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Machine-checked mathematical proofs

You might want to prove:

� some safety and security properties of your system

� the full correctness of your implementation with respect to
its specification

� only the partial correctness of your implementation (no
buffer overflow, for instance)

In any case, you need a formal specification of your system.
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Machine-checked mathematical proofs

You might want to prove:

� some safety and security properties of your system

� the full correctness of your implementation with respect to
its specification

� only the partial correctness of your implementation (no
buffer overflow, for instance)

In any case, you need a formal specification of your system.

Of course, testing is still allowed and a formal specification is
also required in this case (when mixing tests and proofs).
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Limits of formal methods

“The correspondence between our formal models of programs
and the actual behavior of real systems is limited by three
factors:

� the behavior of the programming language,

� the operating system,

� and the underlying hardware.

For safety-critical systems, these limitations are crucially
important and we cannot assume that a program is correct just
because it has been proved.”

Seven Myths of Formal Methods
Anthony Hall, Praxis Sytems, September 1990
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Two success stories about formal methods

� The seL4 project developed at NICTA (SSRG).
– seL4 is a formally-verified microkernel
– Developed since 2006.
– First public release in 2011 (open source since 2014).

� The CompCert project developed at INRIA (Gallium team).
– CompCert is a formally-verified C compiler
– Developed since 2004.
– First public release in 2008.
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The seL4 project

seL4 is a high-performance general-purpose microkernel, that
provides address spaces, threads, IPC and authorisation
capabilities

� Formal proof of correctness down to binary level

� Developed for ARM and Intel processors

� The fastest existing microkernel (faster than L4)

� 10,000 lines of code

� 200,000 lines of proof

� about 30 person.years
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The CompCert project

A formally-verified optimizing standard C compiler

� Formal proof of correctness down to binary level

� Developed for PowerPC, ARM and Intel processors

� Generated code only 20% slower than gcc -O2

� 15,000 lines of code

� 100,000 lines of proof

� about 6 person.years
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How to prove the correctness of a compiler ?

� A compiler translates a source program into a target
program

� The translation is correct if the target program has the
same behaviour as the source program

� Formally, we need some mathematical abstraction of the
behaviour (a semantics)
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How to prove the correctness of a compiler ?

source program target program

p p?
?

� Let us call ? the translation performed by the compiler

� Correctness: For any source program p,

p ∼ p?

� Let us write p ∼ p′ when p and p′ have the same behaviour
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How to prove the correctness of a compiler ?

There are two options:

� For each program p, prove p ∼ p?

– translation validation approach [Pnuelli 1998]
– first-order formulas (mostly automatic)
– works for a regular compiler (for instance gcc)
– successfully used in the seL4 project

� Prove ∀p, p ∼ p?

– higher-order formula (requires a proof-assistant)
– successfully used in the CompCert project
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The CompCert project: a verified C compiler

“The CompCert project investigates the formal verification of
realistic compilers usable for critical embedded software.

� Such verified compilers come with a mathematical,
machine-checked proof that the generated executable code
behaves exactly as prescribed by the semantics of the
source program.

� By ruling out the possibility of compiler-introduced bugs,
verified compilers strengthen the guarantees that can be
obtained by applying formal methods to source programs.”

The CompCert project
Xavier Leroy
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Can you trust your C compiler?

Finding and understanding bugs in C compilers.
Yang et al. University of Utah, PLDI 2011.

“We created a tool that generates random C programs, and
[...] every compiler that we tested has been found to crash and
also to silently generate wrong code when presented with valid
inputs.”
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Can you trust your C compiler?

“The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As
of early 2011, the under-development version of CompCert is
the only compiler we have tested for which Csmith cannot find
wrong-code errors.”

Finding and understanding bugs in C compilers.
Yang et al. University of Utah, PLDI 2011.

“We created a tool that generates random C programs, and
[...] every compiler that we tested has been found to crash and
also to silently generate wrong code when presented with valid
inputs.”
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Critical Systems: programming languages

� Embedded systems are usually developed in C or Ada
(with some assembly code)

� Critical systems are developed in subsets of these
languages, such as MISTRA C or SPARK Ada.

� Dedicated frameworks also generate either C or (SPARK)
Ada source code.

– B Method
– SCADE Suite
– Simulink
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Ada: a language designed for embedded systems

� First standardized version in 1983

� Ada is an algol-like language:
– strong static typing
– real procedures with proper parameter modes
– packages (modules)
– generics
– support for concurrency
– support for real-time systems
– object-oriented (since 1995)
– support for contracts (since 2012)
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Who is using Ada?

