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Abstract: This paper proposes a method to design interval observers for nonlinear systems by making use of the Takagi-
Sugeno fuzzy model. The Takagi-Sugeno model has properties which general nonlinear systems do not posses. This paper
demonstrates how such properties allow interval observers to handle nonlinearities in unmeasured variables. Instead of
computing some intervals only, this paper puts emphasis on clarifying guarantees the observer can provide for a reasonable
length of computed intervals in terms of convergence and attractiveness.
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1. INTRODUCTION

Interval observers are practical for estimating the tran-
sition of state variables of dynamical systems since they
produces time-varying intervals in which the state vari-
ables are guaranteed to stay all times [7, 9, 17, 20]. Clas-
sical observers do not give such guarantees, although they
guarantee asymptotically perfect estimate. Broadening
the class of systems for which interval observers can be
designed is undoubtedly instrumental. As in the case
of classical observers, nonlinearities often hampers and
sometimes prohibit construction of the interval observers.

The Takagi-Sugeno fuzzy (T-S) model is one of popu-
lar models in control engineering [19], and there is strong
demand for the use of the T-S model in dealing nonlin-
earities in applications. It smoothly interpolates multi-
ple linear models which can be handled by basic knowl-
edge. All nonlinearity are condensed into membership
functions which weight individual “local” linear models.
The T-S model suggests applying linear tools and com-
ponents with appropriate scheduling. However, finding
appropriate scheduling with guarantees is not easy when
the transition between the local models are endogenously
determined, which actually means nonlinearity of the sys-
tem. Therefore, designs based on the T-S fuzzy model
naturally become technical and complicated by combi-
nations of tools and components which were originally
simple. On the other hand, the language of general non-
linear systems can explains and expresses solutions in a
succinct way [8, 10, 16, 21]. However it literally needs
the broadest variety of tools, components and knowledge.
Hence, the T-S model is an important target of practical
importance in control.

The T-S model exhibits properties which are not en-
joyed by general nonlinear systems. This paper aims to
demonstrate utilization of such properties in designing in-
terval observers. This paper also pursues the utility of
intervals in dealing with nonlinearities associated with
unmeasured variables. Tools and component ideas are
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not necessarily novel. There have been many studies on
interval observers for particular classes of systems [3-5,
12-15]. Some attempts have also been made for the T-S
type systems [2, 11]. This paper clarifies how they can
be tailored and combined for qualifying strong guaran-
tees to be stated for the T-S model. Usually, it is not very
difficult to achieve the framer property, which is the no-
tion of providing intervals in which state variable stay, if
one does not care the length of estimated intervals. In
fact, one can use an artificial system which over-bounds
terms to secure the positivity (non-negativity, more pre-
cisely) ensuring the framer property. Therefore, the goal
of this paper is to present some reasonable guarantees of
the intervals, which is not always clear. Such issues does
not seem to have always been paid attention carefully in
the literature of interval observers. For this purpose, this
paper focuses on making use of the strong property that
global behavior of the T-S model is at most linear. In
this paper, it is shown that input-to-state stability (ISS)
can play an important role in deriving guarantees of con-
vergence and attractiveness which characterize the use-
fulness of the computed intervals. It should be remarked
that independently of methods, intervals can be improved
by taking the intersection of intervals produced by a bun-
dle of interval observers [1]. However, this aggregation
does not make an increasing interval decrease, and it does
not change asymptotic properties either. This explains the
importance of guarantees of convergence and attractive-
ness this paper pursues.

Notation: The symbol R denotes the set of real numbers.
The set of non-negative real numbers is denoted by R+,
i.e., R+ := [0,∞). A square matrixM ∈ Rn×n is said to
be positive definite and written as M � 0 if v>Mv > 0
holds for all v ∈ Rn \ {0}. The symbol | · | denotes
Euclidean norm of vectors of any dimension. Inequalities
with symbols ≤ and ≥ must be understood component-
wise, i.e., for xa = [xa,1, ..., xa,n]> ∈ Rn and xb =
[xb,1, ..., xb,n]> ∈ Rn, xa ≤ xb if and only if, for all i ∈
{1, ..., n}, xa,i ≤ xb,i. For simplicity, [xa, xb] denotes
the closed set {x ∈ Rn : xa ≤ x ≤ xb}. A square matrix



M ∈ Rn×n is said to be Metzler if each off-diagonal
entry of this matrix is nonnegative. The symbol σmax(·)
denotes the largest singular value of a matrix.

