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Abstract

This paper proposes a sliding surface which renders the system dynamics to
start directly from itself without a reaching phase. More specifically, the sys-
tem dynamics is insensitive to matched disturbances/uncertainties throughout
the entire system response. The controller design based on reduced-order sub-
system is still preserved. It is different from integral sliding mode in which the
design is based on the full order of the system to reach the same objective. The
simulation results of its application to a fractional inverted pendulum system is
demonstrated.
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1 INTRODUCTION

The idea of fractional calculus was discussed for the first
time over a letter from Leibniz to L'Hôpital in 1695. Frac-
tional differential equations have been in use to model
physical phenomena in the last couple of decades. The
history of fractional-order calculus can be found in [1]
[2]. The state space description is given in [3]. In [4],
the authors instilled interest into the research commu-
nity. New paths have been paved in the fractional calcu-
lus theory in [5]. Due to its wide advantages, in recent
years, the study of fractional-order controllers has wit-
nessed considerable interest [6,7]. The discussions on sta-
bility of fractional-order systems can be found in [8,9].
Some applications of fractional calculus have been given in
[10–12].

The control under heavy uncertainties is one of the most
challenging tasks. Sliding Mode Control (SMC) is one of
the most efficient control strategies to deal with uncertain-
ties [13]. Nowadays, it is used in control and observation

of several classes of problems such as that related to power
converters, vehicle motion control, etc.

The main objective of this class of controllers is to force
the system states to stay in a predefined manifold (sliding
surface) and maintain it there in spite of the presence of
uncertainties in the system. Therefore, the sliding mode
based design consists of two phases (i) Reaching Phase in
which the system states are driven from the initial state
to reach the sliding manifold in finite time and (ii) Slid-
ing Phase in which the closed-loop system is induced into
sliding motion. However, when the system reaches sliding
phase, the consideration of robustness and order reduction
come into picture which are the most important aspects
of the sliding mode based design. It is worth noting that
during the reaching phase, there is no guarantee of robust-
ness [14]. In order to address robustness issue throughout
the entire space, Integral Sliding Mode Control (ISMC) has
been proposed in the SMC literature [14] but its design
methodology has been based on full order of the system.
However, the system exhibits a reduced-order dynamics
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after it has reached the sliding surface i.e. the system order
gets reduced by one due to the introduction of the sliding
variable, s such that s = 0 in finite time. As a consequence,
the simplicity and flexibility of the design procedure which
is provided by reduced-order subsystem in classical SMC
is lost in ISMC. The motivation behind this work is to
preserve the robustness in the system by eliminating the
reaching phase such that the system remains on the sliding
manifold from the very initial time.

For the fractional-order systems, sliding mode approach
and its variants have been quite recently pursued in the
literature (e.g. the work in [10,15–17] aims at finite-time
stability and at the rejection of matched uncertain-
ties/perturbations).

The main aim of the present paper is to address robust-
ness from the very initial time and also maintain the
design methodology based on order reduction for uncer-
tain fractional-order systems. In order to achieve this, two
different methodologies have been adopted:

• An integer reaching law approach is used proposing a
sliding surface which eliminates the reaching phase and
also, its stability is proved.

• Secondly, a sliding surface using fractional reaching law
approach is proposed followed by the same procedure
as in the case of integer reaching law approach.

The approach used in this work is based on
Reimann-Liouville (R-L) and Caputo definitions of frac-
tional derivatives. However, there are other definitions
also. In [18], a frequency-distributed model is used which
results into different transient response of the system.
For a certain fractional-order system, if the model as
described in [18] is used, then in that case the approach
used in this paper may fail to give the desired results. In
[19], non-smooth type control is used while adaptive SMC
is used to stabilize the system in [20,21]. Adaptive SMC
has its own beauty of reducing the magnitude of con-
trol which further decreases the amplitude of chattering.
However, in each of the work, there is no guarantee of
robustness in the reaching phase. In the approach used
in this paper, the system remains on the sliding surface
from time, t = t0. So, robustness is achieved from the very
initial time. Another advantage of this approach is that
the control design based on reduced-order subsystem is
preserved. The rest of this note is organized as follows.
In Section 2, a brief summary of fractional-order calcu-
lus, fractional-order systems and the related Lyapunov
stability extension for stability analysis are presented. A
brief review of fractional-order sliding mode controller
is introduced in Section 3. The main results of this paper
are reported in Section 4. Section 5 discusses the sim-
ulation results followed by the concluding remarks in
Section 6.

