ション 小田 マイビット ビックタン

The reconstruction problem of uniform hypergraphs from their degree sequences

Andrea Frosini

Università degli studi di Firenze

14 ottobre 2022

Order Theory

1 Definitions

2 The class \mathcal{D}

3 Heuristic

4 Order Theory

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Heuristic 000000000

Definitions

Graphs and Hypergraphs

A *graph* is a pair of sets G = (V, E) where V is the set of vertices and $E \subseteq V \times V$ is the set of edges. Generalization: a *hypergraph* is a pair H = (V, E) where V is the set of vertices and $E \subset \mathcal{P}(V)$ is the set of hyperedges.

Remark: in particular a graph is a hypergraph.

The *degree* of a vertex *v* is the number of edges that intersect *v*. The *degree sequence d* of a hypergraph is the sequence of the degrees of vertices arranged in non-increasing order. A non increasing sequence of positive integers $d = (d_1, \ldots, d_n)$ is (hyper)graphic if there exists a (hyper)graph that realizes *d*. Definitions 00000000 The class D 000000000000 Heuristic

Order Theory

Problem:

Can we characterize graphic and hypergraphic sequences?

Heuristic 000000000

Definitions

Incidence matrix

The incidence matrix is a binary matrix associated to the hypergraph H and identifies it uniquely. The element in position (i, j) is equal to 1 if and only if the *i*-th hyperedge intersects the *j*-th vertex.

- Columns correspond to vertices,
- rows correspond to hyperedges.

The incidence matrix has the degree sequence d as column sums. If the cardinality of each edge is k, then the hypergraph is *k*-uniform. Consequently the rows sum of the incidence matrix is (k, \ldots, k) . Definitions 000000000 The class \mathcal{D}

Heuristic

Order Theory

Problem:

Can we reconstruct the incidence matrix (if it exists) of a given integer sequence?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Definitions

The class \mathcal{D}

Heuristic

Order Theory

Definitions

Example of 3-uniform hypergraph

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

 $d_H = (3, 3, 2, 2, 2)$

・ロト・日本・ キャー キャー ひゃく

Heuristic 000000000 Order Theory

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Previous results-Graphs

Theorem

(Erdös, Gallai 1960) The integer sequence $d = (d_1, d_2, ..., d_n)$, with $d_1 \ge d_2 \ge \cdots \ge d_n$, is graphic if and only if $\sum_{i=1}^n d_i$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}, 1 \le k \le n.$$

Can be checked in time O(n)

AND

We have a polynomial algorithm for the reconstruction of a graphic sequence (Havel, Hakimi).

The class \mathcal{D}

Heuristic 000000000 Order Theory

Graphical partitions

A geometrical interpretation of Erdös' condition

Through its Ferrers diagram, an integer partition *d* can be decomposed as follows

 $d_1 = 0 + 2 + 2 + 2 + 1$ graphical $d_2 = 4 + 2 + 2 + 1 + 1$ maximal $d_3 = 4 + 3 + 2 + 1$ not graphical

Theorem

An integer partition d is graphical if and only if $R(d) \leq L(d)$ w.r.t. dominance order.

Previous results - Hypergraphs

Some sub-classes of uniform hypergraphs have been investigated:

Theorem

(A. F., C. Picouleau) An homogeneous 3-uniform hypergraph can be reconstructed in polynomial time from its degree sequence.

Theorem

(A. F., C. Picouleau, S.Rinaldi) A step-one 3-uniform hypergraph can be reconstructed in polynomial time from its degree sequence.

Similar complexity results are obtained for different of 3-uniform hypergraphs' subclasses.

Remark: these results are obtained using notions of combinatorics on words.

Previous results - Hypergraphs

In general, for a 3-uniform hypergraphic sequence the characterization problem is *NP-complete*, and consequently it is *NP-hard* the related reconstruction problem.

Theorem

(Deza, Levin, Meesum, Onn 2018) For any fixed $k \ge 3$ it is NP-complete to decide if $d = (d_1, d_2, ..., d_n)$ is the degree sequence of a k-uniform hypergraph.

Dimostrazione: P-time reduction of 3-partition to 3-graphic.

Research Aim: Detect further classes of uniform hypergraphs that are reconstructable in polynomial time.

