, but the generated theory would be shorter and far more elegant (2-page theory instead of a 9-pageone). Moreover, we ould onsider to try and derive our lemmas from the axioms in PVS (sine FOTL isundeidable, the suess of suh an attempt depends on the lemmas). In fat, we hose to restrit ourselvesto �rst order theories beause it is the only ommon part for a variety of existing provers.3.3 Generating a PVS theoryPVS.PVS is a proof heker with some failities of theorem prover, see [PVS℄. It permits to introdue rihly typedlogi syntax of any order. PVS has a type heker that is very useful. There is some number basi strategiesand a limited language to write down user's strategies. The interation with the user is well done that makesthe system a rather eÆient proof heker. There are inorporated deision algorithms, automati rewritingand other proedures.The resulting �le of our translation is a PVS theory whih has the following form:ASM : THEORYBEGINIMPORTING Environment% Signature% Definitions% Axioms and LemmasEND ASMIn the signature part, we only delare funtions whih are exported by the ASM (whih follow the keywordexport), the other funtions should be delared in the theory \Environment".12

4 A Case Study: Veri�ation of the Generalized Railroad Cross-ing ProblemIn this setion we give the main steps of a PVS proof of (Safety) for GRCP.4.1 PVS Proof of Safety for the GRCPThe PVS heked proof is based on three lemmas (InCrArr), (ArrDL) and (NotSfDirCl).Lemma (InCrArr) says that if a train is in the rossing at time t then there exists a time t1 � dminbefore t suh that this train was arriving at t1 and remained in the zone of ontrol during the period [t1; t℄.Lemma (ArrDL) expresses the fat that if a train arrives at time t on trak x, and remains in the zoneof ontrol during a period [t; t1℄, then there is no deadline for x at time t but on the interval (t; t1℄, there isa deadline for x equal to t+WT .Lemma (NotSfDirCl) says that if during a period [t; t1℄ with t < t1 it is not safe to open (from the pointof view of the algorithm) then during the period (t; t1℄ there is a ommand to lose the gate.As shown by the lemmas introdued, an important event is the arrival of a train on some trak x at timemoment t, this event an be expressed as an FOTL formula Arrive(t; x).The proof of eah lemma was heked with the help of PVS. The omplete proof is less than 4-page, it isgiven in Appendix E. As an illustration, we ompare a sketh of our hand proof of (Safety) that uses theabove lemmas and the orresponding PVS proof.Remind that (Safety) means8t (InCrÆ(t)! GtClsdÆ(t)).Hand Proof of Safety.(Sf0) �Env ontains an axiom (dIneq): 0 < dlose < dmin ^ 0 < dopen that we will use.(Sf1) Fix a time moment t1 and suppose InCrÆ(t1), our goal is to proveGtClsdÆ(t1).(Sf2) From environment formulas (ClsClsd) and (InCr) given at the end of setion 2.1 (using basi �rst orderproof searh onsiderations) we redue our goal to � t1 � dlose ^ 8� 2 (t1 � dlose; t1℄:DirOpÆ(�) �.(Sf3) Applying Lemma (InCrArr) at time t1 we get that there is some trak x0 and some time t2 suh that(Sf3.1): t2 � t1 � dmin,(Sf3.2): Arrives(t2; x0) and(Sf3.3): 8� 2 [t2; t1℄CmgÆ(�; x0).(Sf4) Applying Lemma (ArrDL) for t1; x0; t2 we get8 � 2 (t2; t1℄ (:NoDLÆ(�; x0) ^DLÆ(�; x0) = t2 +WT)(Sf5) The �rst part of our goal stated in (Sf2), i. e. t1 � dlose, follows from (Sf3.1) and axiom (dIneq)mentioned in (Sf0).(Sf6) To prove the seond part of the goal (Sf2) we apply Lemma (NotSfDirCl) for t1 � dlose; t1 and get� t1 � dlose < t1 ^ 8� 2 [t1 � dlose; t1℄: \SafeToOpen(�) �! 8� 2 (t1 � dlose; t1℄:DirOpÆ(�).(Sf7) To �nish the proof of goal (Sf2) it is enough to prove(Sf7.1): t1 � dlose < t1 and(Sf7.2): 8� 2 [t1 � dlose; t1℄: \SafeToOpen(�).(Sf8) If we expand the de�nition of \SafeToOpen formula (Sf7.2) beomes8� 2 [t1 � dlose; t1℄ 9x � CmgÆ(�; x) ^ :NoDLÆ(�; x) ^ CT Æ(�) � DLÆ(�; x) �.13

