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ABSTRACT
Comparing XML music scores is an important task for many activ-
ities such as collaborative score editing, version control and eval-
uation of optical music recognition (OMR) or music transcription.
Following the Unix diff model for text files, we propose an original
procedure for computing the differences between two XML score
files. It performs a comparison of scores at the notation (graphical)
level, based on a new intermediate tree representation of the mu-
sic notation content of a score and a combination of sequence- and
tree-edit distances. We also propose a tool to visualize the differ-
ences between two scores side-by-side, using the music notation
engraving library Verovio, and we employ it to test the procedure
on an OMR dataset.
ACM Reference Format:
Francesco Foscarin, Raphaël Fournier-S’niehotta, and Florent Jacquemard.
2019. A diff procedure for XML music score files: Computation and visu-
alization of the differences between two xml music score files. In Proceed-
ings of ACM Conference (Conference’17).ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Algorithms and tools for comparing text files have been around
for more than forty years (Unix diff [13],[12]). Their purpose is to
identify differences between two text files relatively similar (typi-
cally two versions of the same file), at the granularity level of lines
with the Longest Common Subsequence algorithm (LCS), or at the
granularity level of characters, with edit-distances. They output,
in a normalized format, a list of differences between the two files
that corresponds to our intuitive notion of difference. This list is
called a patch or an edit script and, combined with either one of
the two files, enables the reconstruction of the other file. Another
application is to merge two files containing independent changes
into a single file. Those tools are widely applied to text based docu-
ments nowadays, for software development, collaborative edition
and version control systems.

Similarly to text files, comparing music scores is relevant for
several applications. At a global level, it helps to define metrics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Three staves highlighting the differences between
a music content comparison and a music notation compari-
son. The staves (1,2) have the same music content but differ
in their music notation. The staves (1,3) differ only in one
note (a longer C at the end of the first bar) from amusic con-
tent point of view, but they are very different from a music
notation point of view.

capable of grasping the distance between two scores, for example
to evaluate the quality of a transcription process (see [7, 17] for re-
cent proposals). At a detailed level, it is very valuable for musicolo-
gist and developers of version control systems to get precise clues
on the locations of the differences between scores (e.g., between
two editions of the same score). One difficulty that immediately
arises for defining a diff tool for music scores is that, due to the
nature/complexity of the music language, a music score contains
multiple levels[9] that can be compared.

Most of the literature so far focuses on themusical content level,
i.e. the sequence of events in the score that describe the intended
production of sounds, independently from any encoding or ren-
dering concern. The comparison is made with some extended edit-
distance [2, 7, 16–18], or employing tree models [4, 21].

In the present paper, instead, we focus on the musical notation
level, i.e. how the music is intended to be displayed in the score.
This involves aspects such as note figures, beams, tuplets, ties/dots,
pitches spelling, and ca be found in XML scores along with musical
content (Figure 1). The authors of [3] , following the work of [15],
observe that it does not make sense to apply directly the standard
Unix diff utility to XML score files. The hierarchical structure of
note beaming and tuplet grouping motivates the need to compare
scores in terms of hierarchical structure (rather than lines or char-
acters), by using on XML files a tree-edit distance based on tree
nodes operations, as proposed by [25] or [6].

In this paper we propose a completemethodology for score com-
parison at music notation level, articulated in four main contribu-
tions: (i) the definition of an original tree-based representation of
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the music notation content of a measure, (ii) a new edit distance
algorithm yielding a list of differences between two scores, (iii) a
graphical tool to represent two scores side-by-side with coloured
annotations and (iv) a visual evaluation on a OMR dataset.

The tree-based representation of the music notation content of a
measure (Section 3.1), acts as a canonical model for disambiguation
of the rhythmic content for XML score formats. Indeed, one score
can have many different XML presentations that lead to the same
graphical output, e.g., by using or not a nested structure for beam-
ing, interchanging the order of elements, etc. Moreover, using an
intermediate representation allows to decouple our approach from
the exact file format (in general MusicXml or MEI); anyway for
practical reason explained in Section 4 we chose to work mainly
with scores in MEI format [22].

The new edit distance algorithm is based on our original tree-
structured representation and yield a list of differences between
two scores first at measure level (Section 3.2) and then at a finer
granularity level (Section 3.3), similarly to a text diff tool that first
finds the different lines and then explores the differences between
the words of each line.The distance is the size of the smallest list of
modifications required to transform one score into the other, and
it reflects visual differences between two scores.