Heuristic 000000000

The class ${\mathcal D}$

Starting from a non-increasing integer sequence s = (s(1), ..., s(n)), with $n \ge 3$, we define the 3-uniform hypergraph H = (V, E) as $V = \{v_1, ..., v_n\}$, $E = \{(v_i, v_j, v_k) \text{ s.t. } s(i) + s(j) + s(k) > 0, \text{ for } 1 \le i < j < k \le n\}.$

The class \mathcal{D} is thus defined as $\mathcal{D} = \bigcup_{n \geq 3} \mathcal{D}_n$.

Property

If (v_i, v_j, v_k) is an edge of *H*, then $(v_i, v_j, v_{k'})$ is an edge of *H* for all $j + 1 \le k' \le k$.

The degree sequences in \mathcal{D} are *unique*, i.e., if $\pi \in \mathcal{D}$ then there exists one only 3-hypergraph (up to isomorphism) realizing it.

Heuristic

Order Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The class \mathcal{D}_n

Example

Let s = (3, 2, 0, -1, -2). The obtained 3-hypergraph is

$$H_{s} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

and $\pi_s = (5, 4, 4, 3, 2)$.

Heuristic 000000000

Incidence matrix structure

Block Graphs

The incidence matrix of a \mathcal{D} -hypergraph allows a splitting into blocks, grouping the rows whose first two non-zero entries occupy the same positions.

$$H_{\pi} = \left(\begin{matrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ \hline \end{pmatrix} \right\} \begin{matrix} B_{1,3,5} \\ B_{1,4,5} \\ B_{2,3,6} \\ B_{2,4,5} \\ B_{3,4,5} \end{matrix}$$

with $\pi = (8, 8, 8, 6, 6, 3)$ and s = (1, 1, 1, 0, 0, -1).

The class \mathcal{D} 000 \bullet 00000000 Heuristic

Order Theory

Incidence matrix structure

Block Graphs

For each block, we can define an integer sequence considering its columns' sums:

$$H_{\pi} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 \\ \hline \end{pmatrix}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Heuristic 000000000 Order Theory

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Incidence matrix structure

Block Graphs

The integer sequences thus obtained are graphical partitions.

Property

The integer sequence $b_{i,j,k}$ is a maximal graphical partition for each $1 \le i < j < k \le n$.

The class *D* ○○○○○●○○○○○○ Heuristic 000000000

Incidence matrix structure

Block Graphs

For a fixed index i^* , summing $b_{i^*,j,k}$ on varying of j, k is equivalent to stack their Ferrers diagrams

getting a new integer partition λ^{i^*}

The class *D* ooooooooooooo Heuristic 000000000

1 H M 1 B M 1 E M 1 E M 1

÷

Order Theory

Incidence matrix structure

Block Graphs

Starting from the incidence matrix, we define the *block graphs* of a \mathcal{D} -hypergraph:

	11	1	1	0	0	-0/	
	1	1	0	1	0	0	
	1	1	0	0	1	0	
	X	1	0	0	0	1	
	1	0	1	1	0	0	$\lambda^{1} = (4, 4, 3, 3, 2)$
	X	0	1	0	1	0	
$H_{\pi} =$	X	0	1	0	0	1	
	1	0	0	1	1	0	
	0	1	1	1	0	0	1
	0	X	1	0	1	0	(22, (222, 10))
	0	X	1	0	0	1	$\lambda^{-} = (3, 2, 2, 1, 0)$
	0	X	0	1	1	0	J
	$\overline{0}$	0	X	1	1	0/	$\lambda^3 = (1, 1, 0, 0, 0)$

Property

Block graphs are maximal graphical partitions.

The class *D* ooooooooooooo Heuristic 000000000 Order Theory

Incidence matrix structure

Block Graphs

Starting from the incidence matrix, we define the *block graphs* of a \mathcal{D} -hypergraph:

	11	1	1	0	0	-0/	
	1	1	0	1	0	0	
	1	1	0	0	1	0	
	X	1	0	0	0	1	
	1	0	1	1	0	0	$\lambda^{1} = (4, 4, 3, 3, 2)$
	X	0	1	0	1	0	
$H_{\pi} =$	X	0	1	0	0	1	
	1	0	0	1	1	0	
	0	1	1	1	0	0	1
	0	X	1	0	1	0	(22, (222, 10))
	0	X	1	0	0	1	$\lambda^{-} = (3, 2, 2, 1, 0)$
	0	X	0	1	1	0	J
	$\overline{0}$	0	X	1	1	0/	$\lambda^3 = (1, 1, 0, 0, 0)$

Property

Block graphs are maximal graphical partitions.