2. A T-S MODEL AND AN INTERVAL
OBSERVER

Consider the following system of in the form of the
Takagi-Sugeno Fuzzy model (T-S model for short) ac-
companied by an output equation

ẋ(t) =

m∑
k=1

µk(x(t))Akx(t) (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ Rn and y(t) ∈ Rq are the state and the
output vectors, respectively. The membership functions
µk : Rn → [0, 1] are locally Lipschitz and satisfy

m∑
k=1

µk(x) = 1, ∀x ∈ Rn. (2)

System (1a) is assumed to be forward complete. This
is assumed to write properties of state estimation for the
infinite time horizon. The forward complete assumption
is not needed if one stops evaluating properties at the fi-
nite escape time of maximal solutions. The model (1a)
can also be referred to as a polytypic system since the
vertices {Ak}mi=1 define the trace of

∑m
k=1 µkAk with

the variation of µk as a polytope on the space of n × n
matrices. If µks were exogenous, i.e., µk(t) instead of
µk(x(t)), µks could be regarded as scheduling parame-
ters. Since µk(x(t)) is used in (1a), the T-S model de-
fines a class of nonlinear systems. The system (1a) is
said to be non-negative if there is no instant t ∈ R+
such that x(t) 6≥ 0 for all initial conditions restricted to
x(0) ∈ Rn

+. In this paper, whenever the system (1a) is
said to be non-negative, the restriction x(0) ∈ Rn

+ is as-
sumed1. The non-negativity holds if and only if for each
i ∈ {1, 2, ..., n}, the implication

xi = 0 ⇒
m∑

k=1

µk(x)[Ak]ix ≥ 0 (3)

holds true for all x ∈ Rn
+. Here [Ak]i denotes the i-th row

of the matrix Ak. xi denotes the i-th component of the
vector x. Systems in science and engineering are often
positive. For instance, systems are non-negative if their
state variables are chosen as mass, i.e., energy quanti-
ties. The problem this paper addresses is to estimate x(t)
which is not measured. The output y(t) is measured. We
are interested in not only asymptotic estimation of x(t),
but also estimation of time-varying intervals in which all
the variables xi(t) stay all times.

This paper proposes the following pair of systems as

1The functions µk are required to be defined only on Rn
+

such an interval observer:

ẋ(t) = (A0(x, x) + ∆(x, x))x(t)

− L(x, x)(y(t)− Cx(t)) (4a)
ẋ(t) = (A0(x, x) + ∆(x, x))x(t)

− L(x, x)(y(t)− Cx(t)), (4b)

where the matrix A(x, x) ∈ Rn×n is defined by its (i, j)-
th component as

[A0]i,j(x, x) =
1

2

(
max
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j

+ min
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j

)
(5)

for i, j = 1, 2, ..., n. This paper uses the following oper-
ators:

max
s∈[x,x]

f(s) =

{
maxs∈[x,x] f(s) if x ≤ x
f(x) otherwise

min
s∈[x,x]

f(s) =

{
mins∈[x,x] f(s) if x ≤ x
f(x) otherwise

The matrices [∆]i,j(x, x) ∈ Rn×n and [∆]i,j(x, x) ∈
Rn×n in (4) are defined by

[∆]i,j(x, x) = max
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j − [A0]i,j(x, x)

(6a)

[∆]i,j(x, x) = min
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j − [A0]i,j(x, x)

(6b)

for i, j = 1, 2, ..., n. It will be shown that x(t) and x(t)
give an upper bound and a lower bound, respectively, as
well as asymptotic estimates of the state x(t) under an
appropriate assumption. Both systems (4a) and (4b) are
natural extension of the Luenberger observer which is
common for nonlinear systems [16, 21], except that the
system coefficient depends on x and x. It is important to
notice that the proposed observer (4) allows the nonlin-
earities of the target system to depend on the unmeasured
state x, as in (1a). Since x is not measurable, the pair
x and x are employed by the observer (4). In accordance
with these matrices, this paper chooses the observer gains
L and L as

[L]i,j(x, x) =

m∑
k=1

µk(ζi,j(x, x))Lk (7a)

[L]i,j(x, x) =

m∑
k=1

µk(ζ
i,j

(x, x))Lk, (7b)

where

ζi,j(x, x) = arg max
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j (8a)

ζ
i,j

(x, x) = arg min
s∈[x,x]

m∑
k=1

µk(s)[Ak]i,j . (8b)



For the observer candidate (4) with the above parameters,
we can prove the following theorems.

