
Formal Methods for Critical Systems:

A verified implementation of nested procedures?

? Research project funded by AdaCore, the GNAT Pro Company

1. CNAM / Cedric / CPR team
2. INRIA / Gallium team
3. UPMC / LIP6 / Whisper team

Joint work with:

Maria-Virginia Aponte,1 Pierre Courtieu,1,2

Julia Lawall 3

Tristan Crolard 1

ICAR’15
8-9 October 2015



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

based on a
mathematical

formalism

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

based on a
mathematical

formalism

life -critical or
safety -critical

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

based on a
mathematical

formalism

embedded
systems

life -critical or
safety -critical

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

Formal methods are about:

� formal specifications

� mathematical proofs of properties

based on a
mathematical

formalism

embedded
systems

life -critical or
safety -critical

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods for Critical Systems:

Formal methods are about:

� formal specifications

� mathematical proofs of properties

based on a
mathematical

formalism

embedded
systems

machine -
checked

life -critical or
safety -critical

1



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Machine-checked mathematical proofs

You might want to prove:

� some safety and security properties of your system

� the full correctness of your implementation with respect to
its specification

� only the partial correctness of your implementation (no
buffer overflow, for instance)

In any case, you need a formal specification of your system.

2



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Machine-checked mathematical proofs

You might want to prove:

� some safety and security properties of your system

� the full correctness of your implementation with respect to
its specification

� only the partial correctness of your implementation (no
buffer overflow, for instance)

In any case, you need a formal specification of your system.

Of course, testing is still allowed and a formal specification is
also required in this case (when mixing tests and proofs).

2



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods: logics and tools

First-order logics

Higher-order logics

d
ec

id
ab

le
ex

pr
es

si
ve

specific properties

partial correctness

full correctness

3

Specialized logics



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods: logics and tools

Proof assistants

Model checkers

First-order logics

Higher-order logics

d
ec

id
ab

le
ex

pr
es

si
ve

in
teractive

au
tom

aticspecific properties

partial correctness

full correctness

Provers and solvers

3

Specialized logics



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Formal Methods: logics and tools

Proof assistants

Model checkers

First-order logics

Higher-order logics

d
ec

id
ab

le
ex

pr
es

si
ve

in
teractive

au
tom

aticspecific properties

partial correctness

full correctness

Provers and solvers

Program
logics

3

Specialized logics



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Limits of formal methods

“The correspondence between our formal models of programs
and the actual behavior of real systems is limited by three
factors:

� the behavior of the programming language,

� the operating system,

� and the underlying hardware.

For safety-critical systems, these limitations are crucially
important and we cannot assume that a program is correct just
because it has been proved.”

Seven Myths of Formal Methods
Anthony Hall, Praxis Sytems, September 1990

4



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Two success stories about formal methods

� The seL4 project developed at NICTA (SSRG).
– seL4 is a formally-verified microkernel
– Developed since 2006.
– First public release in 2011 (open source since 2014).

� The CompCert project developed at INRIA (Gallium team).
– CompCert is a formally-verified C compiler
– Developed since 2004.
– First public release in 2008.

5



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

The seL4 project

seL4 is a high-performance general-purpose microkernel, that
provides address spaces, threads, IPC and authorisation
capabilities

� Formal proof of correctness down to binary level

� Developed for ARM and Intel processors

� The fastest existing microkernel (faster than L4)

� 10,000 lines of code

� 200,000 lines of proof

� about 30 person.years

6



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

The CompCert project

A formally-verified optimizing standard C compiler

� Formal proof of correctness down to binary level

� Developed for PowerPC, ARM and Intel processors

� Generated code only 20% slower than gcc -O2

� 15,000 lines of code

� 100,000 lines of proof

� about 6 person.years

7



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture

Specification

Implementation

correctness

8



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture

Prototype

Specification

Implementation

correctness

correctness

8



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture

Prototype

Specification

Implementation

proof assistant
(Isabelle/HOL, Coq, ...)

correctness

correctness

8



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture

Prototype

Specification

Implementation

proof assistant
(Isabelle/HOL, Coq, ...)

