
Reference Architecture Design: a Practical Approach

Mustapha Derras1, Laurent Deruelle1, Jean Michel Douin2, Nicole Levy2, Francisca Losavio3,Yann Pollet2 and
Valérie Reiner1

1 Berger-Levrault, Boulogne Billancourt, France
 2 CNAM – CEDRIC, Paris France

 3 Universidad Central de Venezuela, Caracas Venezuela
{mustapha.derras, laurent.deruelle, valerie.reiner}@ berger-levrault.com, {jean-michel.douin, nicole.levy,

yann.pollet}@cnam.fr, francislosavio@gmail.com

Keywords: Software Product Lines (SPL), Software Architecture, Reference Architecture Design, Software Product
Quality, Bottom-up Strategy.

Abstract: Reference Architectures (RA) in a Software Product Line (SPL) context are generic schemas that can be
instantiated to configure concrete architectures for particular software systems or products of the SPL family.
SPLs claim to be reusable industrial solutions to reduce development cost and time to market; however their
development requires a huge effort, since the RA must be evolutionary. The goal of this work in progress is
to present a practical RA domain engineering method for the Human Resources domain based on a bottom-
up strategy applied to the early Scope phase of SPL Engineering. A usual industrial practice in this
development is to start from a single existing product built by the enterprise and incrementally derive the RA
by adding new elements. Four architectural configurations are developed and quality properties are considered
early as major responsible of the SPL variability. Our approach is applied to a real industrial case study.

1 INTRODUCTION

The architecture is an abstract representation of a
software system with related (connected or
communicating) components. (Shaw, Garlan, 1996)
(Taylor, Medvidovic, Dashofy, 2009). A component
describes a part of the system holding an individual
behaviour. The whole system behaviour is defined by
the composition of the individual behaviours of the
components. Every component must be specifically
implemented and it holds certain quality properties
(maintainability, usability, security, etc.); they must
be identified and more or less satisfied in order that
the component can maintain a suitable functional
behaviour. The architecture is composed by abstract
components in the sense that the implementation
details are not known already. An abstract component
can be implemented in different ways, but all the
implementations satisfy the behaviour of the abstract
component. A concrete architecture is composed by
precise implementations of abstract components.

A Reference Architecture (RA) (Bosch, 2000),
(Clements et al., 2001), (Oquendo et al., 2014),
(ISO/IEC 26550, 2015) represents a family of
abstract architectures. It highlights the presence of

established common components, and of other
components that are not common, which are called
variants and that are grouped into variation points
(Pohl et al., 2005). A variation point is a particular
component defining the variants’ common behaviour
and their connections with all other architectural
components; it identifies a set of variants (eventually
empty at first), from which only one can be chosen.
RA must satisfy a set of rules describing the
constraints that should be satisfied while selecting a
configuration with the chosen variants. The goal of
RA is to be configured to obtain a particular concrete
architecture of a software system by choosing
convenient variants. During the configuration of RA,
consistency properties between the selected variants
must be satisfied. The RA is the main asset of the
Domain Engineering (DE) lifecycle of SPL
Engineering (SPLE) (Pohl et al., 2005) (ISO/IEC
26550, 2015).

Our research questions are: “how to develop a RA
from existing products or systems” and “how to
concretise the RA abstract components into
executable modules”.

Feature models are frequently associated to RA.
A feature model (Kang et al., 1990), where every

node of the feature model tree is a variation point and
the sub-nodes are the variants, can be associated to
RA. The advantage of the feature model, which
provides a tree-like view of RA, is the visualization
of the choices to obtain the architecture of the system.
However, as RA contains variations points, feature
models do not provide any new information. Let us
note that it is difficult in general to include properties
that are not directly perceived by the user, such as the
quality properties (Benavides D. et al., 2007). Then,
in the present approach we consider building RA
without using a feature model.

The main goal of this work in progress is to
propose a method to build a RA, inspired in the work
of (Losavio, Ordaz, Levy, 2014), and the standard
reference model guidelines for SPLE (ISO/IEC
26550, 2015). The method is applied to an industrial
case study, the SEDIT Human Resources (HR)
System of the French Berger-Levrault Group, based
on the one hand, on the behaviour of the abstract
functional components representing SEDIT
behaviour and on the other hand, considering non-
functional requirements. We have started the work on
this research topic a couple of years ago with the
Healthcare Information Systems Domain (Losavio,
Ordaz, Esteller, 2015). The RA is developed
following a reactive bottom-up strategy (Apel et al.,
2013), meaning that the RA will be constructed from
a unique product already built by the industrial
partner, thus reducing the whole RA design effort.
This work considers the experience with the Vacation
Request Subsystem (VRS), which is a major complex
functionality defining services offered to municipal
communities by the SEDIT system.