Heuristic

Order Theory

Incidence matrix structure

Block Graphs

Property

Block graphs are maximal graphical partitions.

If we look at block graphs as integer partitions, we find strong symmetry properties in their Ferrers diagram:

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

The class *D* ○○○○○○○○○○○○○ Heuristic 000000000

Incidence matrix structure

Plane Partitions

Stacking block graphs, each \mathcal{D} -hypergraph can be put in relation with a plane partition. In the previous example,

$$\lambda^1 + \lambda^2 + \lambda^3 = (4, 4, 3, 3, 2) + (3, 2, 2, 1) + (1, 1)$$

 $P_{\pi} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 1 & 2 & 3 & 3 & 0 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

D-plane partitions reflect symmetry properties of maximal graphical partitions.

Heuristic 000000000

Incidence matrix structure

Plane Partitions

The complete 3-uniform hypergraph on n vertices gives n - 2 *complete* block graphs. Their Ferrers diagrams are rectangles of decreasing dimension and compose the *complete* plane partition.

For n = 6, we get

$$\lambda^{1} + \lambda^{2} + \lambda^{3} + \lambda^{4} = (4, 4, 4, 4, 4) + (3, 3, 3, 3) + (2, 2, 2) + (1, 1)$$

$$P_{\pi} = \begin{bmatrix} 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Decomposition of a \mathcal{D} -Hypergraph

Property

Given P_{π} a plane partition related to a generic \mathcal{D} -hypergraph with n vertices, there exists P_{π^*} , submatrix of P_{π} , such that P_{π^*} is the plane partition of a complete \mathcal{D} -hypergraph.

So, each $\mathcal D\text{-plane}$ partition contains a complete $\mathcal D\text{-plane}$ partition of lower size.

 P_{π^*} and the related \mathcal{D} -hypergraph H^* are called *core* of H.

The class D0000000000000 Heuristic

Order Theory

Decomposition of a \mathcal{D} -Hypergraph

We can always decompose a \mathcal{D} -plane partition as

$$P_{\pi}=P_{\pi^*}+R_{\pi}+L_{\pi}.$$

 $R_{\pi} = L_{\pi}$ holds, since block graphs are always maximal graphical partitions.

Example

Plane partition of $\pi = (12, 10, 10, 7, 7, 5, 3)$, given by the integer sequence s = (3, 2, 2, 0, 0, -2, -3).

Heuristic ●00000000

Heuristics from plane partitions

We take advantage from the decomposition of a \mathcal{D} -hypergraph as

$$P_{\pi}=P_{\pi^*}+R_{\pi}+L_{\pi}.$$

Strategy: preliminary construction of *H*^{*}, the core of the incidence matrix (always exact and in polynomial time).

Aim: avoiding the insertion of extra-rows during the construction of the matrix *H*.

In general, we do not know the correct order of insertion of rows for the completion of the matrix. Choosing different orders, we can define different subclasses of sequences that admit a polynomial time reconstruction.

Heuristic o●ooooooo

Heuristic from plane partitions

Complementarity

Given a \mathcal{D} -sequence $\pi = (d_1, \ldots, d_n)$, we define its *complementary sequence* as $\pi^c = (d_M - d_1, \ldots, d_M - d_n)$, where $d_M = \frac{(n-2)(n-1)}{2}$ is the maximum admitted value for the degree of a vertex.

If \mathbb{H} is the complete 3-uniform hypergraph, π^c is the degree sequence of $H_{\pi}^c = \mathbb{H} - H_{\pi}$, the *complementary hypergraph* of the \mathcal{D} -hypergraph H_{π} .

We underline that complementary hypergraphs have the same properties of \mathcal{D} -hypergraphs. In particular, they are *unique* and their incidence matrix allows a splitting into blocks.

