
ON THE EXPRESSIVE POWER OF

THE LOOP LANGUAGE

TRISTAN CROLARD

LACL – University of Paris 12
61, avenue du Général de Gaulle
94010 Créteil Cedex, France
crolard@univ-paris12.fr

SAMUEL LACAS

Trusted Labs
5, rue du Bailliage

78000 Versailles, France
Samuel.Lacas@trusted-labs.fr

PIERRE VALARCHER

LIFAR – University of Rouen
Faculté des Sciences et des Techniques
76801 Saint Etienne du Rouvray, France

pierre.valarcher@univ-rouen.fr

Abstract. We define a translation of Meyer and Ritchie’s Loop language

into a subsystem of Gödel’s system T (with product types). Then we show

that this translation actually provides a lock-step simulation if a call-by-

value strategy is assumed for system T. Some generalizations and possible

applications are discussed.

1. Introduction

The Loop language has been introduced by Meyer and Ritchie in [11] and then
extensively studied in the literature (see for instance the textbooks by Davis and
Weyuker [5] or Calude [3]). Each Loop program only consists of assignment state-
ments and loop statements (which implement bounded iteration). Meyer and
Ritchie’s proved in [11] that Loop programs compute exactly the class PR of prim-
itive recursive functions. More precisely, they define a hierarchy of functions {Ln}
by counting the nesting of loops in Loop programs and prove that Ln $ Ln+1 and
PR=∪n∈N {Ln}.

Gödel’s system T is the extension of the simply typed λ-calculus with a type of
natural numbers and primitive recursion at all types. System T was first intro-
duced in logic [7, 16] where it was mainly used in proof-theoretic studies of Peano
arithmetic. An important result in this area states that functions on the natural
numbers that are definable in this system correspond exactly to functions that are
provably total in first-order Peano arithmetic (see for instance the survey [1]).
However, if we call T0 the restriction of system T to terms that contain only recur-
sors of type N , it is also well-known [1] that functions of type Nk → N that can be
computed by a term of T0 are exactly the primitive recursive functions.

The main contribution of this paper is the following. We define a translation of
the Loop language into call-by-value system T0 with product types and we prove
that this translation actually provides a lock-step simulation: each evaluation step
of a Loop program is mapped to one reduction step of the transformed program.

We would like to stress that although the λ-calculus is usually used to describe
the denotational semantics of programming languages, we exploit it here to for-
malize the operational semantics of the Loop language. Our approach in this
paper is thus closer to [6], where system T is used to give a formal semantics to
constructs found in (higher-order) programming languages. In particular, system T
is formulated here as a functional programming language with product types and a
call-by-value evaluation strategy. As usual for the λ-calculus, the formal semantics
is formulated as a contextual semantics (a set of reduction rules together with an
inductive definition of evaluation contexts).

1

The semantics of the Loop language is given by a transition relation defined
using Plotkin’s Structured Operational Semantics (SOS) [15]. Plotkin’s semantics is
the conventional framework for giving operational semantics to programming lan-
guages and an alternative to denotational semantics in proving compiler correct-
ness. A major benefit of a transition semantics over denotational semantics is that
it provides a natural measure of time-complexity, namely the number of steps
required to reach the final state.

The paper is organized as follows. Section 2 is devoted to the presentation of
our target functional language, namely Gödel’s system T with product types and a
call-by-value strategy. Our variant of the Loop language (syntax and semantics) is
presented in section 3 and the lock-step simulation is described in details in section
4. Some possible applications and related topics are discussed in section 5.