Theorem 1: Suppose that there exist P � 0 and P �
0 satisfying

P (Ak + LkC) + (Ak + LkC)TP ≺ 0 (9)

P (Ak + LkC) + (Ak + LkC)TP ≺ 0 (10)

for all k = 1, 2...,m. Then the implication

lim
t→∞

x(t) = 0 ⇒ lim
t→∞

e(t) = lim
t→∞

e(t) = 0 (11)

hold true of all x(0), x(0), x(0) ∈ Rn, and there exists
g ≥ 0 such that

lim sup
t→∞

|x(t)− x(t)| ≤ g lim sup
t→∞

|x(t)| (12)

holds of all x(0), x(0), x(0) ∈ Rn. Furthermore, in the
case of Lk = Lk, k = 1, 2...,m, the implication

x(ts) = x(ts) ⇒ ∀t ∈ [ts,∞) x(t) = x(t) (13)

holds true of all x(0), x(0), x(0) ∈ Rn.
Theorem 2: Suppose that system (1a) is non-

negative. If the matrices Ak + LkC and Ak + LkC are
Metzler for all k = 1, 2...,m, then

∀t ∈ R+ x(t) ≤ x(t) ≤ x(t) (14)

holds true for all x(0), x(0), x(0) ∈ Rn
+ satisfying

x(0) ≤ x(0) ≤ x(0). (15)

Property (14) in Theorem 2 is referred to as the framer
property in the literature. It ensures that x(t) is bounded
from above and below by x(t) and x(t), respectively, all
times. However, if the lengths xi(t) − xi(t) of the in-
terval are very large or rapidly increasing with time, the
interval is useless. Hence, the properties in Theorem 1
are sought in this paper. If one removes the cause clause
limt→∞ x(t) = 0, property (11) is the standard observer
property. Since the T-S model (1a) is nonlinear in unmea-
sured variables, guaranteeing complete elimination of es-
timation error regardless of non-zero unmeasured vari-
ables is not obvious as is known in the standard problem
of designing observer for general nonlinear systems [16,
21]. In this sense, properties (11) and (12) established
in Theorem 1 are reasonable. Property (12) is referred
to as global ultimate boundedness, and the constant g is
called the asymptotic gain in the field of nonlinear con-
trol theory. The achievement of (11) and (12) is due to
input-to-state stability (ISS) regarding x as the input as
shown in the next section. Property (13) demonstrates
that the agreement x(t) = x(t) is an equilibrium regard-
less of the variation of x(t). Therefore, the attractiveness
of the agreement guaranteed in this paper is stronger than
just having limt→∞ x(t) = limt→∞ x(t) implied by (11)
under the assumption of limt→∞ x(t) = 0.

Remark 1: If there exists a locally Lipschitz function
µ̂k such that

µk(x) = µ̂k(y), ∀x ∈ Rn (16)

for all k = 1, 2, ...,m, the membership functions are said
to be measurable. In this measurable case, it is straight-
forward to see that the pair of the systems

ẋ(t) =

m∑
k=1

µ̂k(y(t))Akx(t)− L(y(t))(y(t)− Cx(t))

(17)

ẋ(t) =

m∑
k=1

µ̂k(y(t))Aix(t)− L(y(t))(y(t)− Cx(t))

(18)

with

L(y(t)) =

m∑
k=1

µ̂k(y(t))Lk (19)

L(y(t)) =

m∑
k=1

µ̂k(y(t))Lk (20)

yields

ė(t) =

m∑
k=1

µ̂k(y)(Ai + LiC)e(t)

ė(t) =

m∑
k=1

µ̂k(y)(Ai + LiC)e(t).

Therefore, all the statements of Theorems 1 and 2 hold
true without the cause clause limt→∞ x(t) = 0 in (11).

3. PROOF OF THEOREMS 1 AND 2
Define e = x − x and e = x − x. From (1a) and (4)

we obtain

ė =
(
A0(x, x) + ∆(x, x) + L(x, x)C

)
e

+R(x, x, x)x (21)
ė = (A0(x, x) + ∆(x, x)) + L(x, x)C) e

+R(x, x, x)x, (22)

where

R(x, x, x) = A0(x, x) + ∆(x, x)−
m∑

k=1

µk(x)Ak

R(x, x, x) =

m∑
k=1

µk(x)Ak −A0(x, x)−∆(x, x).