Heuristic

Heuristic from plane partitions

Complementarity

Given a \mathcal{D} -sequence $\pi \in \mathcal{D}_n$ and its block graphs λ^i , we define the *complementary block graph* of λ^i as

$$\lambda^{i^{c}} = \underbrace{(n-i-1,\ldots,n-i-1)}_{(n-i)} - \lambda^{i}$$

for i = 1, ..., n - 2. It is obtained as the complementary respect to the complete block graph.

Block and complementary block graphs $\pi = (7, 6, 6, 3, 3, 2)$.

Heuristic 000000000

Heuristic from plane partitions

Reconstruction strategy

We propose a new reconstruction strategy, based on the interpretation of hypergraphs as plane partitions and complementarity.

Key point: we reconstruct the plane partition of the hypergraph stacking block and complementary block graphs at the same time.

RecP-core

- **O** Input: π of length n;
- **1** Reconstruct P_{π^*} the core of the plane partition;
- 2 Construct the planes from P^1 to P^{n-2} , avoiding ambiguous insertions;
- **3** Complete the construction of planes, from P^{n-2} to P^1 ;
- 4 Output: P_{π} .

Heuristic 0000●0000 Order Theory

ション 小田 マイビット ビックタン

Heuristic from plane partitions

Example of reconstruction

- Input: $\pi_s = (23, 21, 20, 19, 17, 12, 11, 10, 5);$
- Construction of P_{π^*} , the plane partition of the complete \mathcal{D} -hypergraph with 6 vertices;
- Update: $\pi = (13, 11, 10, 9, 7, 2, 11, 10, 5)$ and $\pi^c = (5, 7, 8, 9, 11, 16, 17, 18, 23);$
- Partial construction of planes, from P¹ to P⁴, avoiding ambiguous insertions;

We avoid the insertion of extra-rows during the reconstruction process!

Heuristic 00000●000 Order Theory

Heuristic from plane partitions

Example of reconstruction

 one choice between (1, 5, 9), (1, 6, 8)

two choices among (2, 4, 9), (2, 5, 8), (2, 6, 7)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Heuristics from plane partitions

Example of reconstruction

one choice between (3, 4, 9), (3, 5, 8), (3, 6, 7)

- Update: $\pi = (1, 2, 1, 2, 3, 1, 1, 3, 1);$
- Completion of planes, from P⁴ to P¹, according to implications required from D-hypergraphs' structure.

Heuristic 0000000●0

Heuristic from plane partitions

Example of reconstruction

The update sequence is $\pi = (1, 2, 1, 2, 3, 1, 1, 3, 1)$, we have to insert five hyperedges to complete the reconstruction.

- **1** By cardinality reasons, $(4, 5, 7) \in H_{\pi}$, *inserted*.
- 2 $(3,4,9) \in H_{\pi}$ implies $(2,4,9) \in H_{\pi}$, in conflict with $\pi_9 = 1$, *excluded*.
- 3 $(3, 6, 7) \in H_{\pi}$ implies $(2, 6, 7) \in H_{\pi}$, in conflict with $\pi_6 = 1$ and $\pi_7 = 1$, *excluded*.
- 4 It follows that $(3, 5, 8) \in H_{\pi}$ and $(2, 5, 8) \in H_{\pi}$, *inserted*.
- **5** (2, 4, 9) is the last hyperedges involving v_4 , and we have $\pi_4 \neq 0$, *inserted*.
- **6** (1, 6, 8), *inserted*.

Heuristic

Heuristic from plane partitions

- There is not any insertion of extra-rows in H_{π} and H_{π^c} ;
- It is necessary to find an algorithmic way to implement the partial reconstruction of planes, based on *geometrical properties* of maximal graphical (complementary) partitions;
- Avoiding ambiguous insertions, we have a partial and *correct* reconstruction of π in polynomial time;
- Implementation (in polynomial time) of the implications required for the completion of the hypergraph;
- Uniqueness of *D*-sequences should ensure the correct completion of the incidence matrix, but we need a rigorous proof.