2. Call-by-value system T

In this section, we give the definition of system T with product types (tuples
and n-ary functions) and a constant-time predecessor operation. The rewriting
system is summarized in figure 1, where t[u1/x1, � , un/xn] denotes the usual cap-

Types
τ : : = N

τ1→ τ2

τ1×� × τn

Terms
t ::= x

| 0
| S(t)
| pred(t)
| t1 t2
| λ(x1,� , xn).t
| (t1,� , tn)
| rec(t1, t2, t3)

Values
v ::= x

| 0
| S(v)
| λ(x1,� , xn).t

Contexts
C[] ::= []

| C[] t

| v C[]
| S(C[])
| pred(C[])
| rec(C[], t2, t3)
| rec(v1, C[], t3)
| rec(v1, v2, C[])
| (v1,� , vi−1, C[], ti+1,� , tn)

Evaluation rules
C[pred(0)] C[0]

C[pred(S(v))] C[v]
C[rec(0, v2, v3)] C[v2]

C[rec(S(v1), v2, v3)] C[(v3 rec(v1, v2, v3) v1)]
C[λ(x1,� , xn).t (v1,� , vn)] C[t[v1/x1,� , vn/xn]]

Figure 1. Gödel’s system T

ture-avoiding substitution. Note that the reduction rules presented here implement
a weak call-by-value reduction strategy (since we do not reduce under an abstrac-
tion). We shall only consider well-typed terms, according to the type system in
figure 2. The resulting system has two important properties (see [6] for instance):
its terms are strongly normalizing and its rewriting rules enjoy the Church-Rosser
property.

2.1. Examples.

• rec(x2, x1, λy.λx.S(y)) computes the sum of (x1, x2) by induction on x2.

2 On the expressive power of the Loop language

x: τ ∈Γ

Γ⊢ x: τ

Γ⊢ t: τ Γ⊂Γ′

Γ′⊢ t: τ

Γ⊢ 0: N

Γ⊢ t: N

Γ⊢S(t): N

Γ⊢ t: N

Γ⊢pred(t): N

Γ⊢ t1: τ1 � Γ⊢ tn: τn

Γ⊢ (t1,� , tn): τ1×� × τn

Γ, x1: τ1,� , xn: τn⊢ t: σ

Γ⊢λ(x1,� , xn).t: (τ1×� × τn)→σ

Γ⊢ t: σ→ τ Γ⊢ u: σ

Γ⊢ t u : τ

Γ⊢ t1: N Γ⊢ t2: τ Γ⊢ t3: τ →N → τ

Γ⊢ rec(t1, t2, t3): τ

Figure 2. Type system

• rec(x1, x2, λy.λx.S(y)) computes the sum of (x1, x2) by induction on x1.

• (rec(x1, λy.S(y), λu.λx.λy.rec(y, (u S(0)), λw.λz.(u w))) x2) computes Ack-
ermann’s function on (x1, x2) (which is known not to be primitive recursive
[14]).

Remark 1. Let us define the degree ∂(τ) of a type τ inductively by ∂(N) = 0,
∂(σ → τ) = max(∂(σ) + 1, ∂(τ)) and ∂(τ1 × � × τn) = max (∂(τ1), � , ∂(τn)) and the
degree ∂(t) of a term t as the maximum degree of types τ such that rec(t1, t2, t3)
occurs in t with type τ . If Tn stands for the restriction of system T to terms with

degree less than n, it is well-known that functions of type Nk →N that can be rep-
resented by a term of T0 correspond exactly to primitive recursive functions. Note
that the outermost rec in the above definition of Ackermann’s function has type
N →N and thus has degree 1. Consequently this term belongs to T1.

2.2. A derived form.
Let the expression let (x1, � , xn) = u in t be an abbreviation for the redex

λ(x1, � , xn).t u. The following derived typing rule and evaluation rule can be
obtained:

Γ⊢u: (τ1×� × τn) Γ, x1: τ1,�xn: τn⊢ t: σ

Γ⊢ let (x1,� , xn)= u in t: σ

C[let (x1,� , xn) = (v1,� , vn) in t] C[t[v1/x1,� , vn/xn]]

Moreover, the following property holds:

Lemma 1. If u u′ then let (x1, � , xn) = u in t let (x1, � , xn) = u′ in t for
any term t.