(Sf9) Let �1 2 [t1 � dlose; t1℄. We are to prove:9x � CmgÆ(�; x) ^ :NoDLÆ(�; x) ^ CT Æ(�) � DLÆ(�; x) �.(Sf10) To prove (Sf9) it is enough to prove� CmgÆ(�1; x0) ^ :NoDLÆ(�1; x0) ^ CT Æ(�1) � DLÆ(�1; x0)) �.(Sf11) Instantiating (Sf3.3) and (Sf4) with �1 and using (dIneq) we dedue from the de�nition of CT Æ thedesired result.PVS Proof of Safety.We briey omment PVS ommands and strategies used below: SKOSIMP is a skolemization followed bya disjuntive simpli�ation, GRIND is a ath-all strategy used to automatially omplete a proof branh,GROUND is a less powerful ommand whih invokes propositional simpli�ation and deision proedures,APPLY LEMMA is a strategy (its de�nition is given in Appendix E.1) we have written whih permits toapply some lemma of the form 8X(�(X)! (X)), instantiating it, and then splitting it.Numbers in square brakets are added by us to show the orrespondene between hand-made proof aboveand the PVS proof below.;;; Proof for formula verif.Safety(""[0℄(APPLY_LEMMA "dIneq" NIL)[1℄(SKOSIMP*)[2℄(APPLY_LEMMA "InCrArr" ("t!1"))(("1"[3℄ (APPLY_LEMMA "ClsClsd" ("t!1"))(("1" (GRIND))("2"(SKOSIMP*)[4℄ (APPLY_LEMMA "ArrDL" ("t3!1" "t!1" "x!1"))(("1"[6℄ (LEMMA "NotSfDirCl")(INST -1 "t!1-dlose" "t!1")(("1"[7℄ (CASE "(FORALL tau:((t!1 - dlose <= tau AND tau <= t!1) =>SafeToOpen(tau) = FALSE))")(("1" (GRIND))("2"[8℄ (EXPAND "SafeToOpen")[9℄ (SKOSIMP 1)[10℄ (INST -3 "x!1")[11℄ (INST -6 "tau!2")(INST -11 "tau!2")(GRIND))))[5℄ ("2" (ASSERT))))("2" (GROUND)))))) ConlusionThe result presented in this paper shows that a rather omplete logi based veri�ation of real-time systemsis feasible and that this approah has quite visible advantages with respet to other ones. To make thistehnique more pratial we are developing proof searh strategies that onsiderably augment the automatedpart of the proof searh. Besides that we plan to extend our approah to other algorithm spei�ationlanguages (in partiular, fragments of programming languages) and to use more powerful logis (seondorder and with probability operator) that permit to treat riher lasses of veri�ation problems.
14

Referenes[AH98℄ M. Arher and C. Heitmeyer. Mehanial veri�ation of timed automata: A ase study. Teh-nial Report 5546{98{8180, University Paris-12, Department of Informatis, Naval ReserahLaboratory, Washington, 1998. NRL Memorandum Report.[BS97℄ D. Beauquier and A. Slissenko. On semantis of algorithms with ontinuous time. TehnialReport 97{15, Revised version., University Paris 12, Department of Informatis, 1997. Availableat http://www.ees.umih.edu/gasm/.[BS00℄ D. Beauquier and A. Slissenko. A �rst order logi for spei�ation of timed algorithms: Basiproperties and a deidable lass. 36 pages. To appear in Annals of Pure and Applied Logi.,2000.[CGP99℄ E. Clarke, O. Grumberg, and D. Peleg. Model Cheking. MIT Press, Boston, MA., 1999.[GH96℄ Y. Gurevih and J. Huggins. The railroad rossing problem: an experiment with instanta-neous ations and immediate reations. In H. K. Buening, editor, Computer Siene Logis,Seleted papers from CSL'95, pages 266{290. Springer-Verlag, 1996. Let. Notes in Comput.Si., vol. 1092.[Gur95℄ Y. Gurevih. Evolving algebra 1993: Lipari guide. In E. B�orger, editor, Spei�ation andValidation Methods, pages 9{93. Oxford University Press, 1995.[HL94℄ C. Heitmeyer and N. Lynh. The generalized railroad rossing: a ase study in formal veri�ationof real-time systems. In Pro. of Real-Time Systems Symp., San Juan, Puerto Rio. IEEE, 1994.[HL96℄ C. Heitmeyer and N. Lynh. Formal veri�ation of real-time systems using timed automata.In C. Heitmeyer and D. Mandrioli, editors, Formal Methods for Real-Time Computing, pages83{106. John Wiley & Sons, 1996.[HM96℄ C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Computing, volume 5of Trends in Software. John Wiley & Sons, 1996.[Ler00℄ X. Leroy et al. The Objetive Caml system release 3.00. Doumentation and user 's manual.INRIA, April 2000. ftp://ftp.inria.fr/lang/aml-light/oaml-3.00-refman.ps.gz.[MMP+96℄ D. Mandrioli, A. Morzenti, M. Pezz�e, P. San Pietro, and S. Silva. A Petri net and logi approahto the spei�ation and veri�ation of real-time systems. In C. Heitmeyer and D. Mandrioli,editors, Formal Methods for Real-Time Computing, pages 135{165. John Wiley & Sons, 1996.[Pau94℄ L. C. Paulson. Isabelle. A generi Theorem Prover. Springer-verlag, 1994. Let. Notes inComput. Si., vol. 828.[PVS℄ PVS. WWW site of PVS papers. http://www.sl.sri.om/sri-sl-fm.html.