2 PRELIMINARIES

2.1 Fractional-Order Calculus
Fractional-order integration and differentiation consti-
tute the fractional calculus. They are generalization
of their integer-order counterparts. The theorems and
rules in fractional-order calculus are applicable to their
integer-order counterparts in a more generalized represen-
tation but not always in a straightforward manner. Two
of the most common definitions of fractional-order cal-
culus are the R-L definition and Caputo definition which
are inspired by the definition of Cauchy generalized n ∈
N−fold integral of function by replacing the factorial func-
tion by the more generalized Gamma function [5,22].

Definition 1. The 𝛼th-order fractional integration of
the function 𝑓 ∶ (0,∞) → R with respect to t > 0 and
terminal value t0 > 0 is given by

t0 I𝛼t 𝑓 (t) ∶=
1

Γ(𝛼) ∫
t

t0

𝑓 (𝜏)
(t − 𝜏)(1−𝛼)

d𝜏, (1)

where Γ ∶ (0,∞) → R is the Euler's Gamma function:

Γ(𝛼) ∶= ∫
∞

0
x𝛼−1e−xdx

Definition 2. The R-L definition of the 𝛼th-order frac-
tional derivative is given by:

RL
t0

D𝛼
t 𝑓 (t) ∶=

1
Γ(m − 𝛼)

dm

dtm ∫
t

t0

𝑓 (𝜏)
(t − 𝜏)(𝛼−m+1) d𝜏, (2)

where m ∈ N such that m ≥ ⌈𝛼⌉, where ⌈𝛼⌉ is the
smallest integer greater than or equal to 𝛼 where 0 <

𝛼 < 1.

Definition 3. The Caputo definition of the 𝛼th-order
fractional derivative of the m times continuously differ-
entiable function 𝑓 ∶ (0,∞) → R or 𝑓 ∈ Cm ((0,∞),R)
is given by:

c
t0

D𝛼
t 𝑓 (t) ∶=

1
Γ(m − 𝛼) ∫

t

t0

𝑓 (m)(𝜏)
(t − 𝜏)(𝛼−m+1) d𝜏. (3)

A few important properties of fractional derivatives and
integrals are as follows [23] :

• For 𝛼 = n, where n is an integer, the operation c
t0

D𝛼
t 𝑓 (t)

gives the same result as the classical differentiation of
integer order n.

• For 𝛼 = 0, the operation c
t0

D𝛼
t 𝑓 (t) is the identity

operation:
c
t0

D𝛼
t 𝑓 (t) = 𝑓 (t). (4)

• Fractional differentiation is a linear operation:
c
t0

D𝛼
t (a𝑓 (t) + bg(t)) = ac

t0
D𝛼

t 𝑓 (t) +
c
t0

D𝛼
t g(t). (5)
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• The additive index law (semigroup property)

c
t0

D𝛼
t

c
t0

D𝛽

t 𝑓 (t) =
c
t0

D𝛽

t
c
t0

D𝛼
t 𝑓 (t) =

c
t0

D𝛼+𝛽
t 𝑓 (t), (6)

holds for f(t) ∈ C1[0,T] for some T > 0 where, 𝛼, 𝛽 ∈ R+

and 𝛼 + 𝛽 ≤ 1 [24].