Proof. Indeed, since let (x1,� , xn)= • in t is an evaluation context. �

3. The Loop language

The imperative language we consider is a minor syntactic variant of the Loop lan-
guage defined by Meyer and Ritchie in [11]. Variables (called registers in [11]) may
contain only natural numbers. The only atomic statements are assignments and the
control structures are sequences (lists of statements separated by semi-colons) and
loops (which implement bounded iteration). The formal syntax of Loop programs
is given in the following definition.

TRISTAN CROLARD, SAMUEL LACAS, PIERRE VALARCHER 3

Definition 1. The syntax of expressions e, commands c, bounds b, sequences s and
programs p are defined by the following grammar:

e :4 n̄ | x | x+ 1 | x− 1

c :4 x4 e

| for x4 1 to b {s}

| {s}

b :4 n̄ | x

s :4 ε | c; s

p :4 {s}

Metavariables x range over identifiers and n̄ over natural numbers literals (which
are the only values). The symbol ε denotes the empty sequence.

Remark 2. The symbol ε shall be omitted in concrete examples. For instance, the
empty block (which is a command) is denoted {}. Note also that for simplicity the
bound of a loop can only be a variable or a constant.

Example 1. The following simple program computes the sum of (x1, x2) (and
stores the result in variable r):
{

r4 x1;
for y4 1 to x2 {

r4 r + 1;
};

}

3.1. Operational semantics.

Following [8], the operational semantics of the Loop language is given by a
simple transition system. The following rules define a transition relation on config-
urations, where a configuration is either a value, a pair 〈e, µ〉 (respectively 〈c, µ〉)
consisting of an expression e (respectively a command c) and a store µ. For sim-
plicity, we assume that a store µ is itself represented as a pair (xG , nG) where xG is a
tuple of variables and nG is a tuple of natural numbers (of same length). Thus, a
store maps variables to natural numbers in the obvious way, and we write µ(x) for
the value of x in store µ, and µ[x4 n] for an update of the value of x in store µ.

Expressions.

〈xi + 1, µ〉→ µ(xi)+ 1 (1)

〈xi − 1, µ〉→ µ(xi) –̇ 1 (2)

Assignments.

〈{xi4 q̄ ; s}, µ〉→ 〈{s}, µ[xi4 q]〉 (3)

〈{xi4 xj; s}, µ〉→ 〈{s}, µ[xi4 µ(xj)]〉 (4)

〈e, µ〉→n

〈{xi4 e; s}, µ〉→ 〈{xi4 n̄ ; s}, µ〉
(5)

where e is neither a constant nor a variable.

Empty block.

〈{{}; s}, µ〉→ 〈{s}, µ〉 (6)

Sequence.
〈c, µ〉→ 〈c1, µ1〉

〈{c; s}, µ〉→ 〈{c1; s}, µ1〉
(7)

4 On the expressive power of the Loop language

where c is neither the empty block nor an assignment.

Loop.

〈for xi4 1 to e {s}, µ〉→ 〈{}, µ〉 (8)

where e is either the constant 0 or a variable xj and then µ(xj)= 0.

〈for xi4 1 to e {s}, µ〉→ 〈{for xi4 1 to q̄ {s}; xi4 q + 1; s}, µ〉 (9)

where e is either a constant q + 1 or a variable xj and then µ(xj)= q + 1.

Remark 3. In a loop of the form for xi 4 1 to xj {s}, both variables xi and xj

are allowed to be assigned in the body {s}. However, the bound xj is computed
once at the beginning of the loop. Moreover, although the loop index variable xi

can also be assigned within the loop, these assignments do not affect the value of
the variable at the beginning of the next loop iteration. The expected semantics of
the for-loop (as well as its termination) is thus enforced.

