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Abstract. Representing and reasoning on imprecise temporal information is a common requirement in
the field of Semantic Web. Many works exist to represent and reason on precise temporal information in
OWL; however, to the best of our knowledge, none of these works is devoted to imprecise temporal time
intervals. To address this problem, we propose two approaches: a crisp-based approach and a fuzzy-based
approach. (1) The first approach uses only crisp standards and tools and is modeled in OWL 2. We extend
the 4D-fluents model, with new crisp components, to represent imprecise time intervals and qualitative crisp
interval relations. Then, we extend the Allen’s interval algebra to compare imprecise time intervals in a
crisp way and inferences are done via a set of SWRL rules. (2) The second approach is based on fuzzy sets
theory and fuzzy tools and is modeled in Fuzzy-OWL 2. The 4D-fluents approach is extended, with new
fuzzy components, in order to represent imprecise time intervals and qualitative fuzzy interval relations.
The Allen’s interval algebra is extended in order to compare imprecise time intervals in a fuzzy gradual
personalized way. Inferences are done via a set of Mamdani IF-THEN rules.
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1 Introduction

In the Semantic Web field, representing and reas-
oning on imprecise temporal information is a com-
mon requirement. Indeed, temporal information
given by users is often imprecise. For instance, if
they give the information “Alexandre was married
to Nicole by 1981 to late 90” two measures of
imprecision are involved. On the one hand, the
information “by 1981” is imprecise in the sense
that it could mean approximately from 1980 to
1982; on the other hand, the information “late 90”
is imprecise in the sense that it could mean, with
an increasingly possibility, from 1995 to 2000.
When an event is characterized by a gradual be-
ginning and/or ending, it is usual to represent the
corresponding time span as an imprecise time
interval.
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In OWL, many works have been proposed to
represent and reason on precise temporal informa-
tion; however, to the best of our knowledge, there
is no work devoted to represent and reason on
imprecise temporal time intervals. In this paper,
we answer this problem with two approaches, one
using a crisp environment, the other one using a
fuzzy environment.

The first approach involves only crisp standards
and tools. To represent imprecise time intervals in
OWL 2, we extend the so called 4D-fluents model
(Welty and Fikes 2006) which is a formalism
to model crisp quantitative temporal information
and the evolution of temporal concepts in OWL.
This model is extended in two ways: (1) It is
enhanced with new crisp components for modeling
imprecise time intervals. (2) It is enhanced with
qualitative temporal expressions representing crisp
relations between imprecise temporal intervals. To
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reason on imprecise time intervals, we extend the
Allen’s interval algebra (Allen 1983) which is the
most used and known formalisms for reasoning
about crisp time intervals. We generalize Allen’s
relationships to handle imprecise time intervals
with a crisp view. The resulting crisp temporal
interval relations are inferred from the introduced
imprecise time intervals using a set of SWRL rules
(Horrocks et al. 2004), in OWL 2.

The second approach is based on fuzzy sets the-
ory and fuzzy tools. It is based on Fuzzy-OWL 2
(Bobillo and Straccia 2011) which is an extension
of OWL 2 that deals with fuzzy information. To
represent imprecise time intervals in Fuzzy-OWL
2, we extend the 4D-fluents model in two ways:
(1) It is enhanced with new fuzzy components to
be able to model imprecise time intervals. (2) It
is enhanced with qualitative temporal expressions
representing fuzzy relations between imprecise
temporal intervals. To reason on imprecise time
intervals, we extend Allen’s work to compare
imprecise time intervals in a fuzzy gradual per-
sonalized way. Our Allen’s extension introduces
gradual fuzzy interval relations e.g., “long before”.
It is personalized in the sense that it is not limited to
a given number of interval relations. It is possible
to determinate the level of precision that should be
in a given context. For instance, the classic Allen
relation “before” may be generalized in N interval
relations, where “before(1)” means “just before”
and gradually the time gap between the two impre-
cise intervals increases until “before(N)” which
means “long before”. The resulting fuzzy interval
relations are inferred from the introduced impre-
cise time intervals using the FuzzyDL reasoner
(Bobillo and Straccia 2008), via a set of Mamdani
IF-THEN rules, in Fuzzy-OWL 2.

The current paper is organized as follows: Sec-
tion 2 is devoted to present some preliminary
concepts and related work in the field of temporal
information representation in OWL and reasoning
on time intervals. In Section 3, we introduce our
crisp-based approach for representing and reas-
oning on imprecise time intervals. In Section 4,
we introduce our fuzzy-based approach for repres-
enting and reasoning on imprecise time intervals.