Remark 1. Caputo derivative and R-L are the two
mostly used definitions in fractional calculus [22].
Since the initial value of fractional differential
equation with Caputo derivative is the same as the
initial value of integer differential equation, it is the
most acceptable one. For example, the initial value of
the fractional differential equation c

t0
D𝛼

t x(t) = 𝑓 (t, x)
with 𝛼 ∈ (0, 1), t > 0 is assumed as x(0) ≡ x0.

However, for the same fractional differen-
tial equation with R-L in place of Caputo,
RL
0 D𝛼

t x(t) = 𝑓 (t, x) with 𝛼 ∈ (0, 1), t > 0, the ini-
tial value of x(t) involves fractional integral (and/or
derivative). Here, the initial condition is given as
[RL

0 D𝛼−1
t x(t)]t=0 = x′0.

On the other hand there is a limitation in case of
Caputo definition. It is not able to capture the exact
physical behavior of the system as illustrated in [25].
When the initial condition is non-zero, the system tra-
jectories generated by Caputo definition differ from
the actual ones. An account of physical and geomet-
rical interpretations for initial condition value and
fractional derivatives can be found in [25,26] and [27].

Given a control system, the first and the most important
question is whether it is stable, because an unstable con-
trol system is typically useless and potentially dangerous.
Qualitatively, a system is described as stable if by start-
ing the system somewhere near its desired operating point,
it will stay around the point ever after. The most useful
and general approach for studying the stability of linear
and nonlinear control systems is the theory introduced by
Lyapunov. In the next subsection we are going to review
the fractional extension of Lyapunov stability which has
been recently proposed in [8,28].

2.2 Fractional Extension of Lyapunov
Stability
Using Caputo definition, an n−dimensional
fractional-order system can be defined as,

c
t0

D𝛼
t x(t) = 𝑓 (x, t); ∀t ≥ t0 (7)

where, 𝛼 ∈ (0, 1) and f(x, t) is locally bounded in x and
piecewise continuous in t for all t ≥ t0 and x ∈ D, where
D ⊂ Rn is a domain that contains the origin x = 0. For
stability analysis of systems in (7), a fractional extension

of Lyapunov's direct method was proposed in [8] which is
based on the following definition:

Definition 4. A continuous function 𝛾 ∶ [0, t) →
[0,∞) is a class- function if it is strictly increasing and
𝛾(0) = 0.

Theorem 1. Let x = 0 be an equilibrium point for the
non-autonomous fractional-order system i.e., f(x, t) =
0,∀t ≥ t0. If there exists a Lyapunov function V (t, x(t)) ∶
[t0,∞) × D → R and a class- function 𝛾 i(i = 1, 2, 3)
such that, 𝛾1(||x||) ≤ V(t, x(t)) ≤ 𝛾2(||x||) and
c
t0

D𝛼
t V(t, x(t)) ≤ −𝛾3(||x||) where, 𝛼 ∈ (0, 1) then, the

system (7) is asymptotically stable.

Theorem 2. Let x ∈ Rn be a continuously differen-
tiable vector-valued function. Then, for any time instant
t ≥ t0 and ∀𝛼 ∈ (0, 1),

1
2

c
t0

D𝛼
t x⊺(t)x(t) ≤ x⊺(t)c

t0
D𝛼

t x(t). (8)

It will be used in the later sections for the Lyapunov anal-
ysis of fractional-order systems with the proposed control
input. Since this result was derived using Caputo deriva-
tives, the same definition will be used throughout this
paper unless mentioned otherwise.

3 FRACTIONAL- ORDER SLIDING
MODE CONTROLLER

Consider a controllable*commensurate fractional-order
linear time-invariant system given by,

c
t0

D𝛼
t x̄(t) = Āx̄(t) + B̄ (u(t) + d(t)) (9)

where, x̄(·) ∈ Rn , Ā ∈ Rn×n, B̄ ∈ Rn×m, u(·) ∈ Rm ,
d(·) ∈ Rm are pseudo states,† system matrix, input matrix,
control input, disturbance input respectively. It is assumed
that exact evolution of disturbance with respect to time is
not known but it is bounded.