The graphical tool (Section 4) represent two scores side-by-side
and shows coloured annotations, highlighting the notation differ-
ences between the two scores, in a similar fashion as visual diff
tools for text. While it is currently based on our algorithm only, it
may be extended to present other metrics and should also be easy
to integrate into other programs.

The entire workflow is apply on a dataset of scores produced
by OMR and allows to easily spot the mistakes made by the tran-
scription algorithm comparing to the manually annotated version
(Figure 2).

Related Work. Our aim is to create for music notation a tool sim-
ilar to the diff program by Douglas McIlroy [14], which compares
texts. Besides its practical usage, the latter has motivated theoreti-
cal studies which led to efficient algorithms for edit-distances com-
putation (e.g., [19, 23]). We draw from this work the process of
computing the differences with dynamic programming. Compar-
ing music scores has been the object of previous work with differ-
ent objectives: evaluation of OMR and automatic music transcrip-
tion (AMT), collaborative score editing, etc., leading to different
approaches to the problem.

Knopke and Byrd [15] pioneered with their ”work towards a
musicdiff program”, focusing on comparing several OMR outputs.
They show that a traditional XML diff tool cannot be used as is on
MusicXML, and categorize the comparison difficulties. They also
propose a rudimentary visualisation tool. Our workflow is similar
to [15] although our objective differ: we build a tool for users, and
put more focus on the second step, with a dedicated representation
and tree-edit distance computation procedure.

Recently, the subject has been studied in theMIR context of tran-
scription evaluation. Cogliati [7] present an edit-distance similar to
the Levenshtein distance, aiming at exhaustive research incorpo-
rating the characteristics of music notation into their metric. They
set up a very sound evaluation process involving human experts,
which highlights how algorithms are biased towards one category

of differences or another. Our objectives are different since we are
mostly interested in computing and displaying the whole list dif-
ferences between scores, and not only evaluating an edit distance.
Mcleod [17] improve slightly their work towards the goal of a joint
metric for AMTperformance, but they still do not take into account
typesetting differences.

Aiming at improving collaborative editing of scores, [3] intro-
duce the hierarchic paradigm that we followed, and worked with
the Zhang-Shasha tree-edit distance [3].They bring advances from
theoretical computer science (e.g., [5]) into themusic notation com-
munity. They present one example on an MEI-encoded file, show-
ing that writing a diff tool for XMLmusic scores should be liable to
the problems identified by [15] (i.e. XML coding style differences).
We introduce an original tree-based representation to go beyond
the problem.

Our last contribution, the graphical tool to visualize differences
between scores, is inspired by similar tools for texts. They are now
ubiquitous, either being standalone dedicated programs likeMeld1

(cross-platform) or FileMerge/opendiff (MacOS), or integrated into
IDEs (Eclipse, IntelliJ). To the best of our knowledge, our work is
the first proposition in the context of music scores.

2 MUSIC CONTENT DIFF
In this first section we consider a simple comparison between two
monophonic scores at music content level. Intuitively, its purpose
is to be able to compare scores according to the way they sound.
We use a intermediate score representation similar to a piano-roll,
with no overlapping notes.

This approach is not original, but it gives a good baseline to
introduce our music notation comparison in Section 3.

2.1 Lossy Linear Score Representation
We assume given an XML score, composed of a single monophonic
part. From the scorewe extract a sequence of triples ⟨pitch, onset, duration⟩,
where the pitch is a MIDI value in [0, 127] and onset and duration
are expressed in fraction of beats.

This representation in sequences captures the semantic informa-
tion of a music score, but loses other structural elements of music
notation important to the musicians, such as metric cues indicated
by grouping events with beams, ties, dots or chords, and informa-
tion about pitch spelling.

2.2 String Edit-Distance
We compare two parts from two different scores by applying the
Levenshtein edit distance to extracted sequences. It is based on
the three following edit operations [24] on the above triplets (n
represent a triple as above, and ε denotes the empty sequence):

ε → n insertion of a triplet,
n → ε deletion of a triplet,
n → n′ substitution of a triplet by another.

Every such operation α → α ′ is associated a cost value δ(α ,α ′).
We assume that δ(α ,α) = 0 for all α , and triangle inequality. The
cost of an edition sequence is the sum of the costs of all opera-
tions involved in the sequence. The edit distance D(s, s ′) between
1http://meldmerge.org/
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Figure 2: The score diff graphical tool with two scores side-to-side. The differences are annotated with different colors: (red)
deletions, (yellow) insertion, (green): modifications. In this example it is used to visually evaluate the result of an OMR tran-
scription.

two sequences of triplets s and s ′ is the minimal cost of an edi-
tion sequence transforming s into s ′. It can be computed using the
following dynamic programming equations, where |s | denotes the
length of s , and n.s represents a sequence made of triple n followed
by the subsequence s .