Functional Requirements (FR) are the system
basic functionalities accomplishing prescribed
functional goals, expressed in our case by the
enterprise business processes. However, non-
functional goals that are required by functionalities to
behave properly, i.e., to be functionally suitable
(ISO/IEC 25010, 2011), must also be considered.
Non-functional Requirements (NFR) must be taken
into account while studying existing products. There
is a general agreement on the fact that NFR must be
considered early in the software development
lifecycle to increase software maintainability. The
SPLE reference model claims that NFR are greatly
responsible of RA variability. However, these aspects
are considered only at the late domain design stage
when the RA is already built, contradicting this
assumption. In usual industrial practice these issues
are poorly treated, being often left to the
responsibility of the particular development platform
used. Notice that SPLE favours a global top-down
design to build the SPL from scratch considering a

very huge and time consuming domain analysis;
however, the first SPL scope phase recommends
bottom-up strategies since domain existing products
have to be analysed. We start using this strategy that
also contributes to the light-weightiness of our
methodology, reducing the effort in the subsequent
DE phases, namely Domain Requirements
Engineering (DRE) and Domain Design (DD).

The structure of this paper, besides this
introduction, is the following: section 2 details the
method and the underlying process; section 3 presents
the application of the process to the VRS case study;
section 4 analyses related works, and finally section 5
provides the conclusion and some perspectives.

2 METHOD TO BUILD RA

SPLE includes two lifecycles: DE where domain
knowledge is captured to build RA, and Application
Engineering (AE) where the concrete products of the
SPL family are configured according to the variability
model contained in the RA. The proposed method is
framed into the SPLE Domain Engineering lifecycle
and follows the systematic process shown in Figure
1; it concerns a four-phases process; the first two
steps can be used to develop any quality driven single
system architecture; the third step defines the Domain
Requirement Engineering Architecture, and the
fourth step defines the RA, maintaining quality
traceability through functional and non-functional
components. Figure 1 presents the process as a UML
Activity Diagram.

3 APPLICATION OF THE
PROCESS

The phases of the process shown in Figure 1 will be
detailed in the following sections; however, note that
Phase 0.1 was performed for only one product and
will not be discussed here.

3.1 Phase 0.2, Activities 0.2.1. 0.2.2,
0.2.3 Identification of Domain
Style and Quality Properties

VRS belongs to the family of HR Information
Systems (HRIS) that combines a number of systems
and processes to ensure the easy management of
business employees and data. The programming of
data processing systems evolved into standardized
routines and packages of Enterprise Resource
Planning (ERP) software. Another important issue
that HRIS should support is the changing of legal

requirements, such as laws and country specific
regulations, for example the SAP Company has to
handle manually these issues.

We consider a business goal as an observable
and measurable end-result having one or more
objectives to be achieved within a more or less fixed
timeframe. The main business goal of the company is
HR and financial management on French local
authorities, i.e., communities, departments, regions,
etc., where people invested in public offices exercise
authority over their territory. The hierarchy of
assigned authority is relevant to provide the correct
signature to authorize different administrative
transactions. SEDIT verifies the HRIS domain hybrid
architectural style (Shaw et al., 1996): event-based,
layers and client/server model for communication and
main quality properties.

One of its most important qualities, the
functional suitability (appropriateness), is to be
compliant at any time with laws that are constantly
changing; the system must guarantee this compliance.
The hierarchy of people in office can also change at
any time, impacting signature circuits, and this
compliance must be also assured. The VRS system
studied is a classic Web-based information system.
The availability of services is conditioned also by the
network connection.

3.2 Phase 0.2, Activities 0.2.4, 0.2.5 -
Specify Business Processes and
Criteria to Conform Architectural
Components

The stakeholders of the company were interviewed to
capture the information about the functional
behaviour of the system. The workflows relative to
the participant (person or system) activities were
specified using BPMN; they will not be shown here
to abridge the presentation. The idea is to “translate”
into architectural components these activities or tasks
expressing functional behaviours to accomplish a
specific goal. Some automatic tools are available to
“translate” business processes into
choreography/orchestration of services, requiring in
general optimization processes; but there are few
automatic tools to translate business processes
activities into functional architectural components,
such as ArchiMate (The Open Group Architecture
Framework) (Open Group, 2012).