There always exists an invertible non-singular matrix
T ∈ Rn×n such that using a linear transformation z(t) =
Tx(t), (9) can be transformed into the regular form,

*Controllability test for the commensurate fractional- order linear
time-invariant system (LTI) is the same as for the integer-order LTI
system [15].
†For a fractional order system, the knowledge of x(t0) (t0 being the initial
time) is not sufficient to determine the future behavior of the system. Con-
sequently, the collection of physical variables in a vector x does not strictly
represent the state of the system. This is why the term, “Pseudo State” is
coined in the literature in order to represent the physical variables of the
fractional order systems [18,29]. In this manuscript same terminology has
been used.
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c
t0

D𝛼
t z1(t) = A11z1(t) + A12z2(t)

c
t0

D𝛼
t z2(t) = A21z1(t) + A22z2(t) + B2(u(t) + d(t)) (10)

where,
[

z1(t)
z2(t)

]
= z(t), z1(·) ∈ Rn−m, z2(·) ∈ Rm.

Since the pair (Ā, B̄) is controllable, the pair (A11,A12)
will also be controllable. The above system of equations
can be represented as,

c
t0

D𝛼
t z(t) = Az(t) + B(u(t) + d(t)) (11)

where, A =
[

A11 A12
A21 A22

]
, B =

[
0
B2

]
.

Now, the main aim is to design SMC such that slid-
ing takes place from the very initial time t ≥ t0 and z(t)
approaches towards the origin as t → ∞ in the presence
of bounded matched disturbance d(t). So, x(t) approaches
asymptotically towards the origin as T is invertible. For
the simplicity of presentation, it is assumed that u ∈ R

and B2 ∈ R. However, similar results can be extended
for the multi-input case in a straightforward manner. It is
important to mention that the present work is based on the
following assumption:

Assumption 1. For a non-smooth controller, the exis-
tence and uniqueness of solutions of the system are
defined in the Filippov sense [15] i.e., letting x denote
the pseudo states of the entire system c

t0
D𝛼

t x(t) =
𝑓 (x(t), d(t)), 𝛼 > 0, disturbance d ∈ Rm and assuming
𝑓 ∶ Rn × Rm → Rn to be locally bounded, then the
solutions are defined with the differential inclusion,

c
t0

D𝛼
t x(t) ∈

⋂
𝛿>0

⋂
𝜇N=0

cl(co(𝜁 (B𝛿(x) ⧵ N)))

where, cl and co denote the closure and the convex hull
respectively. B𝛿(x) is the unit ball and the sets N are all
sets of zero Lebesgue measure. Here, 𝛿 represents the
small ball around the discontinuity point on the state
trajectories when the system is on the sliding surface.
𝜇N represents the factor by which the trajectories are
scaled so that the deviation of the sliding variable from
s = 0 is minimized.

In [15], the sliding surface has been designed using frac-
tional reaching law and integer reaching law. The sliding
surface for (10) using integer reaching law is,

s(z, t) = t0 I1−𝛼
t (c1z1(t) + z2(t)) (12)

where, s ∶ Rn × (t0,∞) → R, c1 ∈ R1×(n−1) and for,

u(t) = B−1
2 (v − c1{(A11 − A12c1)z1(t)} + A12t0 I1−𝛼

t s
− A21z1(t) − A22z2(t))

where, v = −k1sign(s), it has been proved in [15] that for s
to be zero in finite time, k1 > |B2||d|.