D(ε, ε) = 0
D(ε,n′.s ′) = D(ε, s ′) + δ(ε → n′) (ins)
D(n.s, ε) = D(s, ε) + δ(n → ε) (del)
D(n.s,n′.s ′) =

min


D(s, s ′) + δ(n → n′) (subst)
D(n.s, s ′) + δ(ε → n′) (ins)
D(s,n′.s ′) + δ(n → ε) (del)

3 MUSIC NOTATION DIFF
We now present our main contribution, which is based on another
representation, more structured, whose purpose is to enable a com-
parison of scores according to the way they look.

This representation (Section 3.1) is based on tree structures akin
to the rhythm-trees for rhythmnotation [1, 10, 21], butmore tightly
related to themusic notation information, in order to have an unique
representation of the graphical content of the XML scores.

We consider an XML score as a nested structure: on the top level
we have a list of score parts (usually one for each instrument), each
part is a list of measures, each measures is a list of voices and each
voices as a list of general notes (notes, rests or chords) that occurs
sequentially without overlapping. For the sake of presentation we
consider from now scores with a single part, where each measure

contains a single voice. We explain in Section 4 how we can gen-
eralize our technique to a polyphonic score with multiple parts.

The first step is to transform every score into a sequence of trees,
one tree (more precisely, one pair of trees, as detailed below) for
each bar. Then we proceed in two stages:

(1) comparison at the bar level (Section 3.2), with an alignment
of identical bars (i.e. they have the same trees), with a Longest-
Common-Subsequence (LCS) algorithm.

(2) comparison inside-the-bar (Sections 3.3, 3.4): amore in-depth
processing of unaligned bars, using purposely designed tree-
edit distances algorithms that descends into the bar repre-
sentations in order to identify differences.

3.1 Tree-Based Representation
We present an abstract model of the music notation content of bars
in music scores. It is designed as an intermediate structure for our
algorithms of diff computation, and it is notmeant to be a format for
data exchange. It can be imported from and exported to XML (see
Section 4). This model is based on the following two types of tree
representations, corresponding to two aspects of music notation.

3.1.1 Beaming Trees. A beaming tree represents the notes in a
measure and the beams and ties between them. In particular, we
encode in the leaves the information about the note-figures (note-
head, dots and ties); the remaining information (i.e. beams and
flags) are encoded in the tree structure (Figure 3).

Every leaf of a beaming tree represent an event: a note, a chord
or a rest. In the XML representation, a chord can be considered in
a single voice, if all the notes of the chord have the same duration.
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Figure 3: Examples of beaming trees. To simplify the pre-
sentation we use a pitch-less notation with notes and rests
denoted resp. by N , R. Rests with 2 flags are positioned in
the tree like notes with 2 flags, while notes beamed together
are represented by a different tree structure.

Each leaf is labeled by a triple containing the following information
(see Figure 3 for an illustration):

• pitches: a sequencewhere each element contains a pitch name
(letter + octave number for notes orR for rests), an alteration
value among ’none’ and , , , ,  and a tie flag indicating
if the corresponding note is tied to an element of the previ-
ous event in the tree (following a depth first traversal). The
sequence is ordered from the lowest to the highest pitch;
in case of a single note or a rest (not a chord), pitches is a
singleton sequence;

• notehead: a value representing a fraction of whole note, e.g.,
1, 2, 4, represent respectively , ,, and C for a note and  , 
,  for a rest;

• dots: a natural number in [0, 3] that specify the number of
dots.

We define the size ∥pitches∥ of a sequence pitches as the sum of the
sizes of all its elements, where the size ∥pitch∥ of an element pitch
is the number of graphical items it contains, e.g., a note D4  with
a tie will have size of 3, while a rest R will have size of 1.

In the internal nodes, we use the two symbols ′0′ and ′1′ for
the encoding of beams; intuitively a label ′1′ indicates that there
is a beam between the notes in the subtrees under the node. More
precisely, let theweight of a noden be the number of nodes labelled
′1′ on the path from n to the root of the tree (including n itself).
Let n and n′ be events in two successive leaves and ℓ be their least-
common-ancestor in the tree (it is always defined and unique).The
number of beams betweenn andn′ is eitherweiдht(ℓ), if in the two
paths ℓ −→ n and ℓ −→ n′ all inner nodes are labeled by ′1′, or it is
′0′ otherwise.