The whole VRS representing a service to be
accomplished by the SEDIT HRIS, is one of the
enterprise business goals.

Figure 1. Domain Engineering process to build the RA.

3.3 Phase 1 (DRE), Activities 1.1, 1.2 -
First Architecture (V1) with Main
Functional Components

The architecture shown in Figure 2 is derived from
the BPMN workflows for the VRS, applying the rules
shown in Table 1.

The idea is to organize this first configuration by
introducing components by grouping the functional
activities accomplishing business goals in the
stakeholders’ lanes; all components are considered at
a high abstraction level. Architectural configurations
are represented as UML 2.0 logic views (Krutchen,
1995); note that the UML notation we used here does
not show components’ interfaces. Components are
associated to each BPMN stakeholder’s lane, to
accomplish business goals and sub-goals, in the
following way:

• A component can group lane’s activities
(performed from a human or a system),
representing a sub-goal.

• Only functionalities and their cooperation
are concerned.

3.4 Phase 1 (DRE), Activity 1.3 -
Second Architecture (V2) with
Functional and Non-Functional
Components

Non-functional components represent properties or
features not directly perceived by the user (see Figure
3). However, they are required by the functional
components to satisfy completely their goals. Notice
that the quality properties treated are part of the
Domain Quality Model (ISO/IEC 25010, 2011). The
functional components of V2 must satisfy four
priority quality properties:
- Security (Authenticity) realized by non-functional
components Login-Security (authenticity) to provide
access to the right kind of user, and Signature
Hierarchy (authenticity), also required by functional
component Check Signature Rights, to follow the
enterprise hierarchy of assigned authority.
- Suitability (Appropriateness) is realized by non-
functional components Compliance with Law (s) and
Compliance with Employee Rights; this quality
property appears because the employee must fill up
the right formulary according to legal requirements
and must also be compliant with the employee legal
rights.
- Appropriateness is required by the Evaluate Case
functional component.
- Data Reliability is added as a new non-functional
component to satisfy Availability-Persistency, since

the Administrative Tasks functional component
requires storing results of the whole vacation request
process.

Table 1. Rules to convert BPMN workflows into
architectural components.

Tasks BPMN graphical
representation

Rules for BPMN
conversion to
architectural components

User
(human)

A user task is represented
as 1 functional component
involving an interface

Service

A service task is
represented as 1 system
functional component

Receive

They are gateways to
catch or receive messages;
they are represented as
connections between the
actor or system
components

Send

Abstract

It represents an abstract
component that will be
specified later on

Looped
Sub-
process

A looped sub-process is
represented as 1 functional
component involving an
iterative process

Sub-
process

A sub-process is
represented as 1 functional
component

Notice that Usability and Efficiency are priority

quality properties for the User Interface (UI), but they
will not be considered here because they depend on

Figure 3. Second architecture with functionalities and
quality properties (V2).

Figure 2. First architecture with functionalities (V1).

the UI particular design and not on the system
architecture. The Maintainability (Modifiability)
quality property has not yet been satisfied in the V2
configuration, and it will appear when the
architectural style is considered.

3.5 Phase 2 (DD), Activity 2.1, Third
Architecture (V3) with Domain
Style

The choice of an architectural style depends on the
domain. Each V2 component has been placed in the
V3 configuration as a sub-component of the
components of the style (see Figure 4). Notice that
some components are divided into several sub-
components in order to satisfy the style; that is why a
Data Base component is introduced to populate the
Data Layer.

Each layer is considered as a component; hence
we have UI as Presentation Layer, System as Process
Layer, Data Base as Data Layer; finally the

Communication Layer communicates the different
layers and exterior systems/services. Notice that the
UI requirement Maintainability (Modifiability) is
usually solved by the MVC (Model, View Controller)
pattern, and it is split into two components MVC-
ClientSide and MVC-ServerSide, to interface
Presentation and Process layers (see Figure 4). The
Process Layer corresponds to the VRS business goal
and it contains all the remaining functional and non-
functional components of the V2 configuration with
the same connections. Component Access Rights
Policy is introduced to solve security for access
control, and Signature Hierarchy to satisfy the
authenticity imposed by the signature rights.
Administrative Tasks is in charge of managing and
maintaining the vacation request information and a
database is introduced to satisfy persistency. In the
Data Base Layer four functional sub-components
have been added to satisfy NFR requirements,
Administrative DB, Employee Rights DB, Access
Rights DB, and Signature Rights DB. Correctness is
required by data base schemas, persistency to
store/get the process results and portability since they
are presumably relational databases and do not work
directly with object-oriented languages like Java. In
the Communication Layer the UI can connect to the
Network for e-mail and other external services
through a usual browser and to communicate with the
Process Layer; Security (authenticity, confidentiality,
integrity) in message transmission should be realized
by Network Security, and Reliability (Availability) for
system access is realized by Network Reliability; they
are also priority quality properties that have been
added as non-functional components to the
Communication Layer since they can jeopardize the
whole Web-based system functioning.