In case of fractional reaching law,

s(z, t) = c1z1(t) + z2(t) (13)

Using fractional derivative of s in (13), (10) becomes,
c
t0

D𝛼
t z1(t) = (A11 − A12c1)z1(t) + A12s
c
t0

D𝛼
t s = c1

c
t0

D𝛼
t z1(t) +c

t0
D𝛼

t z2(t)

= c1{(A11 − A12c1)z1(t) + A12s}
+ A21z1(t) + A22z2(t) + B2u(t) + B2d

Here, the control u(t) is chosen as, u(t) = B−1
2 (v −

c1(A11 − A12c1)z1(t) + A12s − A21z1(t) − A22z2(t)) where,
v = −k1sign(s). After applying the control, the closed-loop
system becomes,

c
t0

D𝛼
t z1(t) = (A11 − A12c1)z1(t) + A12s,
c
t0

D𝛼
t s = −k1sign(s) + B2d

(14)

Now, the following theorem is important:

Theorem 3. The sliding surface s in (13) becomes zero
in finite time if k1 > |B2||d|.
Proof. The Lyapunov function is chosen as V = 1

2
s2.

Then, c
t0

D𝛼
t V = 1

2
c

t0
D𝛼

t s2. Using (8),

c
t0

D𝛼
t V ≤ sc

t0
D𝛼

t s = s(−k1sign(s) + B2d)

≤ −k1|s| + |s||B2d| = −|s|(k1 − |B2d|)
= −(2V)

1
2 (k1 − |B2d|) ≤ −𝜂(2V)

1
2

where, 𝜂 = k1 − |B2||d| > 0. Using the above inequality,
s = 0 results in finite time [15] which can be derived as
follows:

Putting t0 = 0 in (14), c
0D𝛼

t s = −k1sign(s) + B2d. Taking
fractional integral of order 𝛼 on both sides,

0I𝛼t
c
0D𝛼

t s = k1 0I𝛼t sign(s) + B2 0I𝛼t d (15)

Since, 0I𝛼t
c
0D𝛼

t s = s(t) −c
0 D𝛼−1

t s(0) t𝛼−1

Γ(𝛼)
and0I𝛼t c = c t𝛼

Γ(𝛼+1)
,

Equation (15) becomes after finite time t = T,

s(T) −c
0 D𝛼−1

t s(0) t𝛼−1

Γ(𝛼)
= −k1sign(s(0)) T𝛼

Γ(𝛼 + 1)
+ B2 0I𝛼t d

Multiplying with sign(s(0)) and using s(T) = 0,

−c
0 D𝛼−1

t s(0)sign(s(0))T𝛼−1

Γ(𝛼)
= −k1

T𝛼

Γ(𝛼 + 1)
+ B2 0I𝛼t (sign(s(0))d)

Using the inequality,

0I𝛼t (sign(s(0))d) ≤ t0 I𝛼t |d| ≤ 0I𝛼t d0 = d0
T𝛼

Γ(𝛼 + 1)
Equation (16) becomes,

−c
0D𝛼−1

t s(0)sign(s(0))T𝛼−1

Γ(𝛼)
≤ −(k1 − B2d0)

T𝛼

Γ(𝛼 + 1)
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which further results into,

T ≤ Γ(𝛼 + 1)c
0D𝛼−1

t s(0)sign(s(0))
Γ(𝛼)(k1 − B2d0)

(16)

which is always finite.

Remark 2. It is clear that sliding mode has taken place
after a finite time t ≥ T where, T is such that s(z,T) =
0. Further, a modified sliding surface is proposed in
which sliding mode starts from t ≥ t0 such that the
reduced-order design methodology is preserved.

4 MAIN RESULTS

Consider the same system as in Equation (10). The sliding
surface for integer reaching law is,

s = t0 I1−𝛼
t {(c1z1(t) + z2(t)) − (c1z1(t0)

+z2(t0)) e−𝜆(t−t0)
}

where 𝜆 > 0 and c1 ∈ R1×n−1 are the design parameters.
Note that s = 0 at initial time t = t0. Then, the system (10)
is transformed as,

c
t0

D𝛼
t z1(t) = (A11 − A12c1)z1(t)

+ A12

{
c
t0

D1−𝛼
t s + (c1z1(t0)

+z2(t0)) e−𝜆(t−t0)
}

.s =c
t0

D𝛼
t {(c1z1(t) + z2(t))