15

AppendiesA Library of formulas deduible from �Runs� The set of time moments t when some guard is false is an open set:OpnNoGk(t; !)=df � :\Gk(!)(t) ! 9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! :\Gk(!)(�)) � �OpnNoGk =df 8t8!OpnNoGk(t; !)We have the following property: k̂ OpnNoGk :� Guards are pointwise : PointWiseGk(t; !)=df �\Gk(!)(t) !9 t1t2 � Neib(t1; t; t2) ^ 8 � (Neib(t1; �; t2) ! (� = t _ :\Gk(!)(�))) � �PointWiseGk=df 8t8!PointWiseGk(t; !)We have: k̂ PointWiseGk:� If some guard related to the internal funtion f is true at t, f is updated in aording with the updaterule of this guard at the right of t.UpDateLof (t; !)=df k̂2If �\Gk(!)(t) ! ^v2Wk; Fun(v)=f LimPlusdv(!)(t; \�k;v(!)(t)) �UpDateLo(t)=df 8! ^f2VIntrn UpDateLof (t; !)We have:8 t UpDateLo(t):� A guard annot be true on an open interval:NotIntGk(t; !)=df 8 t1 � t < t1 ! :(8 � 2 (t; t1) Gk(�; !) �NotIntGrd(t)=df 8! k̂ NotIntGk(t; !)We have8 t NotIntGrd(t):� If an internal funtion f has not the same value in t and t0, there is a �rst moment between t and t0 whenit hanges its value:Changef (t;X)=df _k2If \Gk(!)(t) ^ 9 y (LimMoins[f(X)(t; y) ^ y 6= fÆ(t;X))
i

FirstChangef (t; t0; X)=df (t < t0 ^ fÆ(t;X) 6= fÆ(t0; X)) !(9 t" 2 [t; t0)(Changef (t"; X) ^ 8 � 2 [t; t") k̂2If 8!:\Gk(!)(�))We have : Vf2VIntrn 8tt0 8X 2 dom(f) FirstChangef (t; t0; X).� If an internal funtion f has not the same value in t and t0, there is a last moment between t and t0 whenit hanges its value: LastChangef(t; t0; X)=df (t < t0 ^ fÆ(t;X) 6= fÆ(t0; X)) !(9 t" 2 [t; t0)(Changef (t"; X) ^ 8 � 2 (t"; t0) k̂2If 8!:\Gk(!)(�))

ii

B Conrete syntax of an input �le (ASM) for the translatorprog ::= "Signature" ident del-list def-body export-listdel-list ::= "End"| "Internal" ident var-list "End"| "Stati" ident var-list internal-list| del del-listinternal-list ::= "End"| "Internal" ident var-list "End"export-list ::= "End"| "Export" ident var-list "End"del ::= ident ":" ident type| string ":" ident typevar-list ::= ";"| "," ident var-listtype ::= "->" ident ";"| "*" ident type| ";"def-body ::= "Variables" typed-var var-list def-list body "EndRepeat"| "Define" def-list body "EndRepeat"| "Repeat" body "EndRepeat"typed-var ::= "Define"| del typed-vardef-list ::= "Repeat"| definition ";" def-listdefinition ::= term ":" ident "=" termbody ::= "Forall" ident "in" ident "InParallelDo" if-list "EndForall"| "InParallelDo" if-listif-list ::= "EndDo"| "If" if if-listif ::= term "Then" assign-listassign-list ::= "EndIf"| assign ";" assign-listassign ::= term ":=" termterm-list ::= ")"| "," term term-list| op term op-list
iii

term ::= int| float| ident arg-list| "(" term op-list| "not" term| "forall" ident term| "exists" ident termop-list ::= ")"| op term op-listarg-list ::= "(" term term-listop ::= "AND" | "OR" | "=>" | "=" | "<" | ">" | "<=" | ">="| "*" | "/" | "+" | "-"