“pure” language
(Haskell, pure ML,
pure Prolog, ...)

correctness

correctness

8



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture

Prototype

Specification

Implementation

proof assistant
(Isabelle/HOL, Coq, ...)

“pure” language
(Haskell, pure ML,
pure Prolog, ...)

mainstream language
(C, Ada, ...)

correctness

correctness

8



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: seL4

Prototype

Specification

Implementation

correctness

correctness

9



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: seL4

Prototype

Specification

Implementation

proof assistant:
Isabelle/HOL

correctness

correctness

9



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: seL4

Prototype

Specification

Implementation

proof assistant:
Isabelle/HOL

“pure” language:
Haskell

correctness

correctness

9



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: seL4

Prototype

Specification

Implementation

proof assistant:
Isabelle/HOL

“pure” language:
Haskell

mainstream language:
C (compiled with gcc)

correctness

correctness

9



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: seL4

Prototype

Specification

Implementation

proof assistant:
Isabelle/HOL

“pure” language:
Haskell

mainstream language:
C (compiled with gcc)

generationcorrectness

correctness

9



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: CompCert

Prototype

Specification

Implementation

correctness

correctness

10



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: CompCert

Prototype

Specification

Implementation

proof assistant:
Coq

correctness

correctness

10



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: CompCert

Prototype

Specification

Implementation

proof assistant:
Coq

“pure” language:
pure ML (OCaml)

correctness

correctness

10



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: CompCert

Prototype

Specification

Implementation

proof assistant:
Coq

“pure” language:
pure ML (OCaml)

mainstream language:
OCaml (native compiler)

correctness

correctness

10



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Proof Architecture: CompCert

Prototype

Specification

Implementation

proof assistant:
Coq

“pure” language:
pure ML (OCaml)

mainstream language:
OCaml (native compiler)

extractioncorrectness

correctness =

10



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

How to prove the correctness of a compiler ?

� A compiler translates a source program into a target
program

� The translation is correct if the target program has the
same behaviour as the source program

� Formally, we need some mathematical abstraction of the
behaviour (a semantics)

11



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

How to prove the correctness of a compiler ?

source program target program

p p?
?

� Let us call ? the translation performed by the compiler

� Correctness: For any source program p,

p ∼ p?

� Let us write p ∼ p′ when p and p′ have the same behaviour

11



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

How to prove the correctness of a compiler ?

There are two options:

� For each program p, prove p ∼ p?

– translation validation approach [Pnuelli 1998]
– first-order formulas (mostly automatic)
– works for a regular compiler (for instance gcc)
– successfully used in the seL4 project

� Prove ∀p, p ∼ p?

– higher-order formula (requires a proof-assistant)
– successfully used in the CompCert project

11



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

The CompCert project: a verified C compiler

“The CompCert project investigates the formal verification of
realistic compilers usable for critical embedded software.

� Such verified compilers come with a mathematical,
machine-checked proof that the generated executable code
behaves exactly as prescribed by the semantics of the
source program.

� By ruling out the possibility of compiler-introduced bugs,
verified compilers strengthen the guarantees that can be
obtained by applying formal methods to source programs.”

The CompCert project
Xavier Leroy

12



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Can you trust your C compiler?

Finding and understanding bugs in C compilers.
Yang et al. University of Utah, PLDI 2011.

“We created a tool that generates random C programs, and
[...] every compiler that we tested has been found to crash and
also to silently generate wrong code when presented with valid
inputs.”

13



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Can you trust your C compiler?

“The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As
of early 2011, the under-development version of CompCert is
the only compiler we have tested for which Csmith cannot find
wrong-code errors.”