− (c1z1(t0) + z2(t0)) e−𝜆(t−t0)
}

= c1 [(A11 − A12c1)z1(t)

+A12

{
c
t0

D1−𝛼
t s + (c1z1(t0)

+z2(t0)) e−𝜆(t−t0)
}]

+ A21z1(t) + A22z1(t) + B2u(t) + B2𝑓

− (−𝜆)𝛼 (c1z1(t0) + z2(t0)) e−𝜆(t−t0)

The control input is selected as,

u(t) = B−1
2 [v − c1 {(A11 − A12c1)z1(t) + A12

×
{

c
t0

D1−𝛼
t s + (c1z1(t0) + z2(t0))e−𝜆(t−t0)

}}]
− B−1

2 (A21z1(t) + A22z1(t))

(17)

where, v = −k1sign(s). Hence, .s = −k1sign(s) + B2d + Ξ,
where Ξ = B−1

2 [(−𝜆)𝛼((c1z1(t0)+z2(t0))e−𝜆(t−t0)]. It is impor-
tant to note that |Ξ| is always bounded for any initial
condition z(t0).

Further, it is proved that the trajectories remain on the
sliding surface s once they start from it at t = t0 and then,
asymptotically converge to z1(t) = z2(t) = 0.

Lemma 1. If k1 > |B2d| + |Ξ|, then the trajectories are
maintained on the sliding surface s = 0,∀t ≥ t0.

Proof. Consider the Lyapunov function, V = 1
2

s2. By
taking the time derivative of Lyapunov function along
closed-loop subsystem .s = −k1sign(s) + B2d + Ξ,

.
V = s .s = s(−k1sign(s) + B2d + Ξ)

= −k1 |s| + sB2d + sΞ
≤ −k1 |s| + |s| |B2d| + |s| |Ξ|
= −(2V)

1
2 (k1 − |B2d| − |Ξ|)

≤ −𝜂(2V)
1
2

where, 𝜂 = k1 − |B2d| − Ξ. When 𝜂 = k1 − |B2d| − Ξ > 0,
Lyapunov stability theory (V = 0 and

.
V ≤ 0) ⇒ V =

0,∀t ≥ t0 implies s = 0,∀t ≥ t0. This completes the
proof. The expression for the finite time, T can be derived
as follows:

dV
dt

≤ −𝜂
√

2V 1∕2

∫
T

0
dt ≤ −∫

0

V0

dV
𝜂
√

2(V)1∕2

T ≤ −∫
0

V0

dV
𝜂
√

2(V)1∕2
=

√
2V(0)
𝜂

Lemma 2. If the matrix (A11 − A12c1) is negative
definite,‡ then the closed-loop system is asymptotically
stable.

Proof. Take the Lyapunov function, V = 1
2

z⊤1 (t)z1(t).
Then, c

t0
D𝛼

t V = 1
2

c

t0
D𝛼

t z⊤1 (t)z1(t). Using (8),

c
t0

D𝛼
t V ≤ z⊤1 (t)

c
t0

D𝛼
t z1(t) ≤ z⊤1 (t)(A11 − A12c1)z1(t)

+ z⊤1 (t)A12

{
c
t0

D1−𝛼
t s + (c1z1(t0) + z2(t0)) e−𝜆(t−t0)

}

As s = 0 from time t = t0, the term (c1z1(t0) +
z2(t0))e−𝜆(t−t0) → 0 as t → ∞, z1(t) and hence, the system is
asymptotically stable if the matrix (A11 −A12c1) is negative
definite. This completes the proof.