\mathcal{D} -sequences and Order Theory

Triplets' Poset

We consider Ω_n the set of all triplets (a_1, a_2, a_3) whose elements are in $\{1, \ldots, n\}$ and s.t. $1 \le a_1 < a_2 < a_3 \le n$. We define a partial order relation on it:

 $(a_1, a_2, a_3) \le (b_1, b_2, b_3)$ if and only if $a_i \le b_i$ for i = 1, 2, 3.

We get the partially ordered set $\mathcal{T}_n = (\Omega_n, \leq)$.

Each triplet $(i, j, k) \in \Omega_n$ identifies the hyperedge of the complete 3-hypergraph on *n* vertices that intersects v_i, v_j and v_k .

Property

Given $h_1, h_2 \in \Omega_n$ s.t. $h_1 \leq h_2$, if $h_2 \in H_{\pi}$ then $h_1 \in H_{\pi}$, with H_{π} the \mathcal{D} -hypergraph with degree sequence π . Similarly, if $h_1 \leq h_2$ and $h_1 \notin H_{\pi}$, then $h_2 \notin H_{\pi}$.

Heuristic

Order Theory

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

\mathcal{D} -sequences and Order Theory

Theorem

Each hypergraph related to a \mathcal{D} -sequence π can be uniquely associated to an ideal I_{π} of the poset \mathcal{T}_n .

Remark: the correspondence is not bijective. There exist ideals in \mathcal{T}_n that identify 3-hypergraphs that are *not* \mathcal{D} -hypergraphs.

Hypergraphs identified by ideals keep the properties of \mathcal{D} -hypergraphs: their incidence matrix allows a splitting into blocks but they are *not unique* (in general).

We define a new class of 3-graphic sequences, \mathcal{D}_n^{ext} , as the class of sequences identified by ideals of \mathcal{T}_n .

Order Theory

An extension of \mathcal{D} -sequences

Example

$v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9$	$v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9$
111000000	011100000
1 1 0 0 0 0 0 0 1	0 1 1 0 0 0 0 1 0
101100000	010110000
101000001	010100010
100110000	0 1 0 0 1 1 0 0 0
100100001	010010010
100011000	001110000
100010001	001100010
100001100	001011000
100001001	001010010

3-uniform hypergraph not in \mathcal{D} and related to the ideal $I_{\pi} = \downarrow \{(1, 6, 9), (3, 5, 8)\}$ (degree sequence $d_{H} = (25, 19, 19, 16, 16, 12, 10, 10, 5)$).

Order Theory

Conclusions and Future Developments

- Extend the defined heuristics to get the polynomial time reconstruction of (subclasses of) D_n^{ext};
- As an alternative, prove that the reconstruction problem is NP-hard also for D-sequences;
- Find bijections between classes D_n, D_n^{ext} and known combinatorial structures, with the aim of establishing their cardinalities. Investigate T_n and its ideals;
- Generalize our results to k-uniform degree sequences and hypergraphs, detecting new classes of *unique* sequences that admit a polynomial time solution for the consistency and reconstruction problems.

Bibliography (essential)

- Ascolese, M., Frosini, A., Characterization and Reconstruction of Hypergraphic Pattern Sequences LNCS to appear
- Ascolese, M., Frosini, A., Kocay, W. L., Tarsissi, L., Properties of Unique Degree Sequences of 3-Uniform Hypergraphs, Lecture Notes in Computer Science 12708: 312-324 (2021)
- Brylawski, T., *The lattice of integer partitions*, Discrete Mathematics 6,3: 201-219 (1973)
- Colbourne, C. J., Kocay, W. L., Stinson, D. R., Some NP-complete problems for hypergraph degree sequences, Discrete Appl. Math. 14: 239-254 (1986)
- Deza, A., Levin, A., Meesum, S. M., Onn, S.: Optimization over degree sequences, SIAM J. Disc. Math. 32(3): 2067-2079 (2018)

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bibliography (essential)

- Erdös, P., Gallai, T., Graphs with prescribed degrees of vertices (in Hungarian), Matematikai Lapok 11: 264-274 (1960)
- Frosini, A., Picouleau, C., Rinaldi, S., New sufficient conditions on the degree sequences of uniform hypergraphs, Theoret. Comput. Sc. 868: 97-111 (2021)
- Sierksma, G., Hoogeveen, H., Seven criteria for integer sequences being graphic, Journal of Graph Theory 15(2): 223-231 (1991)