% 33 œ œ œ œ œ œ œ œ3 3 ˙ ˙ œ œ œ
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3
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Figure 4: Beaming and tuplet tree for nested triplets (in
pitch-less representation). In the first bar, the sequence of
the first three notes is labeled by 3 (with a bracket), the se-
quence of the last three notes is also labeled by 3 (no bracket
needed because these three notes are beamed, according to
the beaming tree), and the two middle notes do not have a
tuplet label.

3.1.2 Tuplet Trees. The tuplet trees, illustrated on Figure 4, repre-
sent the locations of the numbers and brackets explicitly defining
in a score the nature of the tuplets. Every inner node of a tuplet
tree is either unlabeled (this is denoted with a label · in figures), or
labeled by a pair of integers i : j, with i, j ≥ 2, meaning ’i elements
in the time of j’, or by a single integer i if j can be omitted [11]. The
leaves are labeled like for the beaming trees: Every tuplet tree is
associated to a companion beaming tree with the same sequence
of leaves (the difference between them is only in the structure).

3.2 Longest Common Subsequences of Parts
Assume that we are given two parts extracted from two different
scores. We represent each part by a sequence of pairs p = ⟨bt , tt⟩,
one pair per bar, where bt is a beaming tree and tt is a companion
tuplet tree.

Similarly to the line-by-line comparison procedures for text files [13],
and considering a bar as the analogous of a line in a text file, we
shall align identical bars from the two parts, by computing their
longest common subsequence (LCS), whose size is defined by the
following recursive Dynamic Programming equations (with simi-
lar notations as in Section 2.2):

LCS(ε, s ′) = LCS(s, ε) = 0
LCS(p.s,p′.s ′) = 1 + LCS(s, s ′) if p ≡ p′

= max
(
LCS(p.s, s ′), LCS(s,p′.s ′)

)
otherwise.

In the second line, p ≡ p′ means that the trees in pairs p =
⟨bt , tt⟩ and p′ = ⟨bt ′, tt ′⟩ are isomorphic, i.e. that bt = bt ′ and
tt = tt ′. According to the representation presented in Section 3.1,
it means the corresponding bars can be considered identical.

The above equation can be adapted in order to compute a max-
imal alignment of identical pairs between the two sequences. For-
mally, denoting the two sequences by s = p1, . . . ,pm and s ′ =
p′1, . . . ,p

′
n , the alignment ismade of two strictly increasing sequences

4
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Figure 5: LCS and difference blocks.

of indices of same length, (i0 = 0, i1, . . . , ik ) and (i ′0 = 0, i1, . . . , i
′
k )

such that for all 0 ≤ j < k ,
(i) pi j+1 ≡ p′i′j+1

, and
(ii) the pairs in the respective sub-sequencesbj = pi j+1, . . . ,pi j+1−1

and b ′j = p′i j+1, . . . ,p
′
i j+1−1 are pairwise distinct (each of

these sequences might be empty if i j+1 = i j + 1 or i ′j+1 =

i ′j + 1).
We call each pair ⟨bj ,b ′j ⟩ as above a difference block (see Figure 5)

and the objective of the next two subsections is to perform a fine
comparison between blocks.

3.3 Inside-the-bars Comparison
In the following, for a tree t (either a beaming tree or tuplet tree),
∥t ∥ denotes the sum of the sizes of labels of all the nodesn in t (size
of labels is 1 by default, ∥n∥ for a leaf as defined in Section 3.1.1, 0
for unlabeled nodes). For a sequence s = t1, . . . , tk of trees, ∥s∥ =∑k
i=1 ∥ti ∥.

3.3.1 Comparison of Beaming Trees. The following recursive equa-
tions define an edit distance (denoted by B) between sequences
of beaming trees. The distance between two trees is defined by
the particular case of singleton sequences. In these equations, t .s
and t ′.s ′ denote two beaming tree sequences, with t = a(s0) and
t ′ = a′(s ′0), where s0 and s ′0 might be empty.

We call a tree atomic if it is composed of a single leaf node (i.e.
it represents an event). We call a tree t = a(s0) unary if s0 is a
singleton sequence (i.e. the root has a single child).