Section 5 draws conclusions and future research
directions.

2 Preliminaries and Related Work
In this section, we introduce some preliminary
concepts and related work in the field of temporal
information representation in OWL and reasoning
on time intervals.

2.1 Representing Temporal Information
in OWL

Five main approaches are proposed to represent
time information in OWL: Temporal Description
Logics (Artale and Franconi 2000), Versioning
(Klein and Fensel 2001), N-ary relations (Noy
and Rector 2006) and 4D-fluents (Welty and Fikes
2006). All these approaches represent only crisp
temporal information in OWL. Temporal Descrip-
tion Logics extend the standard description logics
with additional temporal constructs e.g., “some-
time in the future”. N-ary relations approach
represents an N-ary relation using an additional
object. The N-ary relation is represented as two
properties each related with the new object. The
two objects are related to each other with an N-
ary relation. Reification is “a general purpose
technique for representing N-ary relations using a
language such as OWL that permits only binary
relations” (Batsakis and Petrakis 2011). Version-
ing approach is described as “the ability to handle
changes in ontologies by creating and managing
different variants of it” (Klein and Fensel 2001).
When an ontology is modified, a new version
is created to represent the temporal evolution of
the ontology. 4D-fluents approach represents tem-
poral information and the evolution of the last ones
in OWL. Concepts varying in time are represented
as 4-dimensional objects with the 4th dimension
being the temporal dimension.

Based on the present related work, we choose
the 4D-fluents approach. Indeed, compared to
related work, it minimizes the problem of data
redundancy as the changes occur only on the tem-
poral parts and keeping therefore the static part
unchanged. It also maintains full OWL expressive-
ness and reasoning support (Batsakis and Petrakis
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2011). We extend this approach in two ways. (1)
It is extended with crisp components to represent
imprecise time intervals and crisp interval rela-
tions in OWL 2 (Section 3). (2) It is extended with
fuzzy components to represent imprecise time in-
tervals and fuzzy interval relations in Fuzzy-OWL
2 (Section 4).

2.2 Allen’s Interval Algebra
(Allen 1983) has proposed 13 mutually exclusive
primitive relations that may hold between two pre-
cise time intervals. Their semantics is illustrated
in Table 1. Let I = [I−, I+] and J = [J−, J+]
two time intervals; where I− (respectively J−)
is the beginning time-step of the event and I+

(respectively J−) is the ending.
A number of works fuzzify Allen’s temporal

interval relations. We classify these works into
(1) works focusing on fuzzifying Allen’s interval
algebra to compare precise time intervals and
(2) works focusing on fuzzifying Allen’s interval
algebra to compare imprecise time intervals.

Three approaches have been proposed to fuzzify
Allen’s interval algebra in order to compare precise
time intervals: (Guesgen et al. 1994), (Dubois
and Prade 1989) and (Badaloni and Giacomin
2006). (Guesgen et al. 1994) propose fuzzy Allen
relations viewed as fuzzy sets of ordinary Allen
relationship taking into account a neighborhood
structure, a notion originally introduced in (Freksa
1992). (Dubois and Prade 1989) represent a time
interval as a pair of possibility distributions that
define the possible values of the endpoints of
the crisp interval. Using possibility theory, the
possibility and necessity of each of the interval
relations can then be calculated. This approach
also allows modeling imprecise relations such as
“long before”. (Badaloni and Giacomin 2006)
propose a fuzzy extension of Allen’s work, called
IAfuz where degrees of preference are associated
to each relation between two precise time intervals.

Four approaches have been proposed to fuzzify
Allen’s interval algebra to compare imprecise time
intervals: (Nagypál and Motik 2003), (Ohlbach
2004), Schockaert08 and (Gammoudi et al. 2017).
(Nagypál and Motik 2003) propose a temporal

model based on fuzzy sets to extend Allen rela-
tions with imprecise time intervals. The authors
introduce a set of auxiliary operators on intervals
and define fuzzy counterparts of these operators.
The compositions of these relations are not studied
by the authors. (Ohlbach 2004) propose an ap-
proach to handle some gradual temporal relations
as “more or less finishes”. However, this work can-
not take into account gradual temporal relations
such as “long before”. Furthermore, many of the
symmetry, reflexivity, and transitivity properties
of the original temporal interval relations are lost
in this approach; thus it is not suitable for temporal
reasoning. (Schockaert and Cock 2008) propose
a generalization of Allen’s relations with precise
and imprecise time intervals. This approach al-
lows handling classical temporal relations, as well
as other imprecise relations. Interval relations are
defined according to two fuzzy operators compar-
ing two time instants: “long before” and “occurs
before or at approximately the same time”. (Gam-
moudi et al. 2017) generalize the definitions of
the 13 Allen’s classic interval relations to make
them applicable to fuzzy intervals in two ways
(conjunctive and disjunctive). Gradual temporal
interval relations are not taken into account.