Notice that this third step could have been
applied at the beginning of the process since the
domain style is known; however we have decided to
apply it here to ease repeatability with small
incremental steps.

3.6 Phase 2 (DD), Activity 2.2 - Fourth
Architecture (V4) with Variability
Model, the RA

Software variability is the ability of a system to be
efficiently extended, changed, customized or
configured for use in a particular context (Van Grup,
2000). In SPL the term variability model (Pohl et al,
2005) is used to organize variant elements in such a
way that they can be reused at the moment of deriving
concrete products from the RA. Variation Points are
elements (placeholders) of the variability model; in

Figure 4: Third architecture with domain style (V3).

our case they may be functional or non-functional
components and they are denoted here by <<name>>
as UML stereotypes (see Figure 5). A variation point
denotes a set of components called variants; the
connector of a variation point denotes a set of
connectors, each one belonging to a variant.

The activity 2.2 of our process is the
identification of the variation points and their variants
from the architecture obtained in V3. In order to
achieve this, other similar existing products should
have been studied or future products to be built should
be considered to cope with the SPL evolution, and
new planned functionalities could also have been
added, see activities 0.1.3 and 0.1.4 of Phase 0.1. If
this study is not done, variation points and their
variants are identified directly on the V3 architecture,
establishing some criteria, leading to the
configuration shown in Figure 5, the RA for a VRS
family of systems. All RA abstract functional and
non-functional components should be traced and
concretized to the corresponding reusable code
modules; if no reusable module can be found, it
should be adapted or constructed to provide all assets
to perform the concrete product derivation from the
RA and guarantee complete functional suitability.
The Variability Model in the V4 last configuration is
defined by the following specific activities:
a. Describe the Context as an external system, to
proceed with the Application Engineering lifecycle of
the SPLE model; the RA variation points should be
instantiated to derive the SPL concrete products. This
system is in charge of putting into operation or
“implement” a concrete product on the client demand,
according to a configuration and/or customization
process. This part is still an on-going work.
b. Identify functional and non-functional components
that can have different choices to accomplish their
goals; mark them as stereotyped variation point
components.
c. For each variation point, identify possible variants,
such as for example the Hibernate tool to solve Oracle
portability to Java objects.
d. Describe the dependencies and constraints among
choices of variants.

4 RELATED WORKS

Many works are found in the literature about SPL
development and industrial adoption, but few treat the
whole SPLE process. In this work we are more
concerned with the Domain Requirements life cycle
of SPLE, where the RA is built. Three literature
reviews will be discussed.

The work of (Chen et al., 2010) treats variability
management for the RA evolution; this topic has been
studied for almost 20 years. An empirical study using
focus group of SPL experts in different fields
(industry, consultancy, academy, etc.) were
questioned to collect data; two of the first
contributions to variability management research and
practice were the known Feature-Oriented Domain
Analysis (FODA) (Kang et al., 1990) method and the
Synthesis approach (Kasunic, 1992) focused on a
family of similar systems for a business area. This
approach arises for SPL from evidence that, within a
class of systems, the understanding of similarities
provides significant leverage for constructing a great
variety of high-quality systems cheaply and reliably.
With Synthesis, a domain is conceived as a realization

Figure 5: Fourth architecture with Variability Model
(V4).

of the declared business objectives of the specific
organization. Business goals determine the types of
systems to build and customers. These goals are set
on the expertise already available within the
organization, as a result of experience in building
systems in the past. Among the technical issues, many
challenges were considered, such as: - Requirements:
complexity management in feature modelling that
affects maintainability, the lack of standards in
feature representations that affects understandability,
and the extraction of commonality and variability
from existing poor documentation. - Architecture
design: extract the variability from technical artefacts
of different similar products and build a common
architecture for those products. Decisions are not
documented properly and are hard to be retraced. -
Evolution: when requirements change, in some cases,
the existing architecture does not support the required
variability in the new requirements. In an extreme
case where the SPL started with one single product,
evolving the architecture towards an SPL was seen as
an issue. With respect to non-technical aspects,
several issues were considered, such as the Business
Model that does not encourage reuse. In conclusion,
it was found that variability management relies
mainly on the technical aspects, the standardization
of variability representation and modelling, the
documentation, and management.