Remark 4. Note that if a variable b1 contains only boolean values 0 and 1, a loop
of the form for i 4 1 to b1 {s} corresponds to the conditional if b then {s}. The
control structure if b1 then {s1} else {s2} can then be simulated by the sequence
{b24 1; if b1 then {s1; b24 0}; if b2 then {s2}} where b2 is a fresh variable.

We are now able to define the semantics of a program (as usual →⋆ stands for
the reflexive and transitive closure of →).

Definition 2. Given an initial store µ, a program p evaluates to µ′ if and only if
〈p, µ〉→⋆ 〈{}, µ′〉

Remark 5. This semantics is deterministic since there is always at most one rule
that may be applied (depending on the environment and the shape of the pro-
gram). Moreover, the only case where no rule can be applied corresponds to the
final configuration (when the program amounts to an empty block).

4. Lock-step simulation

In this section, we show how to encode a Loop program as a λ-term of system T .
Then we prove that this encoding is such that the evaluation of a Loop program
runs in lock-step with the reduction of the transformed program.

4.1. Translation.
In order to distinguish the successor S (which is a constructor) from the suc-

cessor seen as an operation (whose evaluation should imply a reduction step), we
shall use the keyword succ as an abbreviation for λx.S(x) in the following defini-
tion:

Definition 3. The translation ⋆ of a Loop program with variables xG = (x1, � , xk)
into a term is defined by induction on expressions and commands as follows:

• n̄ ⋆ = Sn(0)

• xi
⋆ =xi

• (xi + 1)⋆ = succ(xi)

• (xi − 1)⋆ =pred(xi)

• {}⋆ = xG
• {xi4 e; s}⋆ = let xi = e⋆ in {s}⋆

• {c; s}⋆ = let xG = c⋆ in {s}⋆ if c is not an assignment

• (for xi4 1 to e {s})⋆ = rec(e⋆, xG , λxG .λxi.{s}
⋆)

where e is either a constant or a variable

TRISTAN CROLARD, SAMUEL LACAS, PIERRE VALARCHER 5

Remark 6. Note that the translation clearly involves only terms of degree 0 (since
xG is always a tuple of natural numbers) and thus the target language is actually T0

(and not full system T).

Example 2. A program p and its transform pxG⋆ (where xG = (x1, b1, b2, i, j , k, r)) are
given below. Program p computes the division by two. We assume it receives its
input in x1 and gives the output in r.
{

r4 x1;
b14 1;
for k4 1 to x1 {

b24 1;
for i4 1 to b1 { // if b1 then

r4 r − 1;
b14 0;
b24 0;

};
for j4 1 to b2 { // else

b14 1;
};

};
}

The transform pxG⋆ is:
(

let r = x1 in
let b1 = 1 in
let xG = rec(x1, xG , λxG .λk.

let b2 = 1 in
let xG = rec(b1, xG , λxG .λi.

let r = pred(r) in
let b1 = 0 in
let b2 = 0 in

xG) in
let xG = rec(b2, xG , λxG .λj.

let b1 =1 in
xG) in

xG)
)

4.2. Simulation theorem.

Recall that a store µ is by construction a pair (xG , nG) where xG is a tuple of vari-
ables and nG is a tuple of natural numbers (of the same length). By abuse of nota-
tion, if n is a natural number, we write n⋆ for n̄ ⋆ and similarly if nG = (n1,� , nk) we
write nG ⋆ for the tuple (n̄1

⋆, � , n̄k
⋆). The following easy lemma states that for any

expression e the reduction of e⋆ simulates the evaluation of p in lock-step.

Lemma 2. If 〈e, (xG , nG)〉→ q then e⋆[nG ⋆/xG] q⋆

Proof. By case on the rule 〈e, (xG , nG)〉→ q being used.