B(ε, s ′) = ∥s ′∥ B(s, ε) = ∥s∥
B(t .s, t ′.s ′) =

min



B(s, t ′.s ′) + ∥t ∥ (del-tree)
B(t .s, s ′) + ∥t ′∥ (ins-tree)
B(s0.s, t ′.s ′) + 1 (del-node)
if t non-atomic, t ′ atomic, or t unary, t ′ not unary
B(t .s, s ′0.s

′) + 1 (ins-node)
if t atomic, t ′ non-atomic, or t not unary, t ′ unary
B(s0.s, s ′0.s

′) + δ(a,a′) (descend)
if t , t ′ non-atomic

B(s, s ′) + A(t , t ′) (leaf)
if t , t ′ atomic

where δ(a,a′) is a defined by δ(a,a′) = 0 if a = a′, and δ(a,a′) =
1 otherwise.
The cases (del-tree) and (ins-tree) correspond to the deletion or
insert of a whole subtree. The cases (del-node) and (ins-node)with
one unary tree correspond to a difference of one beam between the
trees. The other cases descend down to leaves and then compare
atomic trees t and t ′ with the distance A(t , t ′) defined as follows

(p, n, d stand respectively for the attributes pitches, noteheads, dots
of Section 3.1):

A(t , t ′) = D
(
p(t), p(t ′)

)
+ δ(n(t), n(t ′)) + |d(t) − d(t ′)|

where the first literal D
(
pitches(t), pitches(t ′)

)
is the Levenshtein

distance defined in Section 2.2, using the following operations costs:

δ(ε → pitch) = δ(pitch → ε) = ∥pitch∥
δ(pitch → pitch′) = δ(n,n′) + δ(alt, alt′) + δ(tie, tie′)

where n, n′, alt, alt′ and tie, tie′ are the respective name, alteration
and tie values of pitch and pitch′.

3.3.2 Comparison of Tuplet Trees. Tuplet trees have a simpler struc-
ture than beaming trees (e.g., no unary nodes). We compare them
with the classical Zhang-Sasha equations [25] for computing a tree-
edit-distance (denoted by T), i.e. the smallest number of node-edit
operations to transform a tuplet tree into another (instead of the
algorithm of Section 3.3.1 which is specific to beaming trees).

T(ε, s ′) = ∥s ′∥ T(s, ε) = ∥s∥
T(t .s, t ′.s ′) =

min


T(s0.s, t ′.s ′) + 1 (del-node)
T(t .s, s ′0.s

′) + 1 (ins-node)
T(s, s ′) + T(s0, s ′0) + δ(a,a′) (subst-node)

where δ(a,a′) is as in Section 3.3.1 for inner nodes and δ(a,a′) =
A(a,a′) when a and a′ are leaf labels.

3.4 Comparison of Difference Blocks
We compute the distance between two difference blocks b,b ′ us-
ing the following recursive equations, similar to the equations of
Section 2.2.
We recall that a block is a sequence of pairs (bar representations) of
the form p = ⟨bt , tt⟩, where bt and tt are respectively a beaming
tree and a tuplet tree.

D(ε,b ′) = ∥b ′∥ D(b, ε) = ∥b∥
D(p.b,p′.b ′) =

min


D(b,b ′) + ∆(p,p′) (edit-bar)
D(p.b,b ′) + ∥p′∥ (ins-bar)
D(b,p′.b ′) + ∥p∥ (del-bar)

where, for p = ⟨bt , tt⟩ and p′ = ⟨bt ′, tt ′⟩:

∆(p,p′) = B(bt ,bt ′) + T(tt , tt ′) − corr(p,p′) (1)

is the edit distance between two bar representations; corr(p,p′) is a
correction of T(tt , tt ′) to avoid to count the same differences twice
(see Section 4).
Finally, the distance between two parts is the sum of distances be-
tween all the difference blocks.

4 IMPLEMENTATION & EXPERIMENTS
The construction of the models of Section 2.1 and 3.1 from MEI
scores, as well as the implementation of the algorithms proposed,
have been performed in Python3, on the top of theMusic 21 toolkit [8].

The computations of the string edit distances of Sections 2.2,
3.2 (LCS) and 3.4 are performed with an iterative computation and
run in timeO(m∗n), wherem,n is the length of the two sequences.
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Figure 6: Visualization of differences between two bars com-
puted by the algorithms of Section 3. The upper example (1)
is taken fromFigure 4 andmanuallymodified to create some
differences, while the lower example is a real-life example
from an incorrect OMR score import, compared to the cor-
rect score.