iv

C The Railroad Crossing Problem ASM (input �le for the trans-lator)Signature RailroadWT : time;dlose : time;dmin : time;DL : Traks -> time;NoDL : Traks -> bool;Cmg : Traks -> bool;DirOp : bool;SafeToOpen : bool;Init : bool;Stati WT, dmin, dlose;Internal NoDL, DL, DirOp;EndVariablesx : Traks;DefineWT : time = (dmin - dlose);SafeToOpen : bool = forall x (not Cmg(x) or NoDL(x) or CT < DL(x));Init : bool = forall x (DirOp and NoDL(x) and DL(x) = 0);RepeatForall x in TraksInParallelDoIf (Cmg(x) and NoDL(x)) Then DL(x) := (CT +WT); NoDL(x) := false;EndIfIf (not Cmg(x) and not NoDL(x)) Then NoDL(x) := true;EndIfIf (DirOp and not SafeToOpen) Then DirOp := false;EndIfIf (not DirOp and SafeToOpen) Then DirOp := true;EndIfEndDoEndForallEndRepeatExport DL, NoDL;End
v

D PVS Theories for the Generalized Railroad Crossing ProblemThere are four theories, deftime whih ontains the de�nitions related to time, Environment whih ontainsthe spei�ations of the environment and imports deftime, Railroad whih is automatially produed fromthe ASM by our translator program modeling the ontrol system and whih imports Environment and atlast verif whih imports Railroad and ontains the lemmas to prove.D.1 Theory: deftimedeftime: theorybegintime: type = ft: real | t � 0gt, t1, t2, a, b, : var time;CT(t): time = tNeigh(t1, t, t2): bool = (t = 0 ^ t1 = 0 ^ t2 > 0) _ (t1 < t ^ t < t2)P: var [time ! bool℄union int: lemma(8 t: ((a � t ^ t � b))P(t)) ^ (8 t: (b�t^t�)) P(t)) ^ (a �b ^ b �)))(8 t: (a � t ^ t �)) P(t))end deftimeD.2 Theory: EnvironmentEnvironment: theorybeginimporting deftimeTraks: type;dlose: time;dmin: time;InCr, GtClsd, GtOpnd: [time ! bool℄Cmg: [time, Traks ! bool℄;DirOp: [time ! bool℄;t, t0, t1, t2, t3, �: var time;x: var Traks;dopen: time;LimMinusCmg(t: time, x1: Traks, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t)) Cmg(t3, x1) = y))))
vi

dIneq: axiom dlose > 0 ^ dmin > 0 ^ dmin > dlose ^ dopen > 0TrStInit: axiom Cmg(0, x) = falseGtStInit: axiom GtOpnd(0) = trueGtSt: axiom : (GtOpnd(t) = true ^ GtClsd(t) = true)CrCm: axiomInCr(t) = true)(t � dmin ^(9 x: 8 �: (t� dmin � � ^ � � t)) Cmg(�, x) = true))OpnOpnd: axiom(t � dopen ^ (8 �: ((� > t� dopen ^ � � t)) DirOp(�) = true))))GtOpnd(t) = trueClsClsd: axiom(t � dlose ^ (8 �: ((� > t� dlose ^ � � t)) DirOp(�) = false))))GtClsd(t) = trueComing: axiomCmg(t, x) = true)(9 t0:(0 < t0 ^t0 � t ^(8 �: (t0 � � ^ � � t)) (Cmg(�, x) ^ LimMinusCmg(t0, x, false))) ^(9 t1:(t1 > t ^(8 �: (((Neigh(t, �, t1))) Cmg(�, x) = true)))))))end Environment

vii

D.3 Theory: RailroadThis theory is generated automatially by our translator from the ASM spei�ation of Appendix C.%%% Parsing : ok%%% Type Cheking :%%% Type error in de�nition WT=(dmin - dlose)%%% Stati : x, WT, dmin, dlose,%%% Internal : NoDL, DL, DirOp,Railroad: theorybeginimporting Environment% dlose : time;% dmin : time;DL: [time, Traks ! time℄;NoDL: [time, Traks ! bool℄;% Cmg : [time, Traks -> bool℄;% DirOp : [time -> bool℄;x: var Traks;t, t1, t2, t3: var time;WT: time = (dmin� dlose)SafeToOpen(t): bool =(8 x: (: Cmg(t, x) _ (NoDL(t, x) _ CT(t) < DL(t, x))))Init(t): bool = (8 x: (DirOp(t) ^ (NoDL(t, x) ^ DL(t, x) = 0)))Grd1(t: time, x: Traks): bool = (Cmg(t, x) ^ NoDL(t, x))Grd2(t: time, x: Traks): bool = (: Cmg(t, x) ^ : NoDL(t, x))Grd3(t: time, x: Traks): bool = (DirOp(t) ^ : SafeToOpen(t))Grd4(t: time, x: Traks): bool = (: DirOp(t) ^ SafeToOpen(t))NoGrdsNoDL(t: time, x: Traks): bool = (: Grd1(t, x) ^ : Grd2(t, x))NoGrdsDL(t: time, x: Traks): bool = : Grd1(t, x)NoGrdsDirOp(t: time, x: Traks): bool = (: Grd3(t, x) ^ : Grd4(t, x))
viii

