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Abstract: In arder to measure the similarity between two partitions coming from 
the same data set, wc study extensions of the RV-coefficient, the kappa coefficient 
proposed by Cohen (in case of partitions with same number of classes) , and the 
D2 coefficient proposed by Popping. We find that the RV-coefficient is identical 
to the Janson and Vegelius index. We compare the result coming from kappa's 
coefficient to the ordination given by correspondence analysis. We study the em­
pirical distribution of these indices under the hypotheses of a common partition. 
For this purpose, we use data coming from a latent profile mode! to formulate the 
nul! hypothesis. 
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1 Introduction 

The problem of measuring the agreement between two partitions of a same data set 
has attracted interest and reappears continually in the literature of classification. 

The most useful agreement measured proposed by Rand (1971) has been rediscov­
ered and modified by [2] . Based on the comparison of object triples, a measure of 
partition correspondence was introduced by [4] . A generalized Rand-index method 
for consensus clustering was proposed by [3] for finding an amalgamated clustering 
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of a set of contributory partitions. By using mathematical and statistical aspects in 
the standardization of the comparison coefficients. [8] shows how to take into account 
the relational constraint, which results from the partition structure. 

A simple way to compare partitions is to study the empirical distribution of a 
measure of agreement under sorne null hypothesis. It is necessary to define measures 
of agreement between partitions, before testing the agreement. In previous papers 
[13, 14, 15] , we have examined the following indices: Rand, Mc Nemar. and Jaccard. 
In this paper, we present new approaches to find the similarity betwcen clustering. 
The RV-coefficient introduced by Robert and Escoufier [12] is proposed and written 
in term of paired comparisons. We prove that RV-coefficient is identical to the JV 
index [9] . 

The kappa coefficient proposed by Cohen [1] is another way to measure the agree­
ment between partitions with equal number of classes. Kappa can be used only in 
situations whcre categories are specified in advance, which is not the case of partitions 
where the labels of the classes are arbitrary: for that , we identify the permutation 
of classes of one of the partitions by maximizing the kappa values. \Ve compare the 
optimal permutation with the ranking given by correspondencc analysis: the results 
arc the same. 

Finally we also study the D2 index proposed by Popping [10] . This lcss known 
index is based on comparison of pairs of subjects. We find the empirical distribution 
of this agreement measure when the partitions only differ by chance. 

2 Notations 

Let P1 and P2 be two partitions (or two categorical variables) of the same subjects 
with p and q classes. If K 1 and K 2 are the disjunctivcs n x p and rz x q tables and N 
the corresponding contingency table with clements n ij . wc haw: X = K{ K 2 . 

Bach partition Pk 1s also characterized by the n x rz paired companson table Ck 
with general term cfi': 

if i and i' are in the same class of Pk 

otherwise 

Note that cfi = 1, for every i E N. We have C1 = K1K{ and C2 = K2K~. Given n 
subjects, n(n- 1)/2 pairs of subjects can be comparcd. When both partitions assign 
pairs of subjects to the same classes, we consider this as an agreement. 

P1 \P2 Same class Different class 
Same c7la_s_s---r-a~A_g_T_e-em __ e_n_t_('s_a_m_e')-r-----c~D~is_a_g_r-ee_m __ e_n_t __ ~ 

Different class d Disagreement b Agreement (Different) 
----~------~~-------L--~------~------~ 

Table 1: The four cases 

1 
1 
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3 RV -coefficient 

Robert and Escoufier [12] have derived a measure of similarity of two configurations, 
called RV-coefficient or the vector correlation coefficient; it allows to measure the 
similarity between two data tables xl and x2 of the same observations by comparing 
the scalar product betwecn individuals associated to the two tables. If the scalar 
matrices product Xix; is noted as Wi with dimension n x n, the RV-coefficient is 
defined as: 

tr (W1 W2) 
RV(Xl, X2) = tr (Wf)tr (Wi)" 

When applied to the disjunctive tables associated to two partitions, we find: 

"' (cl, - ~) (c2
,- ~) 6 u p u q 

i#i' (1) 

A high value of RV may lead to the conclusions that partitions are almost identical. 
Lazraq, A. and Cleroux, R. [6] have proposed a test for the null hypothesis that 

the theoretical (population) RV is zero, but only in the case of numerical data, which 
cannat be applied to indicator variables. 