• Rule 1

(xi + 1)⋆[nG ⋆/xG] (µ(xi) +1)⋆

Indeed, (xi +1)⋆[nG ⋆/xG] = succ(xi)[nG ⋆/xG] = succ(ni
⋆) S(ni

⋆)= (ni + 1)⋆

• Rule 2

(xi − 1)⋆[nG ⋆/xG] (µ(xi) –̇ 1)⋆

6 On the expressive power of the Loop language

Indeed, (xi − 1)⋆[nG ⋆/xG] = pred(xi)[nG ⋆/xG] = pred(ni
⋆) and if ni = 0 then

pred(ni
⋆) 0 and pred(ni

⋆) (ni − 1)⋆ otherwise.

�

We are now able to prove the main theorem which states that for any command
c the reduction of c⋆ simulates the evaluation of c in lock-step.

Theorem 1. If 〈c, (xG , nG)〉→ 〈c1, (xG , nG 1)〉 then c⋆[nG ⋆/xG] c1
⋆[nG 1

⋆/xG]

Proof. By induction on the derivation of 〈c, (xG , nG)〉→ 〈c1, (xG , nG 1)〉.

• Rule 3

(xi4 q̄ ; s)⋆[nG ⋆/xG] {s}⋆[(n1,� , ni−1, q, ni+1,� , nk)
⋆/xG]

Indeed, {xi4 q̄ ; s}⋆[nG ⋆/xG]

= (let xi = q̄ ⋆ in {s}⋆)[(n1,� , nk)
⋆/xG]

= let xi = q̄ ⋆ in {s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG]

 {s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG][q̄ ⋆/xi]

= {s}⋆[(n1,� , ni−1, q, ni+1,� , nk)
⋆/xG]

• Rule 4

(xi4 xj; s)
⋆[nG ⋆/xG] {s}⋆[(n1,� , ni−1, nj , ni+1,� , nk)

⋆/xG]

Indeed, {xi4 xj; s}
⋆[nG ⋆/xG]

= (let xi = xj
⋆ in {s}⋆)[(n1,� , nk)

⋆/xG]

= let xi = n̄j
⋆ in {s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)

⋆/xG]

 {s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG][nj

⋆/xi]

= {s}⋆[(n1,� , ni−1, nj , ni+1,� , nk)
⋆/xG]

• Rule 5
e⋆[nG ⋆/xG] q

{xi4 e; s}⋆[nG ⋆/xG] {xi4 q̄ ; s}⋆[nG ⋆/xG]

Indeed, {xi4 e; s}⋆[nG ⋆/xG]

= (let xi = e⋆ in {s}⋆)[(n1,� , nk)
⋆/xG]

= let xi = e⋆[nG ⋆/xG] in ({s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG])

By induction hypothesis, e⋆[nG ⋆/xG] q and then by lemma 1:

let xi = e⋆[nG ⋆/xG] in ({s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG])

 let xi = q⋆ in ({s}⋆[(n1,� , ni−1, xi, ni+1,� , nk)
⋆/xG])

= (let xi = q⋆ in {s}⋆)[(n1,� , nk)
⋆/xG]

= {xi4 q; s}⋆[nG ⋆/xG]

• Rule 6

{{}; s}⋆[nG ⋆/xG] {s}⋆[nG ⋆/xG]

Indeed, let xG = {}⋆ in {s}⋆[nG ⋆/xG]

= let xG = xG in {s}⋆[nG ⋆/xG]

= let xG = nG ⋆ in {s}⋆

 {s}⋆[nG ⋆/xG]

• Rule 7
c⋆[nG ⋆/xG] c1

⋆[nG 1
⋆/xG]

{c; s}⋆[nG ⋆/xG] {c1; s}⋆[nG 1
⋆/xG]

TRISTAN CROLARD, SAMUEL LACAS, PIERRE VALARCHER 7

Indeed, since c is neither an assignment nor the empty block,

{c; s}⋆[nG ⋆/xG] = let xG = c⋆ in {s}⋆[nG ⋆/xG]