Due to the definitions (5) and (6), we have

A0(x, x) + ∆(x, x)) ≤
m∑

k=1

µk(x)Ak

≤ A0(x, x) + ∆(x, x)) (23)

for all x, x, x ∈ Rn
+ satisfying x ≤ x ≤ x. It is also

verified that

A0(x, x) =

m∑
k=1

µk(x)Ak, ∀x ∈ R+ (24)

∆(x, x) = 0, ∀x ∈ R+ (25)

∆(x, x) = 0, ∀x ∈ R+. (26)



If one picks Lk = Lk for all k = 1, 2...,m, summing up
both sides of (21) and (22) yields

d

dt
(x− x) = 0 (27)

for all x, x = x ∈ Rn
+, due to (24), (25) and (26). These

are keys to the establishment of Theorems 1 and 2.

3.1. Proof of Theorem 1
By virtue of (5), (6) and (7), the existence of P � 0

satisfying (9) for all k = 1, 2...,m guarantees the exis-
tence of ε > 0 such that

P
(
A0(x, x) + ∆(x, x) + L(x, x)C

)
+(

A0(x, x) + ∆(x, x) + L(x, x)C
)T
P+ εP ≺ 0 (28)

for all x, x ∈ Rn
+, due to µk(x) ≥ 0 and (2). In the same

way, property (10) guarantees the existence of ε > 0 such
that

P (A0(x, x) + ∆(x, x) + L(x, x)C) +

(A0(x, x) + ∆(x, x) + L(x, x)C)
T
P+ εP ≺ 0 (29)

for all x, x ∈ Rn
+. The function V (e) = eTPe satisfies

V̇ (e) ≤ −(ε− δ)eTPe+
1

δ
xTR

T
PRx

along the solution of (21) for any δ ∈ (0, ε). Property (2)
implies that all the elements of the matrix R(x, x, x) are
bounded. Thus, there exists c > 0 such that

c ≥ σmax

(
sup

x,x,x∈Rn

R(x, x, x)

)
(30)

Thus, for δ = ε/2 we obtain

V̇ (e) ≤ − ε
2
pmin|e|2 +

2c2pmax

ε
|x|2, (31)

where pmax (resp., pmin) is the largest (resp., smallest)
eigenvalue of P . Hence, V (e) = eTPe is an ISS Lya-
punov function of system (21) [18]. In the same way,
V (e) = eTPe is an ISS Lyapunov function of system
(22). Thereby, the implication (11) follows from the def-
inition of ISS [18]. ISS of (21) also gives

lim sup
t→∞

|e(t)| ≤ 2c

ε

√
pmax

pmin

lim sup
t→∞

|x(t)| (32)

for all x(0) ∈ Rn. Here, (2c/ε)
√
pmax/pmin is called the

asymptotic gain2. Repeat the same argument to obtain the
asymptotic gain of (22). With the help of x− x = e+ e,
the combination of the two asymptotic gains yields (12)
with

g =
2c

ε

√
pmax

pmin

+
2c

ε

√
p
max

p
min

(33)

2When Euclidean norm is chosen to evaluate the magnitude of the state
and the input in the framework of ISS as in (31) and (32), the asymptotic
gain is the notion incorporating the effect of initial conditions into the
L2- gain [18].

Property (13) holds since x = x implies d(x−x)/dt = 0.
Remark 2: The convergence property (11) relies on

specific dynamics of the T-S model. The T-S model is
nonlinear, but its vector filed grows at most linearly since
(2) holds. The linearity allows one to obtain the ISS prop-
erty (31). The convergence property (11) cannot always
be expected for general nonlinear systems.

3.2. Proof of Theorem 2
Since Ak + LkC is Metzler for all k = 1, 2...,m, by

virtue of µk(x) ≥ 0 and (2), (5), (6) and (7), the matrix

A0(x, x) + ∆(x, x) + L(x, x)C

is Metzler. In the same way, since Ak + LkC is Metzler
for all k = 1, 2...,m, the matrix

A0(x, x) + ∆(x, x) + L(x, x)C

is Metzler. Suppose that x(ts) = x(ts) ≥ x(ts) holds at
some t ∈ R+. Due to the non-negativity x(t) ≥ 0 of (1a)
and (23), we have

R(x(ts), x(ts), x(ts))x(ts) ≥ 0

R(x(ts), x(ts), x(ts))x(ts) ≥ 0.