3 .1 JV index 

The JV index is a measure of association proposed by Janson and Vegelius [9] 
initial expression is: 

JV(Pl , P2) = pq L:u L:v n~v- P L:u n~. - q L:v n2v + n2 
J[p(p- 2) L:u n?,. + n 2] [q(q- 2) L:v n2v + n 2] 

It has been proved that, in terms of paired comparisons: 

"' (cl,_~) (c2, _ ~) 
~ u p u q 
t,t 

. Its 

Idrissi [5] used this formula to study the probability distribution of JV undcr 
the hypothesis of independcnce. If the k classes are equiprobable, one finds that 
I:i# (c}i,cTi') follows a binomial distribution B(n(n- 1), 1/k2 ). Idrissi daims that 
the JV index between two categorical variables with k cquiprobable modalities has 
an expected value equal to: 

E(JV) = k -1. 
n 

The RV-cocfficient and the JV index arc idcntical, in terms of paired comparisons. 
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4 Cohen's Kappa 

The kappa coefficient for computing nominal scale agreement between two raters was 
first proposed by Cohen [1] . He defined his index as "the proportion of agreement 
after chance agreement is removed from consideration". 

Po-Pe 
K,= 

1- Pe' 
where 

1 k 1 k 

Po=-~ nii and Pe =? ~ ni.n·i· 
n~ w~ 

i=l i=l 
In this formula, Po is the amount of observed agreement. In case of independence, 
given the marginals, the expected amount of agreement is Pe. Therefore, a correction 
is made for this amount agreement. In order that the index assumes the value 1 in 
case of perfect agreement, the correction is also made in the denominator. It measures 
the deviation of objects on the diagonals in the agreement table. 

We use the equivalent formula of the kappa coefficient to compute the agreement 
between two partitions having the same number of classes: 

"'k "'k n 6i=l nii - 6i=l ni. n.i 
K,= ~~~~~~~~~~ 

n 2 - "'k n. n . 6i=l ,. ., 

An important condition to use the kappa coefficient is for the situation in which the 
identity of classes per observations is known in ad vance. In our case, when we compare 
partitions coming from the same data set and found by the clustering methods, the 
numbering of classes is totally arbitrary: so we propose to identify the classes of the 
partitions from the maximum value of n,. We permute the columns or rows in the 
cross table and we calculate n, at each time; we take the numbering of permutation 
with the maximum n,. 

Another method to find the optimal ordering is to use the order of the categories 
of both variables given by the first factor in the simple corresponding analysis. This 
method maximizes the weight of the diagonal of the cross table by permuting their 
lines and columns. 

We compare the result found by the simple corresponding analysis to our method. 
Often, the same value of n, can be observed. 

5 Popping's D2 

The D 2 index was proposed by Popping [10] and is based on the same principles of 
kappa coefficient. It is used to study the agreement between the nominal classifica­
tions by two judges who independently categorize the same subjects in case that the 
categories are not known in advance. The D2 index is based on the comparison of 
pairs of subjects and start from the situation of same agreement (Table 1). 

The index contains a correction for agreement that can be expected on the basis 
of chance given the marginals of the original classification. 
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Under the null hypothesis of independence, the D2 is a transformation of the Russel 

and Rao's coefficient 
a 

The D 2 index is defined as: 

where 
D _ I:f=1 LJ=1 nij(nij- 1) 

and 

0
- n(n- 1) ' 

D - 2 I:f=1 LJ=1 Cij 
e- n(n- 1) ' 

( ) h 
ni. n .j ( ) 

Cij = 9ij hij- 0.5gij - 0.5 where ij = -- and 9ij = integer hij , 
n 

D _ I:f-1 ni-(ni.- 1) 
P- n(n- 1) ' 

D - I:f-1 n.j(n-J- 1) 
q- n(n-1) ' 

Dm= max(Dp,Dq)· 
Note that in D 2 one considers De as a reasonable minimum [10] , so for situations 

where we use the 9ij in D e, we have no empirical proof to get an expected value 
maller than the minimum. This is in favor of 9ij instead of the fractional number 

h;j. However, this results in the fact that D e is biased: the results are too high. The 
consequence for D 2 is that the index will take conservative values. 