In our work, the use of standards is favoured; we
adopt a bottom-up strategy to build the RA from a
single product, following the mentioned Synthesis
approach, starting from a BPMN specification of
business processes, extracted from interviewing
industrial stakeholders.

The work of (Mazo el al., 2014) on the ERP
domain aims to identify and analyse the different
ways to improve ERP engineering issues with
methods, techniques and tools provided by SPLE. An
ERP system is not a family of applications, but a
single application. However, just like a product line,
configuration mechanisms are used to satisfy the
various requirements from different companies. ERP
implementation (customization and configuration)
focuses the major research axis in ERP. The goal is to
take into account the specific needs of the
organization when ERP standards and configurable
features cannot achieve them. Variability
management and the ability for the system to be
configured/customized and adapted to a potentially
undefined number of environments are two main
challenges. ERP configuration deals with parameter
changes and it can take several months and no results
can be guaranteed; customization instead refers to
interface development or code modification, and it
requires to be regularly updated to maintain the
system agility. This complexity of ERP systems is

maybe the most important obstacle to use ERP
systems in an efficient and predictable way. The
paradigm was adopted to configure and/or customize
ERP systems using different methods with varying
approaches. However, from the point of view of ERP
customers and users, it is difficult to differentiate
between product variability and customization.

With respect to our work, the compliance with
laws has been found as a non-solved problem; the
configuration of the legal requirements as reusable
assets is still an open problem in the HRIS domain;
this issue must be handled by the SPLE Application
Engineering lifecycle.

The ERP domain and SPLE approach are also
treated in (Ouali, 2011), focusing on the evolution
issue and on the problem of tool support for these
approaches. SPL fits to ERP business, and ERP
systems can benefit greatly from the concepts of
commonality and variability to enhance
maintainability or evolution capability. Four methods
are reviewed, Van Group, Ziadi, Delstra and Djebbi,
being the Main drawbacks: the lack of sufficient tool
support and poor interactivity with their users. The
SPL development approaches themselves are not
enough automated for deriving automatically a
concrete product from the RA; most of them use
proprietary notations which can handle problems of
standardization and interoperability; they do not
cover all aspects of SPLE. Every method tries to
focus on a particular part of the SPL construction
process. However, in this work the discussion on the
experimentation with ERP is very limited, and no
case study is provided.

The Office of Management and Budget (OMB,
2012) launched the Human Resources Line of
Business (HR LOB) Data Model, an effort to build a
set of enterprise architectures in compliance with the
USA Federal Enterprise Architecture standards for
the human resources business function. It is an
interesting and complete work and conceptual
elements can be used for the general HRIS domain,
however it is data-oriented for enterprise
architectures and does not concern directly the RA
development for SPL.

The revised works mention standardization as an
open problem; the ISO/IEC 26550 standard has been
recently formulated to provide a framework for SPLE
guidelines (ISO/IEC 26550, 2015). The problem of
early consideration of software quality is discussed
affirming its importance, but it is left to the late
Domain Design phase. The bottom-up strategy is
recommended in the SPLE Scoping phase to reduce
the effort in the subsequent development phases. In
our present work we adopt this approach. A couple of
years ago we started to work on a SPL Domain

Engineering quality-driven method based on the
extractive bottom-up strategy, considering several
existing products in the Healthcare Information
Systems domain (Losavio, Ordaz, Levy, 2014),
(Losavio, Ordaz, Esteller, 2015).

5 CONCLUSIONS

The main outcome of this paper is the definition of a
domain engineering method to build incrementally a
RA, according to a bottom-up reactive strategy. This
method, inspired in (ISO/IEC 25010, 2011), defines a
systematic and repeatable practical process to build
the RA, and it has been applied to a real industrial
case. In addition, we have considered the compliance
(functional suitability-appropriateness) to legal
requirements (laws and regulations) as a priority
quality requirement, since they change often overtime
and their management is a time consuming and non-
systematic process in HR systems involving full-time
human resources. On the other hand, the traceability
among functional, non-functional components and
their technical solutions has been clearly established
by taking into account quality requirements, early in
the SPLE lifecycle.