These properties allow (21) and (22) to yield ė(ts) ≥ 0
and ė(ts) ≥ 0. These two properties are also verified for
x(ts) ≥ x(ts) = x(ts). Since the solutions x, x and x
of (1a), (4a) and (4b) are continuous with respect to t, the
restriction (15) of the initial condition results in (14). 2

4. ASYMPTOTIC GAIN REDUCTION
AND FEEDBACK

The smaller x − x = e + e is, the more useful the in-
terval estimate is. Properties (11) and (12) together with
(13) and (14) in Theorems 1 and 2 indicate that the re-
duction of the magnitude of x improve the interval es-
timate. A narrower interval estimate is obtained by re-
ducing the asymptotic gain of the estimation error system
(21) (resp. (22)) from x to e (resp. e). According to (31)
and (33), the asymptotic gain is guaranteed to be finite,
and a smaller asymptotic gain g is achieved in (12) by
using larger ε > 0 and ε > 0 in

P (Ak + LkC) + (Ak + LkC)TP + εP ≺ 0 (34)

P (Ak + LkC) + (Ak + LkC)TP + εP ,≺ 0 (35)

which replace (9) and (10). In fact, the existence of ε and
ε for (34) and (35) leads to (28) and (29) for the same ε
and ε. It is important to note that the parameters ε and
ε cannot be made arbitrarily small since Lk and Lk are
restricted to ones achieving the Metzler property required
in Theorem 2.

It is possible to answer the question of how small the
asymptotic gain needs to be. In fact, we can achieve the
convergence of e(t) and e(t) to zero without assumptions
on x(t) if one is able to apply control input appropriately.



To illustrate this point, the remainder of this section con-
siders the simple feedback system

ẋ(t) =

m∑
k=1

µk(x(t))(Akx(t) +Bku(t)) (36a)

y(t) = Cx(t), (36b)

u(t) = Fx(t), (36c)

where u(t) ∈ Rr is the input. To deal with the added
input term, replace (4) by

ẋ(t) = (A0(x, x) + ∆(x, x))x(t) +D(x, x)x(t)

− L(x, x)(y(t)− Cx(t)) (37a)
ẋ(t) = (A0(x, x) + ∆(x, x))x(t) +D(x, x)x(t)

− L(x, x)(y(t)− Cx(t)), (37b)

where the matricesD(x, x), D(x, x) ∈ Rn×r are defined
by their (i, j)-th components as

[D]i,j(x, x) = max
s∈[x,x]

m∑
k=1

µk(s)[BkF ]i,j (38a)

[D]i,j(x, x) = min
s∈[x,x]

m∑
k=1

µk(s)[BkF ]i,j . (38b)

For (36), (37) and (38), we can prove the following.
Theorem 3: Suppose that there exist P � 0, P � 0,

Q � 0 and ε > 0, ε > 0, ω > 0 such that (35),

P (Ak + LkC + ∆k) + (Ak − LkC + ∆k)TP

+ εP ≺ 0 (39)

Q(Ak +BkF ) + (Ak +BkF )TQ+ ωQ ≺ 0 (40)

hold for all ∆k ∈ Rn×n satisfying

0 ≤ [∆k]i,j ≤ |[BkF ]i,j |, i, j = 1, 2, ..., n (41)

for all k = 1, 2...,m. Let b, c ≥ R+ be such that

b ≥ σmax

(
sup
x∈Rn

m∑
k=1

µk(x)BkF

)
. (42)

c ≥ σmax

(
sup

x,x,x∈Rn

R(x, x, x)

+D(x, x, x)−
m∑

k=1

µk(x)BkF

)
(43)

Let pmax (resp., pmin) be the largest (resp., smallest)
eigenvalue of P , Let qmax (resp., qmin) denote the largest
(resp., smallest) eigenvalue of Q. If

16pmaxqmaxc
2b2

pminqminε
2ω2 < 1 (44)

holds, then

lim
t→∞

e(t) = lim
t→∞

e(t) = 0 (45)

holds of all x(0), x(0), x(0) ∈ Rn. Furthermore, in the
case of Lk = Lk, k = 1, 2...,m, the implication (13)
holds true of all x(0), x(0), x(0) ∈ Rn.