LimMinusNoDL(t: time, x1: Traks, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t)) NoDL(t3, x1) = y))))LimMinusDL(t: time, x1: Traks, y: time): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t)) DL(t3, x1) = y))))LimMinusDirOp(t: time, y: bool): bool =(9 t1: (t1 < t ^ (8 t3: ((t1 � t3 ^ t3 < t)) DirOp(t3) = y))))LimPlusNoDL(t: time, x1: Traks, y: bool): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1)) NoDL(t3, x1) = y))))LimPlusDL(t: time, x1: Traks, y: time): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1)) DL(t3, x1) = y))))LimPlusDirOp(t: time, y: bool): bool =(9 t1: (t1 > t ^ (8 t3: ((t < t3 ^ t3 � t1)) DirOp(t3) = y))))ChangeNoDL(t: time, x1: Traks): bool =((9 x: (Grd1(t, x) _ Grd2(t, x))) ^(9 (y: bool): (LimMinusNoDL(t, x1, y) ^ : y = NoDL(t, x1))))ChangeDL(t: time, x1: Traks): bool =((9 x: Grd1(t, x)) ^(9 (y: time): (LimMinusDL(t, x1, y) ^ : y = DL(t, x1))))ChangeDirOp(t: time): bool =((9 x: (Grd3(t, x) _ Grd4(t, x))) ^(9 (y: bool): (LimMinusDirOp(t, y) ^ : y = DirOp(t))))NoChangeNoDL(t: time, x1: Traks): bool =(8 x: ((x = x1) : Grd1(t, x)) ^ (x = x1) : Grd2(t, x))))NoChangeDL(t: time, x1: Traks): bool = (8 x: (x = x1) : Grd1(t, x)))NoChangeDirOp(t: time): bool =(8 x: ((true) : Grd3(t, x)) ^ (true) : Grd4(t, x))))SomeGrd(t: time, x: Traks): bool =(((Grd1(t, x) _ Grd2(t, x)) _ Grd3(t, x)) _ Grd4(t, x))NoGrds(t: time): bool =(8 x:(((: Grd1(t, x) ^ : Grd2(t, x))^ : Grd3(t, x)) ^ : Grd4(t,x)))Init: axiom Init(0)OpnNoG1: axiom(: Grd1(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) : Grd1(t3, x))))))OpnNoG2: axiom(: Grd2(t, x)) ix

(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) : Grd2(t3, x))))))OpnNoG3: axiom(: Grd3(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) : Grd3(t3, x))))))OpnNoG4: axiom(: Grd4(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) : Grd4(t3, x))))))PointWise1: axiom(Grd1(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : Grd1(t3, x)))))))PointWise2: axiom(Grd2(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : Grd2(t3, x)))))))PointWise3: axiom(Grd3(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : Grd3(t3, x)))))))PointWise4: axiom(Grd4(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : Grd4(t3, x)))))))NoGrdNoChangeNoDL: axiom(8 t1:(t1 > t)((8 t3: ((t � t3 ^ t3 < t1)) (8 x: NoGrdsNoDL(t3, x)))))(8 t3:((t < t3 ^ t3 � t1))(8 (x1: Traks): NoDL(t, x1) = NoDL(t3, x1)))))))NoGrdNoChangeDL: axiom(8 t1:(t1 > t)((8 t3: ((t � t3 ^ t3 < t1)) (8 x: NoGrdsDL(t3, x)))))(8 t3:((t < t3 ^ t3 � t1)) x

(8 (x1: Traks): DL(t, x1) = DL(t3, x1)))))))NoGrdNoChangeDirOp: axiom(8 t1:(t1 > t)((8 t3: ((t � t3 ^ t3 < t1)) (8 x: NoGrdsDirOp(t3, x)))))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t) = DirOp(t3))))))UpDateNoDL1: axiom(Grd1(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsNoDL(t3, x)))))(8 t3: ((t < t3 ^ t3 � t1)) NoDL(t3, x) = false))))))UpDateNoDL2: axiom(Grd2(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsNoDL(t3, x)))))(8 t3: ((t < t3 ^ t3 � t1)) NoDL(t3, x) = true))))))UpDateDL1: axiom(Grd1(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDL(t3, x)))))(8 t3:((t < t3 ^ t3 � t1))DL(t3, x) = (CT(t) +WT)))))))UpDateDirOp1: axiom(Grd3(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDirOp(t3, x)))))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t3) = false))))))UpDateDirOp2: axiom(Grd4(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDirOp(t3, x)))))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t3) = true))))))NoUpDateNoDL1: axiom(NoGrds(t) _(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsNoDL(t3, x)))))(8 (x1: Traks):(NoChangeNoDL(t3, x1))(8 t3:((t < t3 ^ t3 � t1)) xi