3 A Crisp-Based Approach for
Representing and Reasoning on
Imprecise Time Intervals

In this section, we propose a crisp-based approach
to represent and reason on imprecise time intervals.
This solution is entirely based on crisp standards
and tools. We extend the 4D-fluents model to
represent imprecise time intervals and their crisp
relationships in OWL 2. To reason on imprecise
time intervals, we extend the Allen’s interval al-
gebra in a crisp way. In OWL 2, inferences are
done via a set of SWRL rules.

3.1 Representing Imprecise Time
Intervals and Crisp Qualitative
Interval Relations in OWL 2

In the crisp-based solution, we now represent each
imprecise interval bound of the time interval as
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Table 1: Allen’s temporal interval relations (I: , J: ).

Relation Inverse Relations between interval bounds Illustration

Be f ore(I, J) A f ter (I, J) I+ < J−

Meets(I, J) MetBy(I, J) I+ = J−

Overlaps(I, J) OverlappedBy(I, J) (I− < J−) ∧ (I+ > J−) ∧ (I+ < J+)

Starts(I, J) StartedBy(I, J) (I− = J−) ∧ (I+ < J+)

During(I, J) Contains(I, J) (I− > J−) ∧ (I+ < J+)

Ends(I, J) EndedBy(I, J) (I− > J−) ∧ (I+ = J+)

Equal (I, J) Equal (I, J) (I− = J−) ∧ (I+ = J+)

a disjunctive ascending set. Let I = [I−, I+]
be an imprecise time interval; where I− =
I−(1) . . . I−(N ) and I+ = I+(1) . . . I+(N ). For in-
stance, if we have the information “Alexandre was
started his PhD study in 1975 and he was graduated
around 1980” the imprecise time interval repres-
enting this period is [1975, {1978 . . . 1982}]. This
means that his PhD studies end in 1978 or 1979
or 1980 or 1981 or 1982. The classic 4D-fluents
model introduces two crisp classes “TimeSlice”
and “TimeInterval” and four crisp properties “ts-
TimeSliceOf", “tsTimeInterval", “hasBegining”
and “hasEnd”. The class “TimeSlice” is the do-
main class for entities representing temporal parts
(i.e., “time slices"). The property “tsTimeSliceOf”
connects an instance of class “TimeSlice” with
an entity. The property “tsTimeInterval” con-
nects an instance of class “TimeSlice” with an
instance of class “TimeInterval”. The instance
of class “TimeInterval” is related with two tem-
poral instants that specify its starting and ending
points using, respectively, the “hasBegining” and
“hasEnd” properties. Figure 1 illustrates the use
of the 4D-fluents model to represent the following
example: “Alexandre was started his PhD study
in 1975 and he was graduated in 1978”.

We extend the original 4D-fluents model in the
following way. We add four crisp datatype prop-
erties “HasBeginningFrom", “HasBeginningTo",
“HasEndFrom", and “HasEndTo” to the class

“TimeInterval”. Let I = [I−, I+] be an impre-
cise time interval; where I− = I−(1) . . . I−(N )

and I+ = I+(1) . . . I+(N ). “HasBeginningFrom”
has the range I−(1). “HasBeginningTo” has the
range I−(N ). “HasEndFrom” has the range I+(1).
“HasEndTo” has the range I+(N ) . The 4D-fluents
model is also enhanced with crisp qualitative tem-
poral interval relations that may hold between
imprecise time intervals. This is implemented by
introducing temporal relationships, called “Rela-
tionIntervals", as a crisp object property between
two instances of the class “TimeInterval”. Fig-
ure 2 represents the extended 4D-fluents model in
OWL 2.

We can see in Figure 3 an instantiation of the
extended 4D-fluents model in OWL 2. On this
example, we consider the following information:
“Alexandre was married to Nicole just after he was
graduated with a PhD. Alexandre was graduated
with a PhD in 1980. Their marriage lasts 15 years.
Alexandre was remarried to Béatrice since about
10 years and they were divorced in 2016”. Let I =
[I−, I+] and J = [J−, J+] be two imprecise time
intervals representing, respectively, the duration of
the marriage of Alexandre with Nicole and the one
with Béatrice. Assume that I− = {1980 . . . 1983},
I+ = {1995 . . . 1998}, J− = {2006 . . . 2008} and
J+ = 2016.
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Figure 1: An instantiation of the classic the 4D-fluents model.