Theorem 4: Suppose that
m∑

k=1

µk(x)BkF ≥ 0, ∀x ∈ R+. (46)

If Ak + BkF , Ak + LkC and Ak + LkC are Metzler
for all k = 1, 2...,m, then (14) holds for all x(0), x(0),
x(0) ∈ Rn

+ satisfying (15).
Theorems 3 and 4 aim at the idea of feedback to

achieve stabilization and interval estimation at the same
time. Theorems 3 and 4 can be very restrictive. In fact,
the feedback gain (36c) is too simple to allow a wide va-
riety of systems to satisfy the conditions required in The-
orems 3 and 4. Nevertheless, the mechanism of proving
Theorems 3 and 4 is as simple as looking at the intercon-
nection of the following three systems:

ẋ =

m∑
k=1

µk(x)(Ak +BkF )x

+

m∑
k=1

µk(x)BkFe (47)

ė =
(
A0(x, x) + ∆(x, x)) + L(x, x)C

)
e

+R(x, x, x)x+

(
D(x, x)−

m∑
k=1

µk(x)BkF

)
x

=

(
A0(x, x) + ∆(x, x) + L(x, x)C

D(x, x)−
m∑

k=1

µk(x)BkF

)
e

+

(
R(x, x, x) +D(x, x)−

m∑
k=1

µk(x)BkF

)
x (48)

ė = (A0(x, x) + ∆(x, x)) + L(x, x)C) e

+R(x, x, x)x+

(
m∑

k=1

µk(x)BkF −D(x, x)

)
x (49)

Based on the argument used in (31) with the help of
(39)-(43), it is verified that the small-gain condition (44)
allows the existence of K > 0 such that V (x, e) =
xTQx + KeTPe is a Lyapunov function establishing
global asymptotic stability of the equilibrium (x, e) =
(0, 0) of the feedback interconnection of (47) and (48).
Moreover, V (e) = eTPe is an ISS Lyapunov func-
tion of (49) with respect to the input (x, x). Note that
(x, e) → (0, 0) implies x → 0. Thereby (45) follows
from the cascade system where system (49) is driven by
the feedback connection of (47) and (48). It can be ver-
ified by the definitions (38a) and (38b) that summing up
both sides of (48) and (49) yields (27) when Lk = Lk are
chosen for all k = 1, 2...,m, Hence, we arrive at (13).
Property (46), the definitions (38a), (38b), the Metzler
property of Ak + BkF , Ak + LkC and Ak + LkC in
(47), (48) and (49) establishes x(t) ≥ 0 and (14) holds
for all x(0), x(0), x(0) ∈ Rn

+ as long as (15).



5. CONCLUDING REMARKS

This paper has focused on proposing the primary idea
of developing reasonable interval observers of T-S sys-
tems involving nonlinearities with respect to unmeasured
variables. By the reasonability, this paper means con-
vergence and attractiveness properties to avoid very wide
or exploding intervals estimated by the observers. To
achieve this goal, this paper has introduced interval-
dependent nonlinearities judiciously to the observers. It
has also been demonstrated that the framework of ISS fits
the dynamics of the T-S model and allows one to obtain
convergence guarantees. Extension allowing process dis-
turbances is possible, and it will be reported in a separate
paper. It is worth developing a way to increase practical
usefulness of the combined use of interval observers and
feedback stabilizers discussed in Section 4.

It should not be hard to modify the proposed observers
to obtain the framer property without imposing the non-
negativity on the T-S model. Nevertheless, obtaining
some useful convergence and attractiveness guarantees
does not seem straightforward. As known in the literature
of interval observer design, removing the non-negativity
assumption allows one to use coordinate transformation
as done often for relaxing the Metzler requirement.

Finally, it would be worth mentioning that evaluating
the magnitude of the bounds x and x seems easier than
that of the estimation errors x− x and x− x. For exam-
ple, in the presence of a process disturbance, the L2-gain
from the disturbance to x and x can be evaluated, and
one would be able to numerically search observer gains
for a smaller L2-gain. Useful discussions on suchL2-gain
reduction are given in [6] for some classes of systems.
Such reduction can be effective to avoid rapidly increas-
ing magnitude of x and x. However, its practical useful-
ness is limited since it does not pay attention to the actual
state x. Therefore, this paper has pursued convergence
and attractiveness properties of x− x, x− x and x− x.
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