Finding and understanding bugs in C compilers.
Yang et al. University of Utah, PLDI 2011.

“We created a tool that generates random C programs, and
[...] every compiler that we tested has been found to crash and
also to silently generate wrong code when presented with valid
inputs.”

13



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Critical Systems: programming languages

� Embedded systems are usually developed in C or Ada
(with some assembly code)

� Critical systems are developed in subsets of these
languages, such as MISTRA C or SPARK Ada.

� Dedicated frameworks also generate either C or (SPARK)
Ada source code.

– B Method
– SCADE Suite
– Simulink

14



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Ada: a language designed for embedded systems

� First standardized version in 1983

� Ada is an algol-like language:
– strong static typing
– real procedures with proper parameter modes
– packages (modules)
– generics
– support for concurrency
– support for real-time systems
– object-oriented (since 1995)
– support for contracts (since 2012)

15



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Who is using Ada?

Ada is often used in large critical systems:

� Commercial Aviation:
Most Airbus and Boeing air-planes

� Commercial Rockets:
Ariane 4 and 5

� Railway Transportation:
Paris drive-less Metro line 14

� ...

16



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

SPARK: a strict subset of Ada

� Developed by ALTRAN Praxis and AdaCore

� Supported by any standard Ada 2012 compiler

� Well-defined subset of Ada designed for Critical Systems

– Pointers
– Effects in expressions
– Parameter-induced aliasing
– Exception handler

� Static analysis (SPARK tools)
– to ensure that contracts are met (pre/post conditions)
– to ensure that runtime checks never fail

17



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

SPARK: a strict subset of Ada

� Developed by ALTRAN Praxis and AdaCore

� Supported by any standard Ada 2012 compiler

� Well-defined subset of Ada designed for Critical Systems

– Pointers
– Effects in expressions
– Parameter-induced aliasing
– Exception handler

� Static analysis (SPARK tools)
– to ensure that contracts are met (pre/post conditions)
– to ensure that runtime checks never fail

17



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

What about a verified SPARK Ada Compiler?

� A large on-going project, in collaboration with AdaCore and
SAnToS Lab (Kansas State University), since 2012.

� Current state of the formal specification:
– small fragment of Ada (similar to C in expressiveness)
– some runtime checks (overflows)
– nested procedures

� Unsupported features:
– packages
– generics
– contracts
– ...

18



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

What about a verified SPARK Ada Compiler?

� Current state of the compiler:
– a SPARK Ada frontend to CompCert
– lexer and parser from gnat (developed by AdaCore)
– converter to Coq AST (developed by SAnToS Lab)
– proof-of-concept compiler (developed by P. Courtieu)
– nested procedures (work in progress)

� Current state of the proofs:
– correctness of the compiler (P. Courtieu)
– absence of runtime error (P. Courtieu and SAnToS Lab)
– nested procedures (this talk)

18



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler 19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

Front-end

Back-end

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler 19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

SPARK
Ada

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

SPARK
Ada

� SPARK Ada is much larger
than the C language:
– nested procedures
– packages
– generics
– contracts
– ...

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

SPARK
Ada

� SPARK Ada is much larger
than the C language:
– nested procedures
– packages
– generics
– contracts
– ...

� should require several
intermediate languages

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Architecture of the CompCert C compiler

� lexer and parser are specific to the C language

� Clight and C#minor are still too close to the C language

SPARK
Ada

� SPARK Ada is much larger
than the C language:
– nested procedures
– packages
– generics
– contracts
– ...