Figure 2: The extended 4D-fluents model in OWL 2.

3.2 A Crisp-Based Reasoning on
Imprecise Time Intervals in OWL 2

We have redefined 13 Allen’s interval, in a crisp
way, to compare imprecise time intervals i.e.,
the resulting interval relations upon imprecise
time intervals are crisp. Let I = [I−, I+] and
J = [J−, J+] two imprecise time intervals; where
I− = I−(1) . . . I−(N ), I+ = I+(1) . . . I+(N ), J− =
J−(1) . . . J−(N ) and J+ = J+(1) . . . J+(N ). For
instance, the crisp interval relation “before (I, J)”
is redefined as: ∀I+(i) ∈ I+,∀J−( j ) ∈ J− : I+(i) <

J−( j ) This means that the most recent time instant
of I+(I+(N )) ought to Precede the oldest time
instant of J−(J−(1)): I+(N ) < J−(1) In the similar

way, we define the other temporal interval relations.
In Table 2, we define 13 crisp temporal interval
relations upon the two imprecise time intervals I
and J.

In order to apply our crisp extension of Allen’s
work in OWL 2, we propose a set of SWRL rules
that infer the temporal interval relations from the
introduced imprecise time intervals which are
represented using the extended 4D-fluents model
in OWL2. For each temporal interval relation, we
associate a SWRL rule. Reasoners that support
DL-safe rules (i.e., rules that apply only on named
individuals in the knowledge base) such as Pellet
(Sirin et al. 2007) can support our approach. For
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Figure 3: An instantiation of the extended 4D-fluents model in OWL 2.

instance, the SWRL rule to infer the “Meet (I, J)”
relation is the following:

TimeInterval (I) ∧ TimeInterval (J) ∧
HasEndFrom(I, a) ∧

HasBeginningFrom(J, b) ∧ Equals(a, b) ∧
HasEndTo(I, c) ∧ HasBeginningTo(J, d) ∧

Equals(c, d) → Meet(I, J)

4 A Fuzzy-Based Approach for
Representing and Reasoning on
Imprecise Time Intervals

In this section, we propose a fuzzy-based approach
to represent and reason on imprecise time intervals.
This approach is based on a fuzzy environment.
We extend the 4D-fluents model to represent im-
precise time intervals and their relationships in
Fuzzy-OWL 2. To reason on imprecise time in-
tervals, we extend the Allen’s interval algebra in
a fuzzy gradual personalized way. We infer the
resulting fuzzy interval relations in Fuzzy-OWL 2
using a set of Mamdani IF-THEN rules.

4.1 Representing Imprecise Time
Intervals and Fuzzy Qualitative
Interval Relations in Fuzzy-OWL 2

In the fuzzy-based solution, we now represent the
imprecise beginning interval bound as a fuzzy set
which has the L-function MF and the ending inter-
val bound as a fuzzy set which has the R-function
membership function (MF). Let I = [I−, I+] be an
imprecise time interval. We represent the binging

bound I− as a fuzzy set which has the L-function
MF (A = I−(1) and B = I−(N )). We represent
the ending bound I+ as a fuzzy set which has the
R-function MF (A = I+(1) and B = I+(N )). For
instance, if we have the information “Alexandre
was starting his PhD study in 1973 and was gradu-
ated in late 80", the beginning bound is crisp. The
ending bound is imprecise and it is represented
by L-function MF (A = 1976 and B = 1980). For
the rest of the paper, we use the MFs shown in
Figure 4 [Zadeh, 1975].

We extend the original 4D-fluents model to
represent imprecise time intervals in the follow-
ing way. We add two fuzzy datatype properties
“FuzzyHasBegining” and “FuzzyHasEnd” to the
class “TimeInterval”. “FuzzyHasBegining” has
the L-function MF (A = I−(1) and B = I−(N )).
“FuzzyHasEnd” has the R-function MF (A = I+(1)

and B = I+(N )). The 4D-fluents approach is
also enhanced with qualitative temporal relations
that may hold between imprecise time intervals.
We introduce the “FuzzyRelationIntervals", as
a fuzzy object property between two instances
of the class “TimeInterval”. “FuzzyRelation-
Intervals” represent fuzzy qualitative temporal
relations. “FuzzyRelationIntervals” has the L-
function MF (A = 0 and B = 1). Figure 5 repres-
ents our extended 4D-fluents model in Fuzzy-OWL
2.