Remark 3. It is important to note that if we select
v = −𝜆|s| 1

2 sign(s) − 𝛼 ∫ t
t0

sign(s)d𝜏, where 𝛼 = 1.1Δ

and 𝜆 = 1.5
√
Δ such that B2| .

d(t)| ≤ Δ, where Δ is
some a priori known constant, then the proposed con-
trol (17) generates continuous signal and it is also better
for the chattering minimization problem, which is com-
monly encountered during the practical implementation
of discontinuous control. The above suggested controller
is known as Super-Twisting in the literature. Again,

‡For negative definiteness, the leading principle minors of −(A11 −A12c1)
should be positive i.e. the leading principle minors of (A11−A12c1) should
have alternating signs, with the odd-numbered minors being negative
and the even-numbered minors being positive [31].



6 KAMAL ET AL.

the trajectories once start from the sliding surface, will
remain there for the subsequent time (for more detailed
explanation, see [30] and the references cited therein).

Now, using fractional reaching law approach, the sliding
surface is defined as,

s = c1z1(t) + z2(t) − (c1z1(t0) + z2(t0))e−𝜆(t−t0) (18)

Note that s = 0 when t = t0. Using (18), (10) becomes,
c
t0

D𝛼
t z1(t) = (A11 − A12c1)z1(t)

+ A12
{

s + (c1z1(t0) + z2(t0))e−𝜆(t−t0)
}

c
t0

D𝛼
t s =c

t0
D𝛼

t z1(t) +c
t0

D𝛼
t z2(t)

− (c1z1(t0) + z2(t0))c
t0

D𝛼
t (e

−𝜆(t−t0))

= c1
[
(A11 − A12c1)z1(t)

+A12
{

s + (c1z1(t0) + z2(t0))e−𝜆(t−t0)
}]

+ A21z1(t) + A22z2(t) + B2(u(t) + d(t))
− (−𝜆)𝛼((c1z1(t0) + z2(t0))e−𝜆(t−t0)

(19)

The control input is designed as,

u(t) = B−1
2

[
v − c1 {(A11 − A12c1)z1(t) + A12

×
(

s + (c1z1(t0) + z2(t0))e−𝜆(t−t0)
)}]

− B−1
2 (A21z1(t) + A22z2(t))

(20)

where, v = −k1sign(s). From (19) and (20), c
t0

D𝛼
t s =

−k1sign(s) + B2d + Ξ where, Ξ = B−1
2 (−𝜆)𝛼((c1z1(t0) +

z2(t0))e−𝜆(t−t0). Agian, the trajectories remain on the sliding
surface s = 0 from the very initial time t = t0, provided
k1 > |B2||d| + |Ξ|. This can be shown as follows:

Consider the Lyapunov function, V = 1
2

z⊤1 (t)z1(t).
Taking the fractional derivative,

c
t0

D𝛼
t V ≤ z⊤1 (t)

c
t0

D𝛼
t z1(t) ≤ z⊤1 (t)(A11 − A12c1)z1(t)

+ z⊤1 (t)A12
{

s + (c1z1(t0) + z2(t0))e−𝜆(t−t0)
}

As s = 0 from time t = t0, the term (c1z1(t0) +
z2(t0))e−𝜆(t−t0) → 0 as t → ∞. Further, z1(t) and hence the
system is asymptotically stable if (A11 − A12c1) is negative
definite.

5 ILLUSTRATIVE EXAMPLE
A commensurate fractional-order uncertain system is con-
sidered to illustrate the theoretical results obtained in the
paper. The example of a fractional inverted pendulum sys-
tem is taken. In this system, an inverted pendulum is
mounted on the top of a cart such that the pendulum is
attached to an extension immersed in a viscoelastic solu-
tion [32]. The cart is able to move back and forth. The
whole system can be represented by,

ẍ = 1
(mc + mp)

(1
2

mpl(�̈�cos𝜃 − (
.
𝜃)2sin𝜃) − 𝑓

.x + F
)

�̈� = 1
( J + 1

4
mpl2)