(8 (x1: Traks):NoDL(t, x1) = NoDL(t3, x1))))))))))NoUpDateNoDL2: axiom(NoGrds(t) _(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsNoDL(t3, x)))))(8 (x1: Traks):(NoChangeNoDL(t3, x1))(8 t3:((t < t3 ^ t3 � t1))(8 (x1: Traks):NoDL(t, x1) = NoDL(t3, x1))))))))))NoUpDateDL1: axiom(NoGrds(t) _(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDL(t3, x)))))(8 (x1: Traks):(NoChangeDL(t3, x1))(8 t3:((t < t3 ^ t3 � t1))(8 (x1: Traks): DL(t, x1) = DL(t3, x1))))))))))NoUpDateDirOp1: axiom(NoGrds(t) _(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDirOp(t3, x)))))(NoChangeDirOp(t3))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t) = DirOp(t3))))))))NoUpDateDirOp2: axiom(NoGrds(t) _(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) (8 x: NoGrdsDirOp(t3, x)))))(NoChangeDirOp(t3))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t) = DirOp(t3))))))))LeftOpnNoDL: axiom(t > 0)(9 t1:(t1 < t ^(8 t3:((t1 < t3 ^ t3 < t))(8 (x1: Traks): NoDL(t, x1) = NoDL(t3, x1)))))))LeftOpnDL: axiom(t > 0)(9 t1:(t1 < t ^ xii

(8 t3:((t1 < t3 ^ t3 < t))(8 (x1: Traks): DL(t, x1) = DL(t3, x1)))))))LeftOpnDirOp: axiom(t > 0)(9 t1:(t1 < t ^ (8 t3: ((t1 < t3 ^ t3 < t)) DirOp(t) = DirOp(t3))))))NotIntG1: lemma(8 t1: (t < t1) : ((8 t3: ((t < t3 ^ t3 < t1)) Grd1(t3, x))))))NotIntG2: lemma(8 t1: (t < t1) : ((8 t3: ((t < t3 ^ t3 < t1)) Grd2(t3, x))))))NotIntG3: lemma(8 t1: (t < t1) : ((8 t3: ((t < t3 ^ t3 < t1)) Grd3(t3, x))))))NotIntG4: lemma(8 t1: (t < t1) : ((8 t3: ((t < t3 ^ t3 < t1)) Grd4(t3, x))))))OpnNoGrds: lemma(NoGrds(t))(9 t1, t2:(Neigh(t1, t, t2) ^ (8 t3: (Neigh(t1, t3, t2)) NoGrds(t3))))))PointWiseNoGrds1: lemma(Grd1(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds2: lemma(Grd2(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds3: lemma(Grd3(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : NoGrds(t3)))))))PointWiseNoGrds4: lemma(Grd4(t, x))(9 t1, t2:(Neigh(t1, t, t2) ^(8 t3: (Neigh(t1, t3, t2)) (t = t3 _ : NoGrds(t3)))))))FirstChangeNoDL: lemma(8 (x1: Traks):((t < t1 ^ : NoDL(t, x1) = NoDL(t1, x1)))(9 t2: xiii

((t � t2 ^ t2 < t1) ^(ChangeNoDL(t2, x1) ^(8 t3:((t � t3 ^ t3 < t2))(8 x: (8 x: NoGrdsNoDL(t3, x))))))))))FirstChangeDL: lemma(8 (x1: Traks):((t < t1 ^ : DL(t, x1) = DL(t1, x1)))(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDL(t2, x1) ^(8 t3:((t � t3 ^ t3 < t2))(8 x: (8 x: NoGrdsDL(t3, x))))))))))FirstChangeDirOp: lemma((t < t1 ^ : DirOp(t) = DirOp(t1)))(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDirOp(t2) ^(8 t3:((t � t3 ^ t3 < t2))(8 x: (8 x: NoGrdsDirOp(t3, x)))))))))LastChangeNoDL: lemma(8 (x1: Traks):((t < t1 ^ : NoDL(t, x1) = NoDL(t1, x1)))(9 t2:((t � t2 ^ t2 < t1) ^(ChangeNoDL(t2, x1) ^(8 t3:((t2 < t3 ^ t3 < t1))(8 x: (8 x: NoGrdsNoDL(t3, x))))))))))LastChangeDL: lemma(8 (x1: Traks):((t < t1 ^ : DL(t, x1) = DL(t1, x1)))(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDL(t2, x1) ^(8 t3:((t2 < t3 ^ t3 < t1))(8 x: (8 x: NoGrdsDL(t3, x))))))))))LastChangeDirOp: lemma((t < t1 ^ : DirOp(t) = DirOp(t1)))(9 t2:((t � t2 ^ t2 < t1) ^(ChangeDirOp(t2) ^(8 t3:((t2 < t3 ^ t3 < t1))(8 x: (8 x: NoGrdsDirOp(t3, x)))))))))
xiv