The D 2 index has been compared to the kappa coefficient to the JV index, in the 

particular following case: 

Categories + Total 
+ u v-u v 

v-u u v 
Total v v 2v 

Table 2: The particular case found by Popping. 

Popping obtained the results: 
2u-v 

K,=---, 
v 

D2 = [ 2u: v r = JV. 

In the general case we found that there are a strong correlation between these 

indices in the simulation study. 
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We find a relation betwcen the Jaccard 's index known as measure of similarity 
between objects described by presence-absence attributes [14] to the D 2 coefficient, 
we find the following relation: 

In case of Integer(hij) = hij 

where 

D2 = (c;,- b)J 
max( a+ c, a+ d) - c~ 

J= a 
a+c+d 

d 0 2 _ n(n- 1) 
an n- 2 . 

6 Empirical distribution 

We use the algorithm presented in [13] for finding the empirical distribution of the 
indices of association when the two partitions only differ by chance. The difficulty 
consists in conceptualising a null hypothesis of "identical" partitions and a procedure 
to check it. Note that departure from independence does not mean that there exists 
a strong enough agreement. 

Now we have to define the sentence "two partitions are identical". Our approach 

consists to say that the units come from a same partition. where the two observed 
partitions are noised. The latent class model is well adapted to this problem for 
getting partitions. Note that Green and Krieger [3] have used it in their consensus 
partition research. More precisely, we use the latent profiles modcls because we have 
numerical variables. 

For getting "near-identical partitions", we suppose the existence of a common 
partition for the population according to a latent profile model. The basic hypothesis 
is the independency of observed variables conditional to the latent classes that gives 
similar partitions from one or another groups of variables: 

f(x) = L 7rk IT fk(xj/k). 
k j 

The 7rk are the class proportions and x is the random vector of observed variables, 
where the component Xj are independent in each class. 

We use here the latent class model to generate the data and not to estimate para­
meters. Once having choosen the number of classes, we first generate their frequencies 
from a multinomial distribution with probabilities nk, and then we generate observa­
tions in each class according to the local independence model in other words a normal 
mixture model with independent components in each class. Then we split arbitrarily 
the p variables into two sets and perform a partitioning algorithm on each set. The 
two partitions should thus differ only by random. We calculate the indices for the two 
partitions: we repeat the procedure N times to find a sampling distribution of kappa, 
RV (or J index), and D2 . Our algorithm has the following steps: 

1. Generate the sizes n1, n2, ... , nk of the clusters according to a multinomial dis­
tribution M(n; 1r1 ... 7rk)· 
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2. For each cluster, generate ni values from a random normal vector with p inde­
pendent components. 

3. Get two partitions: P1 of the units according to the first p 1 variables and P2 

according to the last p - p1 variables. 

4. Compute association measures (for RV, J and D2) for P1 and P2. 

4'. Permute the columns of the cross table (P1 , P2 ) to find the maximum value of 
kappa, so the numbering of classes. 

5. Repeat the procedure N times. 

7 N umerical Applications 

We applied the previous procedure with 4 equiprobable latent classes, 1000 units and 
4 variables. We obtained the two partitions P 1 (with X 1 and X2) and P2 (with X3 and 
X 4 ) with 4 classes by the k-means methods. We present only one of our simulations 
(performed with S+ software). 

Class 1 Class 2 Class 3 Class 4 
Xl N( 1.2,1.5) X2 N(4,2.5) X3 N(7,3.5) X4 N(l0,4.5) 
Xl N(-2"1.5) X2 N(-4,2.5) X3 N(-6,3.5) X4 N(-10,4.5) 
Xl (-5,Ni{ X2 N(-10,2.5) X3 N(-13,3.5) X4 N(-20,4.5) 
Xl N(-8,1.5) X2 N(-15,2.5) X3 N(-20,3.5) X4 N(-30,4.5) 

Table 3: The normal mixture model. 