The computation of the tree-edit distances of Section 3.3, is imple-
mented by recursive functions, with a worse case time complexity
in O(n4). We use a table of solutions in order to avoid to recom-
pute the function on the same inputs and hence reduce the com-
putation time. Nevertheless, efficiency is not a crucial issue in this
case, because the difference blocks are typically small (e.g., in OMR
evaluation), or such that b = ε or b ′ = ε (insertion or deletion of
bars).

A difference in our score is modeled as a triple (operation, t , t ′)
where operation is a string identifying the performed operation
(e.g. ins-node), and t , t ′ are the subtrees transformed by that oper-
ation (or ε is case of insertion/deletion). In the implementation, the
above recursive equations are actually extended in order to com-
pute, beside the edit distance, a list of differences. It means that the
functions B, T etc. return pairs made of a cost value along with a
diff list. To that respect, the operator + in the recursive equations
makes the sum of the cost values and the concatenation of diff lists,
and the min selects the pair with the smallest cost value. The func-
tion corr(p,p′) in Section 3.4 uses the difference lists returned by
B and T in order to detect intersection that may occur, in particu-
lar for leaves. These intersections are removed (operator − in (1))
both from the cost value and the diff list. Thus, we avoid account-
ing twice for the same difference (e.g., a pitch modification must
be counted only once, even if it is present in the result of both B
and T).

The elements of diff lists are pairs of references to elements in
the two scores, plus an identifier of the edit operation. To have an
unique reference for the elements in the scores, we use the unique
id associated to each element in theMEI format ofmusic scores.We
store those ids in the leaves of our tree representation, and they
are very useful later in order to display the differences between
scores. The XML ids are an important feature, not present in the
MusicXML format, and the main reason we always work withMEI
score files in input (a MusicXML score can be transformed into a
MEI score as a preprocessing).

The generalization of our algorithms for single-part, single-voice,
single-note comparison to a polyphonic score is implemented as
following:

• single-voice −→ multiple-voices: we first couple the voices
considering the ones with shorter distance and then we run
our algorithm on each voice independently. If the number
of voices of the measure in the two scores is different, we
return the eventual voice-insertion and voice-deletion anno-
tation.

• single-part −→ multiple-parts: we first couple the parts by
part-name/instrument and we run our algorithms on each
couple of parts independently. In case of added parts, we
return the eventual part-insertion and part-deletion anno-
tation. Coupling parts considering the ones with smallest
distance is also possible, but it drastically slow down the
computation, especially if the number of parts is high (e.g.,
orchestral scores).

After computing the edit distances and list of differences be-
tween two given scores, we display, using Verovio [20], the two
scores side-by-side, highlighting the differences.

We run experiments in order to test the usability of our work-
flow for two scenarios: collaborative edition of scores, and OMR
evaluation. For the first use case, we considered made-up scores
with some typical modifications (bar insertions, note pitch modifi-
cations, etc.) in a context of versioning. For the second scenario, we
used a corpus produced by the Bibliothèque nationale de France
(BNF) composed of 21 ouvertures of Jean-Philippe Rameau, each
with an OMRized version (from manuscripts) and its manual cor-
rection, that we compare with our tool2.

Our algorithms has shown promising results in both cases, high-
lighting very fine differences in the scores (e.g., beams and dots),
as illustrated on Figure 6. The evaluation of OMR results were not
possible for many scores, due to quality issues in the XML files [9],
e.g., a tie between two non-consecutive notes, a note duration that
exceed the total duration of the bar, etc. Our model is designed to
handle only correctly encoded scores, and such faulty notations
result in an error.

5 CONCLUSION
We have presented a procedures to compare XML scores at music
notation level that is based on a tree intermediate representation
of measures and on a combination of string edit distance and tree
edit distance.

In contrast with most approaches in the state of the art, our
methodology produces a list of differences that can be highlighted
directly on the scores, and alleviates the user from the tedious task
of manual scores comparison. Our algorithms gives also a simi-
larity metrics, but this metric is only used to compute the list of
differences and it is not useful per se. For this reason, comparison
to other approaches (e.g., techniques for melodic similarity) would
not be relevant.

Experiments show that our approach allows to correctly dis-
plays very fine differences in the scores. Technical improvements
are still needed in other stages (XML parsing, error detection/correction,
complex score visualization) to improve usability.

2see our supplementary material page at https://anonymoususer12042019.github.io/
for details.
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