(1
2

mpl(ẍcos𝜃 + gsin𝜃) + 𝜏

)

d𝛼𝜏

dt𝛼
= −𝜔𝛼

l 𝜏 − k𝜔𝛼

l

.
𝜃 − k

(
𝜔l

𝜔h

)𝛼 d(𝛼+1)𝜃

dt(𝛼+1)

where, x is the position of the cart, 𝜃 is the angle of deflec-
tion of the pendulum, mc is the mass of the cart, mp is the
mass of the pendulum, f is the friction coefficient of the
cart, 𝜏 is the applied torque, k is the damping coefficient
of the viscoelastic solution, 𝛼 is the derivation order of the
damper, 𝜔l and 𝜔h are the lower and higher frequencies of
the bandwidth of the fractional derivative. The state vector
is chosen as,

X =
[

x d0.5x
dt0.5

dx
dt

d1.5x
dt1.5 𝜃

d0.5𝜃

dt0.5
d𝜃
dt

d1.5𝜃

dt1.5 𝜏

]T

The above equations can be linearized about the equilib-
rium point of the system resulting in pseudo state-space
form having commensurate order, 𝛼 = 0.5,

d𝛼X(t)
dt𝛼

= AX(t) + B(u(t) + d(t)) (21)
where,

A = 𝛼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 a43 0 a45 0 0 0 a49
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 a83 0 a85 0 0 0 a89
0 0 0 0 0 0 a97 a98 a99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B = 𝛼

[
0 0 0 0.116 0 0 0 0.338 0

]T

where, 𝛼 = 1
4J(mc+mp)+mcmpl2 , a43 = −4fJ − fmpl2, a45 =

m2
pl2g, a49 = 2mpl, a83 = −2fmpl, a85 = 2mpgl(mc + mp),

a89 = 4(mc + mp), a97 = −k𝛼(𝜔l)0.5, a98 = −k𝛼( 𝜔l
𝜔h
)0.5,

a99 = −𝛼(𝜔)0.5, b4 = J + mpl2, b8 = 2mpl. Here, J is the
moment of inertia of the pendulum and l is its length. The
values taken are mp = 0.53 kg, mc = 3.2 kg, l = 0.36 m,
f = 6.2 kg.sec−1, J = 0.065 kg.m2, k = 0.1 N.m.sec.𝛼rad−1,
𝜔l = 0.1 rad.sec.−1, 𝜔h = 10 rad.sec.−1, g = 9.81 m.sec.−2,
d(t) = 0.1 sin(t). The sliding surface is chosen as,

s(t) = ([c1 c2 c3 c3 c4 c5 c6 c7 c8 1]X(t))
− ([c1 c2 c3 c3 c4 c5 c6 c7 c8 1]X0)e−𝜆(t−t0)

where, c1 to c8 are the gain values selected such that the
reduced-order dynamics is stable. The controller parame-
ter k1 has to be selected such that k1 > |B2d| + |Ξ|. We
know that |B2d| = 0.1 and |Ξ| is also small. Hence, we
choose k1 = 10 and 𝜆 = 0.4. The evolution of states,
sliding surface and control input with time are shown in
Figure 1, Figure 2 and Figure 3 respectively. In Figure 1,
the state trajectories are shown to converge to the equi-
librium point in finite time in the presence of matched
disturbance/uncertainties. From Figure 2, it is clear that
starting from t = 0, the trajectories are always maintained
on the sliding surface.
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FIGURE 1 Evolution of States
(x1 to x9) w.r.t. time [Color figure
can be viewed at
wileyonlinelibrary.com]

FIGURE 2 Evolution of
Sliding Surface (s) w.r.t. time
[Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Evolution of
Control Input (u) w.r.t. time
[Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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6 CONCLUSION

The work presented in the paper proposes a new slid-
ing surface based controller for uncertain fractional-order
systems. Two different control schemes, one based on inte-
ger reaching law and the other on fractional reaching law
have been used in order to maintain the trajectories on the
sliding surface from the very initial time preserving robust-
ness. The simplicity of the technique lies in the control
design being based on the reduced order subsystem as in
the case of classical sliding mode control. The effectiveness
of the proposed approach is verified through numerical
simulation for the case of a fractional inverted pendulum
system.
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