The following figure shows the spatial distribution of one of the 1000 iterations for 
the two partitions P1 and P2. 

The cross table of the two partitions in one of the simulations is represented as 
follows: 

1 2 3 4 
248 0 0 2 
1 198 27 9 
2 6 43 202 
0 58 192 12 

Table 4: Cross tabulation of P1 and P2 for one of the simulation. 
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10 

Figure 1. The first two principal components of one of the 1000 samples for the Pl 
and P2 
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We find a value of the kappa coefficient equal to 0.335, and a value of JV index 
(or RV) equal to 0.648. The value of the D 2 index is equal to 0.647. 

To identify the labels of classes of P2 to those of P1 , we permute the columns ( 4! 
permutations) of the cross table: The maximum value of the kappa coefficient is 0.787, 
and the numbering of column's permutation is 1,2,4,3. So the table becomes: 

1 2 3 4 
1 2 4 3 
248 0 2 0 
1 198 9 27 
2 6 202 43 
0 58 12 192 

Table 5: Cross tabulation with the new permutation of columns. 

Another way of getting the "optimal" ordering is by means of correspondence 
analysis: categories of both variables are ordered according to their coordinates along 
the first axis. 

198 27 9 1 
58 192 12 20 
6 43 202 2 
0 0 2 248 

Table 6: Order according to the first factor of CA. 

If we calculate the kappa coefficient of this last table, we find the value 0.787. 
Here correspondence analysis ordering gives the same result as our method. The 
distribution of maximum kappa coefficient values is presented in Figure 3: 

With the same choice of normal independent mixtures variables, we find that the 
kappa coefficient varies between 0.4 and 0.875. Its means is 0.82. 

By simulation, the value of the JV index varies between 0.4 and 0.7. The most 
frequent value is 0.63 and the mean is equal to 0.617. (Fig. 4) 

Under the hypothesis of independence E(JV) = 0.003, and with 1000 observations, 
independence should have been rejected for JV > 0.617 at 5% level. The 5% critical 
value is much higher than the corresponding one in the independence case. It shows 
that departure from independence does not mean that the two partitions are close 
enough. 

The D 2 index takes its values between 0.3 and 0.7 with a mode equal to 0.625. 
The distribution has a mean equal to 0.610. Bimodality is due to the use of k-means, 
which gives a local optima [15] . 
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0.40 0.45 0.50 0.55 0 .60 0 .65 0.70 0 .75 0.80 0.85 0 .90 
KAPP1 

"' 0 

"' 0 

Figure 2. Distribution of kappa for 1000 individuals and 1000 iterations, partitions 
with 4 classes. The scatter plot of JV against D2 in the 1000 iterations. 
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0 

05 06 07 

Figure 3. The JV- index distribution and D 2 for the partitions of 4 classes in 1000 
iterations. 

There is a strong correlation between the JV and D 2 equal to 0.983. So we can 
say that the two indices give same result in comparing partitions (Fig. 3). 

Under the null hypothesis of close partitions, all indices have values around the 
mean, which is close to 0.6 so that we could say that the two partitions P1 and P2 

are close enough. 

8 Conclusion 

In this paper, we have proved the identity between the RV-coefficient and the JV­
index for comparing two partitions. A latent class model has been used to solve the 
problem of comparing close partitions and three agreement indices: JV (or RV), 
kappa and D 2 have been studied. 

The kappa coefficient allows to test the similarity between two partitions after 
permutation and when we they have the same number of classes. We compare the 
optimal permutation with the order given by correspondence analysis: By simulation, 
it gives often the same results. 

The D 2 index seems useful for comparing the classification of two partitions in the 
case that the identification of classes is not known in advance. D 2 gives stress on 
pairs in the same class of both partitions, as Jaccard's index. We found a relation 
between them. 

Since we found a strong correlation between the JV index and the D 2 in our 
simulation, we can deduce that JV (or RV) and D 2 lead us to the same result in 
comparing partitions. The distributions of these proposed indices have been found 
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very different from the case of independence and are bimodal. The bimodality might 
be explained by the presence of local optima in the k-means algorithm. 
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