Among the perspectives, it is clear that more
lower level architectural configurations can be
produced from Figure 4 to detail the variants of
variation points, such as ‘e-mail’ and ‘electronic
document’ in <<Submit Request>>. However, to
solve our second research question, an intermediate
layer has to be defined to link the abstract RA
components to the reusable modules of code, which
are all reusable SPL assets. Moreover, mechanisms
based on architectural patterns are under design to
determine the choice of variants and the addition of
new functionalities, without modifying the existing
code. Our present work is a first step towards the idea
of offering a “product on demand” for HR
management to French territorial communities, by
facilitating a configuration/ customization of on-line
process of the HR system.

REFERENCES

Apel, S., Don, S., Batory, S., Kastner, C., Saake, G., 2013.
Feature-Oriented Software Product Lines - Concepts
and Implementation. Springer.

Benavides D. et al., 2007. FAMA: Tooling a Framework
for the Automated Analysis of Feature Models. In
Workshop on Variability Modelling of Software-
intensive Systems.

Bosch J., 2000. Design and Use of Software Architectures
– Adopting and evolving a product-line approach,

 Addison-Wesley.
Chen, L. and Babar, M. A., 2010. Variability Management

in SPL: An Investigation of Contemporary Industrial
Challenges, SPLC 2010, LNCS 6287, 166–180,
Springer-Verlag Berlin Heidelberg.

Clements, P. and Northrop, L., 2001, SPL: practices and
patterns, 3rd ed. Readings, MA, Addison Wesley,

Van Grup J., 2000. Variability in Software Systems, the key
to software reuse. Sweden: Univ. of Groningem.

ISO/IEC 25010, 2011. Systems and software engineering -
Systems and software Quality Requirements and
Evaluation (SQuaRE) -- System and software quality
models. ISO/IEC JTC1/ SC7/ WG6, Draft.

ISO/IEC 26550, 2015. Software and Systems Engineering
– Reference Model for Software and Systems Product
Lines, ISO/IEC JTC1/SC7 WG4.

Kang, K.C., et al. 1990. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Tech. Report CMU/SEI-90-
TR-021, SEI.

Kasunic, M., 1992. Synthesis: A reuse-based software
development methodology. Process Guide, Version 1.0.
Tech. Rep., Software Productivity Consortium Services
Corporation.

Krutchen, P., 1995. Architectural Blueprints — The “4+1”
View Model of Software Architecture, IEEE Software
12 (6) 42-50, November.

Mazo, R., Assar, S., Salinesi, C. and Hassen, N. B., 2014.
Using Software Product Line to improve ERP
Engineering: Literature Review and Analysis, Latin
American Journal of Computing LAJC, Vol. 1 (1).

Ouali, S., Kraiem, N. and Ben Ghezala, H., 2011.
International Journal of Software Engineering &
Applications (IJSEA), Vol.2, No.2, April.

Pohl, K., Bockle, G. and Van Der Linden, F., 2005. SPL
Engineering: Foundations, Principles, and Techniques,
Springer.

Shaw, M. and Garlan, D., 1996. Software Architecture.
Perspectives of an emerging discipline, Prentice-Hall.

Oquendo et al., 2014. Reference Architectures, Chapter 2,
Edited by Mourad C. Oussalah, Wiley.

Supakkul S., Chung L., 2004. Integrating FRs and NFRs: A
Use Case and Goal Driven Approach.

Open Group, 2012. ArchiMate 2.1 Specification,
www.opengroup.org/subjectareas/enterprise/archimat.

Office of Management and Budget (OMB), 2006, Human
Resources Line of Business (HR LOB) Data Model
Version 1, Office of the Chief Information Officer,
Washington, DC 20415, February, OCIO-2006-01.

Losavio, F., Ordaz, O. and Levy, N., 2014. Refactoring.
Graph for Reference Architecture Design Process. In

AFADL, 103-108, CNAM, Paris.
Taylor R. N., Medvidovic N., Dashofy E., 2009. Software.
 Architecture: Foundations, Theory and Practice, Wiley.
Losavio, F., Ordaz, O. and Esteller, V., 2015. Quality-based

Bottom-up Design of Reference Architecture Applied
to Healthcare Integrated Information Systems, In 9th
RCIS, IEEE,76-81, Athens, Greece.