UpDateLoNoDL1: lemma (Grd1(t, x)) LimPlusNoDL(t, x, false))UpDateLoNoDL2: lemma (Grd2(t, x)) LimPlusNoDL(t, x, true))UpDateLoDL1: lemma (Grd1(t, x)) LimPlusDL(t, x, (CT(t) +WT)))UpDateLoDirOp1: lemma (Grd3(t, x)) LimPlusDirOp(t, false))UpDateLoDirOp2: lemma (Grd4(t, x)) LimPlusDirOp(t, true))UpDateParNoDL1: lemma(Grd1(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) NoGrdsNoDL(t3, x))))(8 t3: ((t < t3 ^ t3 � t1)) NoDL(t3, x) = false))))))UpDateParNoDL2: lemma(Grd2(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) NoGrdsNoDL(t3, x))))(8 t3: ((t < t3 ^ t3 � t1)) NoDL(t3, x) = true))))))UpDateParDL1: lemma(Grd1(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) NoGrdsDL(t3, x))))(8 t3:((t < t3 ^ t3 � t1))DL(t3, x) = (CT(t) +WT)))))))UpDateParDirOp1: lemma(Grd3(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) NoGrdsDirOp(t3, x))))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t3) = false))))))UpDateParDirOp2: lemma(Grd4(t, x))(8 t1:(t1 > t)((8 t3: ((t < t3 ^ t3 < t1)) NoGrdsDirOp(t3, x))))(8 t3: ((t < t3 ^ t3 � t1)) DirOp(t3) = true))))))end Railroad
xv

D.4 Theory: verifverif: theorybeginimporting Railroadt, t0, t1, t2, t3, �: var time;x: var Traks;Arrives(t, x): bool = Cmg(t, x) ^ LimMinusCmg(t, x, false)LemArr: lemma Arrives(t, x)) t > 0InCrArr: lemmaInCr(t))(9 t3:9 x:(t3 � t� dmin ^Arrives(t3, x) ^ (8 �: ((t3 � � ^ � � t)) Cmg(�, x)))))ArrDL: lemma(Arrives(t, x) ^ t < t3 ^ (8 �: ((t � � ^ � � t3)) Cmg(�, x)))))(NoDL(t, x) ^(8 �:((t < � ^ � � t3))(: NoDL(�, x) ^ DL(�, x) = t+WT))))NotSfDirCl: lemma(t < t3 ^ (8 �: ((t � � ^ � � t3)) SafeToOpen(�) = false))))(8 �: ((t < � ^ � � t3)) DirOp(�) = false))Safety: theorem InCr(t) = true) GtClsd(t) = trueend verif

xvi

E PVS Proof of the Veri�ation for the Generalized RailroadCrossing ProblemHere we give the strategy APPLY LEMMA and the omplete proof of (Safety) whih onsists of proofs of 3lemmas: InCrArr, ArrDL, NotSfDirCl and at last of that of (Safety).E.1 A Strategy(defstep apply_lemma (lem args)(let ((x(ons 'inst(ons -1 args))))(then (lemma lem) x (split -1)))" " "applying some lemma to some argument")E.2 Proof of Lemma InCrArr;;; Proof for formula verif.InCrArr;;; developed with old deision proedures(""(SKOSIMP 1)(APPLY_LEMMA "CrCm" ("t!1"))(("1"(FLATTEN)(SKOSIMP -2)(APPLY_LEMMA "Coming" ("t!1-dmin" "x!1"))(("1"(SKOLEM -1 "t1")(INST 1 "t1" "x!1")(FLATTEN)(CASE "FORALL tau:(t1 <= tau AND tau <= t!1 - dmin)=>(Cmg(tau,x!1))")(("1"(CASE "FORALL tau: ((t1 <= tau AND tau <= t!1) => Cmg(tau, x!1))")(("1"(SPLIT 1)(("1" (PROPAX))("2" (INST -1 "t1") (EXPAND "Arrives") (GRIND))("3" (PROPAX))))("2"(MERGE-FNUMS (-1 -7))(SKOSIMP 1)(APPLY_LEMMA "union_int"("lambda (tau:time): Cmg(tau,x!1)" "t1" "t!1-dmin" "t!1"))(("1" (GRIND)) ("2" (GRIND)) ("3" (GROUND))))))("2" (SKOSIMP 1) (INST -5 "tau!1") (GROUND))))("2" (GRIND)) ("3" (GRIND))))("2" (GROUND))))E.3 Proof of Lemma ArrDL;;; Proof for formula verif.ArrDL;;; developed with new deision proedures(""(SKOSIMP 1)(CASE "not NoDL(t!1,x!1)")(("1"(APPLY_LEMMA "LeftOpnNoDL" ("t!1"))(("1" xvii