= let xG = c⋆[nG ⋆/xG] in {s}⋆

By induction hypothesis, c⋆[nG ⋆/xG] c1
⋆[nG 1

⋆/xG] and then by lemma 1:

let xG = c⋆[nG ⋆/xG] in {s}⋆ let xG = c1
⋆[nG 1

⋆/xG] in {s}⋆

= (let xG = c1
⋆ in {s}⋆)[nG 1

⋆/xG]

= {c1; s}
⋆[nG 1

⋆/xG]

• Rule 8

(for xi4 1 to e {s})⋆[nG ⋆/xG] {}⋆[nG ⋆/xG]

Indeed, since e is either the constant 0 or a variable xj and nj = 0:

(for xi4 1 to e {s})⋆[nG ⋆/xG] = rec(e⋆, xG , λxG .λxi.{s}
⋆)[nG ⋆/xG]

= rec(0, nG ⋆, λxG .λxi.{s}
⋆)

 nG ⋆

= {}⋆[nG ⋆/xG]

• Rule 9

(for xi4 1 to e {s})⋆[nG ⋆/xG] {for xi4 1 to q̄ {s}; xi4 q +1; s}⋆[nG ⋆/xG]

Indeed, since e is either a constant q +1 or a variable xj and nj = q + 1:

(for xi4 1 to e {s})⋆[nG ⋆/xG]

= rec(e⋆, xG , λxGλxi{s}
⋆)[nG ⋆/xG]

= rec(Sq+1(0), nG ⋆, λxG .λxi.{s}
⋆)

 (λxG .λxi.{s}
⋆ rec(Sq+1(0), nG ⋆, λxG .λxi.{s}

⋆) Sq+1(0))

= let xG = rec(Sq (0), nG ⋆, λxG .λxi.{s}⋆) in let xi =Sq+1 (0) in {s}⋆

= (let xG = rec(Sq (0), xG , λxG .λxi.{s}⋆) in let xi = Sq+1 (0) in {s}⋆)[nG ⋆/xG]

= (let xG = rec(Sq (0), xG , λxG .λxi.{s}
⋆) in {xi4 q + 1; s}⋆)[nG ⋆/xG]

= (let xG =(for xi4 1 to q̄ {s})⋆ in {xi4 q + 1; s}⋆)[nG ⋆/xG]

= {for xi4 1 to q̄ {s}; xi4 q + 1 ; s}⋆[nG ⋆/xG]

�

5. Possible applications and related topics

We have already mentioned (see remark 6) that programs of the Loop language
are actually mapped by our translation to λ-terms of T0 (we do not exploit the full
hierarchy of system T). On the other hand, in our system T0 recursors with type

Nk are allowed. Clearly, we can construct an effective translation of T0 into the
representations of the primitive recursive functions in which simultaneous primitive
recursion is allowed, such that a recursor with depth n is always mapped into
simultaneous recursion with the same depth n. Thus, our compilation scheme is
consistent with the intuition that Loop programs naturally correspond with simul-
taneous recursion. More formally, if {Kn}n>0 is Heinermann-Axt’s hierarchy [2, 9]
(which is based on the “nesting depth” of primitive recursions) and {Kn

′ }n>0 is
obtained by allowing the more general simultaneous primitive recursion, it is known
that the hierarchies {Ln}n>0 and {Kn

′ }n>0 coincide (whereas Ln = Kn only for n>

4). Besides, remember that the Heinermann-Axt’s hierarchy is related to the Grze-
gorczyk hierarchy: En+1 =Kn for n> 2 (see [17] and [12]).