Ada is often used in large critical systems:

� Commercial Aviation:
Most Airbus and Boeing air-planes

� Commercial Rockets:
Ariane 4 and 5

� Railway Transportation:
Paris drive-less Metro line 14

� ...
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SPARK: a strict subset of Ada

� Developed by ALTRAN Praxis and AdaCore

� Supported by any standard Ada 2012 compiler

� Well-defined subset of Ada designed for Critical Systems

– Pointers
– Effects in expressions
– Parameter-induced aliasing
– Exception handler

� Static analysis (SPARK tools)
– to ensure that contracts are met (pre/post conditions)
– to ensure that runtime checks never fail
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What about a verified SPARK Ada Compiler?

� A large on-going project, in collaboration with AdaCore and
SAnToS Lab (Kansas State University), since 2012.

� Current state of the formal specification:
– small fragment of Ada (similar to C in expressiveness)
– some runtime checks (overflows)
– nested procedures

� Unsupported features:
– packages
– generics
– contracts
– ...
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What about a verified SPARK Ada Compiler?

� Current state of the compiler:
– a SPARK Ada frontend to CompCert
– lexer and parser from gnat (developed by AdaCore)
– converter to Coq AST (developed by SAnToS Lab)
– proof-of-concept compiler (developed by P. Courtieu)
– nested procedures (work in progress)

� Current state of the proofs:
– correctness of the compiler (P. Courtieu)
– absence of runtime error (P. Courtieu and SAnToS Lab)
– nested procedures (this talk)
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Architecture of the CompCert C compiler

Front-end

Back-end
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Ada 2012 source example

package Sorting
with SPARK Mode

is
subtype Index is Integer range 1..100;
type Vector is array (Index) of Integer ;

procedure Swap(I, J : Index; V: in out Vector)
with Post => V = V’Old’Update (I => V’Old (J), J => V’Old (I));

procedure Sort(V : in out Vector)
with Post => (for all X in V’First + 1 .. V’Last => (V(X − 1) <= V(X)));

end Sorting;
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Implementing Swap as a global procedure

package body Sorting
with SPARK Mode

is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

procedure Sort(V : in out Vector) is
begin
−− some code using Swap

end Sort;

end Sorting;
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Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

begin
−− some code using Swap

end Sort;

end Sorting;

22



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

begin
−− some code using Swap

end Sort;

end Sorting;

no longer
required
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Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is
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end Sort;
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Implementations of nested procedures

Several known implementations:

� In functional or object-oriented languages:
– full-fledged heap-allocated closures
– more general than nested procedures

� In languages that obey a stack discipline, classical
techniques are rather tricky:
– “static links” (in the P-code machine [Wirth 1966])
– “displays” [Dijkstra 1961]

Two optimized implementations but no high-level semantics!
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A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type
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A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

Definition I := nat × nat.

Structure FS {V : Type} :=
{

S : Type;
empty : S;
fetch: S → I → option V ;
update: S → I → V → option S;
top frame: S → option (list V );
new frame: S → nat → list V → (option S);
clear frame: S → S → nat → option S;
frame offset: S → I → option nat

}.
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A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”
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A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”

� We proved in Coq that the optimized implementation is
correct with respect to the prototype, by defining a
bi-simulation.
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A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”

� We proved in Coq that the optimized implementation is
correct with respect to the prototype, by defining a
bi-simulation.

� This bi-simulation then gives us for free a strong property
called “parametricity” [Reynolds 1983].

� Parametricity in implemented in Coq as a plugin [Keller &
Lasson 2012]
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A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected
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A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected

� You need to provide the syntax and the semantics of your
language, and Coq does the rest:
You get a formal machine -checked proof of this property.
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A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected

� You need to provide the syntax and the semantics of your
language, and Coq does the rest:
You get a formal machine -checked proof of this property.

� Some statistics (just for nested procedures)
– 1,000 lines of statement
– 2,000 lines of proof

25



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Future Works

� Full SPARK 2014 support (packages, generics, ...)

� Correctness of SPARK tools (static analysis, contracts, ...)

� Correctness of the OCaml compiler (and its runtime)?

� Correctness of the Coq proof assistant?

� ...

What is now the weakest link in the chain?
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