(APPLY_LEMMA "LemArr" ("t!1" "x!1"))(EXPAND "Arrives")(FLATTEN)(EXPAND "LimMinusCmg")(SKOSIMP -2)(SKOSIMP -5)(NAME "maximum" "if t1!2> t1!1 then t1!2 else t1!1 endif")(APPLY_LEMMA "NotIntG2" ("maximum" "x!1" "t!1"))(("1" (SKOSIMP 1) (INST -6 "t3!2") (INST -9 "t3!2") (GRIND))("2" (GRIND))))("2" (GRIND))))("2"(APPLY_LEMMA "UpDateLoNoDL1" ("t!1" "x!1"))(("1"(APPLY_LEMMA "UpDateLoDL1" ("t!1" "x!1"))(("1"(CASE "forall tau:((t!1<tau AND tau <t3!1)=>(NoGrdsNoDL(tau,x!1) AND NoGrdsDL(tau,x!1)))")(("1"(SPLIT 1)(("1" (PROPAX))("2"(SKOSIMP 1)(SPLIT 1)(("1"(APPLY_LEMMA "UpDateParNoDL1" ("t!1" "x!1"))(("1"(INST -1 "t3!1")(SPLIT -1)(("1" (GRIND))("2" (SKOSIMP 1) (INST -6 "t3!2") (GRIND))("3" (GROUND))))("2" (GRIND))))("2"(APPLY_LEMMA "UpDateParDL1" ("t!1" "x!1"))(("1"(INST -1 "t3!1")(SPLIT -1)(("1" (INST -1 "tau!1") (GRIND))("2" (SKOSIMP 1) (INST -5 "t3!2") (GRIND))("3" (GROUND))))("2" (GRIND))))))))("2"(SKOSIMP 1)(INST-CP -8 "tau!1")(EXPAND "NoGrdsNoDL")(EXPAND "NoGrdsDL")(CASE "(NOT Grd1(tau!1, x!1) AND NOT Grd2(tau!1, x!1))")(("1" (GRIND))("2"(SPLIT 1)(("1"(APPLY_LEMMA "LeftOpnNoDL" ("tau!1"))(("1"(SKOSIMP -1)(NAME "borne" "if t1!1>t!1 then t1!1 else t!1 endif")(APPLY_LEMMA "NotIntG1" ("borne" "x!1" "tau!1"))(("1"(SKOSIMP 1)(INST -5 "t3!2") xviii

(INST -14 "t3!2")(GRIND))("2" (GRIND))))("2" (GROUND))))("2" (GRIND))))))))("2" (GRIND))))("2" (GRIND))))))E.4 Proof of Lemma NotSfDirCl;;; Proof for formula verif.NotSfDirCl;;; developed with old deision proedures(""(SKOSIMP*)(APPLY_LEMMA "LeftOpnDirOp" ("tau!1"))(("1"(SKOSIMP -1)(NAME "lim" "if t1!1>t!1 then t1!1 else t!1 endif")(NAME "lim1" "(lim+tau!1)/2")(CASE "DirOp(lim1)")(("1"(CASE "SafeToOpen(lim1)=FALSE")(("1"(EXPAND " SafeToOpen")(SKOSIMP 1)(APPLY_LEMMA "UpDateLoDirOp1" ("lim1" "x!1"))(("1"(EXPAND "LimPlusDirOp")(SKOSIMP -1)(NAME "sup" "if t1!2>tau!1 then tau!1 else t1!2 endif")(INST -3 "sup")(GRIND))("2" (GRIND))))("2" (INST -7 "lim1") (GRIND))))("2" (GRIND))))("2" (GROUND))))E.5 Proof of Safety;;; Proof for formula verif.Safety;;; developed with old deision proedures(""(APPLY_LEMMA "dIneq" NIL)(SKOSIMP*)(APPLY_LEMMA "InCrArr" ("t!1"))(("1"(APPLY_LEMMA "ClsClsd"("t!1"))(("1" (GRIND))("2"(SKOSIMP*)(APPLY_LEMMA "ArrDL" ("t3!1" "t!1" "x!1"))(("1"(LEMMA "NotSfDirCl")(INST -1 "t!1-dlose" "t!1")(("1"(CASE "(FORALL tau:((t!1 - dlose <= tau AND tau <= t!1) =>SafeToOpen(tau) = FALSE))")(("1" (GRIND))("2" xix

(EXPAND "SafeToOpen")(SKOSIMP 1)(INST -3 "x!1")(INST -6 "tau!2")(INST -11 "tau!2")(GRIND))))("2" (ASSERT))))("2" (GROUND))))))("2" (GROUND))))

xx