8 On the expressive power of the Loop language

Kristiansen and Niggl [10, 13] recently improved these results. They defined
finer syntactic measures, the µ-measures, for both the Loop language and a sub-
system of Gödel system T called PR1 which features only ground type variables
and ground type recursion. The µ-measure for PR1 allows to distinguish
between “top recursion” (which may increase complexity) and “side recursion”
(which is harmless). They showed that programs of µ-measure n > 1 compute
exactly the functions in Grzegorczyk class En+1 (recall that E2 corresponds to
FLINSPACE and E3 is the class of Csillag-Kalmar elementary functions). Similarly,
for a different notion of µ-measure (adapted for imperative programs), they proved
that Loop programs of µ-measure n> 0 compute exactly the functions in En+2.

A subject for future work is to generalize the µ-measure for PR1 to account for
product types. One would thus get a new measure µ′ for a Loop program π

defined by µ′(π) = µ(π⋆). We believe that it is worth investigating how this new
measure would be related to Kristiansen and Niggl’s orginal µ-measure for Loop

programs.
As another application, the simulation theorem enables us to derive properties

concerning Loop programs from previously known results about system T . An
example of such result is related to the so-called minimum problem : there is no
Loop program that computes the minimum of two natural numbers n and m in
time O(min(n,m)). Indeed, Colson and Fredholm [4] proved that in call-by-value
system T , any algorithm which computes a non-trivial binary function (where
trivial means constant or projection plus constant), has a time-complexity which is
at least linear in one of the inputs. Note that, as suggested by a referee, this result
can easily be proved directly for the Loop language. However, we intend to gener-
alize our translation to an extension of the Loop language with higher-order proce-
dures and procedural variables. We conjecture that such an imperative language is
as expressive as full system T , and our translation may turn out to be a convenient
tool in this higher-order framework.

Acknowledgments.
We would like to express our gratitude to L. Colson for helpful comments on an

earlier version of this paper and to A. Durand and E. Polonowski for carefully
proofreading this paper. We would like also to thank an anomynous referee for
useful suggestions.

Bibliography

[1] J. Avigad and S. Feferman. Gödel’s functional (“dialectica”) interpretation. In S. R. Buss,

editor, Handbook of Proof Theory, pages 337–405. Elsevier Science Publishers, Amsterdam,

1998.

[2] P. Axt. Iteration of primitive recursion. Z. Math. Logik Grundlagen Math., 11:253–255,

1965.

[3] C. Calude. Theories of computational complexity. Elsevier Science Inc., New York, NY,

USA, 1988.

[4] L. Colson and D. Fredholm. System T, call-by-value and the minimum problem. Theoret-

ical Computer Science, 206, 1998.

[5] M. Davis and E. Weyuker. Computability, Complexity and Languages. Academic Press,

1983.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7. Cambridge Tracts in

Theorical Comp. Sci., 1989.

[7] K. Gödel. On a hitherto unexploited extension of the finitary standpoint. J. Philos.

Logic, 9, 1980.

[8] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foun-

dations of Computing. MIT Press, 1992.

[9] W. Heinermann. Uber die Rekursionszahlen rekursiver Funktionen. PhD thesis, Münster,

1961.

[10] L. Kristiansen and K.-H. Niggl. On the computational complexity of imperative pro-

gramming languages. Theor. Comput. Sci., 318(1-2):139–161, 2004.

TRISTAN CROLARD, SAMUEL LACAS, PIERRE VALARCHER 9

[11] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In Proc. ACM Nat.

Meeting, 1976.

[12] H. Müller. Klassifizierungen der primitiv rekursiven Funktionen. PhD thesis, Münster,

1974.

[13] K.-H. Niggl. The µ-measure as a tool for classifying computational complexity. Archive

for Mathematical Logic, 39:515–539, 2000.

[14] R. Peter. Recursive Functions. Academic Press, 1968.

[15] G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI

FN-19, Aarhus University, September 1981.

[16] K. Schütte. Proof theory. Addison Wesley, 1967.

[17] H. Schwichtenberg. Rekursionszahlen und die grzegorczyk-hierarchie. Archiv für Mathe-

matische Logik und Grundlagenforschung, 12:85–97, 1969.

10 On the expressive power of the Loop language