� should require several
intermediate languages

19



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Ada 2012 source example

package Sorting
with SPARK Mode

is
subtype Index is Integer range 1..100;
type Vector is array (Index) of Integer ;

procedure Swap(I, J : Index; V: in out Vector)
with Post => V = V’Old’Update (I => V’Old (J), J => V’Old (I));

procedure Sort(V : in out Vector)
with Post => (for all X in V’First + 1 .. V’Last => (V(X − 1) <= V(X)));

end Sorting;

20



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementing Swap as a global procedure

package body Sorting
with SPARK Mode

is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

procedure Sort(V : in out Vector) is
begin
−− some code using Swap

end Sort;

end Sorting;

21



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

begin
−− some code using Swap

end Sort;

end Sorting;

22



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is

procedure Swap(I, J : Index; V: in out Vector) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

begin
−− some code using Swap

end Sort;

end Sorting;

no longer
required

22



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementing Swap as a nested procedure

package body Sorting
with SPARK Mode

is

procedure Sort(V : in out Vector) is

procedure Swap(I, J : Index) is
Aux: Integer ;

begin
Aux := V(I);
V(I) := V(J);
V(J) := Aux;

end Swap;

begin
−− some code using Swap

end Sort;

end Sorting;

22



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Implementations of nested procedures

Several known implementations:

� In functional or object-oriented languages:
– full-fledged heap-allocated closures
– more general than nested procedures

� In languages that obey a stack discipline, classical
techniques are rather tricky:
– “static links” (in the P-code machine [Wirth 1966])
– “displays” [Dijkstra 1961]

Two optimized implementations but no high-level semantics!

23



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

Definition I := nat × nat.

Structure FS {V : Type} :=
{

S : Type;
empty : S;
fetch: S → I → option V ;
update: S → I → V → option S;
top frame: S → option (list V );
new frame: S → nat → list V → (option S);
clear frame: S → S → nat → option S;
frame offset: S → I → option nat

}.

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”

� We proved in Coq that the optimized implementation is
correct with respect to the prototype, by defining a
bi-simulation.

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� We formalized a frame stack as an Abstract Data Type

� We provided two implementations of this ADT:
– a simple high-level implementation (our prototype)
– an optimized implementation based on “static links”

� We proved in Coq that the optimized implementation is
correct with respect to the prototype, by defining a
bi-simulation.

� This bi-simulation then gives us for free a strong property
called “parametricity” [Reynolds 1983].

� Parametricity in implemented in Coq as a plugin [Keller &
Lasson 2012]

24



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected

25



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected

� You need to provide the syntax and the semantics of your
language, and Coq does the rest:
You get a formal machine -checked proof of this property.

25



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

A verified implementation of nested procedures

� As a corollary of parametricity, you obtain the following
informal property:

for any programming language,
for any semantics relying on the frame stack ADT,
the optimized implementation works as expected

� You need to provide the syntax and the semantics of your
language, and Coq does the rest:
You get a formal machine -checked proof of this property.

� Some statistics (just for nested procedures)
– 1,000 lines of statement
– 2,000 lines of proof

25



Formal Methods for Critical Systems:
A verified implementation of nested procedures Tristan Crolard

Future Works

� Full SPARK 2014 support (packages, generics, ...)

� Correctness of SPARK tools (static analysis, contracts, ...)

� Correctness of the OCaml compiler (and its runtime)?

� Correctness of the Coq proof assistant?

� ...

What is now the weakest link in the chain?

26


	Machine-checked mathematical proofs
	Formal Methods: logics and tools
	Limits of formal methods
	Two success stories about formal methods
	The seL4 project
	The CompCert project
	Proof Architecture
	Proof Architecture: seL4
	Proof Architecture: CompCert
	How to prove the correctness of a compiler ?
	The CompCert project: a verified C compiler
	Can you trust your C compiler?
	Critical Systems: programming languages
	Ada: a language designed for embedded systems
	Who is using Ada?
	SPARK: a strict subset of Ada
	What about a verified SPARK Ada Compiler? 
	Architecture of the CompCert C compiler
	Ada 2012 source example
	Implementing Swap as a global procedure
	Implementing Swap as a nested procedure
	Implementations of nested procedures
	A verified implementation of nested procedures
	A verified implementation of nested procedures
	Future Works