We can see in Figure 6 an instantiation of the ex-
tended 4D-fluents model in Fuzzy-OWL 2. On this
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Table 2: Crisp temporal interval relations upon imprecise time intervals.

Relation Inverse Interpretation Relations between interval bounds

Be f ore(I, J ) Af ter (I, J ) ∀I+(i) ∈ I+, ∀J−( j ) ∈ J− :
(I+(i) < J−( j ) )

I+(N ) < J−(1)

Meets(I, J ) MetBy (I, J ) ∀I+(i) ∈ I+, ∀J−( j ) ∈ J− :
(I+(i) = J−( j ) )

(I+(1) = J−(1) ) ∧ (I+(N ) = J−(N ) )

Overlaps(I, J ) OverlappedBy (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) < J−( j ) ) ∧ (J−( j ) <
I+(i) ) ∧ (I+(i) < J+( j ) )

(I−(N ) < J−(1) ) ∧ (J−(N ) <
I+(1) ) ∧ (I+(N ) < J+(1) )

Star t s(I, J ) Star tedBy (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) = J−( j ) ) ∧ (I+(i) < J+( j ) )

(I−(1) = J−(1) ) ∧ (I−(N ) =

J−(N ) ) ∧ (I+(N ) < J+(1) )

During(I, J ) Contains(I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+(i) ∈ J+ :
(J−( j ) < I−(i) ) ∧ (I+(i) < J+(i) )

(J−(N ) < I−(1) ) ∧ (I+(N ) < J+(1) )

Ends(I, J ) EndedBy (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) < J−( j ) ) ∧ (I+(i) = J+( j ) )

(J−(N ) < I−(1) ) ∧ (I+(1) =

J+(1) ) ∧ (I+(N ) = J+(N ) )

Equal (I, J ) Equal (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) = J−( j ) ) ∧ (I+(i) = J+( j ) )

(I−(1) = J−(1) ) ∧ (I−(N ) = J−(N ) ) ∧
(I+(1) = J+(1) ) ∧ (I+(N ) = J+(N ) )

example, we consider the following information:
“Alexandre was married to Nicole just after he was
graduated with a PhD. Alexandre was graduated
with a PhD in 1980. Their marriage lasts 15 years.
Alexandre was remarried to Béatrice since about
10 years and they were divorced in 2016”. Let
I = [I−, I+] and J = [J−, J+] be two imprecise
time intervals representing, respectively, the dur-
ation of the marriage of Alexandre with Nicole
and the one with Béatrice. I− is represented with
the fuzzy datatype property “FuzzyHasBegining”
which has the L-function MF (A = 1980 and
B = 1983). I+ is represented with the fuzzy
datatype property “FuzzyHasEnd” which has the
R-function MF (A = 1995 and B = 1998). J−

is represented with the fuzzy datatype property
“FuzzyHasBegining” which has the L-function
MF (A = 2005 and B = 2007). J+ is represented
with the crisp datatype property “HasEnd” which
has the value “2016”.

4.2 A Fuzzy-Based Reasoning on
Imprecise Time Intervals in Fuzzy
OWL 2

We propose a set of fuzzy gradual personalized
comparators that may hold between two time
instants. Based on these operators, we present our
fuzzy gradual personalized extension of Allen’s
work. Then, we infer, in Fuzzy OWL 2, the
resulting temporal interval relations via a set of
Mamdani IF-THEN rules using the fuzzy reasoner
FuzzyDL. We generalize the crisp time instants
comparators “Follow", “Precede” and “Same",
introduced in (Vilain and Kautz 1986). Let α and
β two parameters allowing the definition of the
membership function of the following comparators
(∈]0,+∞[); N is the number of slices; T1 and T2
are two time instants; we define the following
comparators (illustrated in Figure 7):

• {Follow(α,β)
(1) (T1,T2) . . . Follow(α,β)

(N ) (T1,T2)}
are a generalization of the crisp time in-
stants relation “Follows”. Follow(α,β)

(1) (T1,T2)
means that T1 is “just after or approxim-
ately at the same time” T2 w.r.t. (α, β)
and gradually the time gap between T1
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Figure 4: R-Function, L-Function and Trapezoidal MFs (Zadeh 1975).

and T2 increases until Follow(α,β)
(N ) (T1,T2)

which means that T1 is “long after” T2
w.r.t. (α, β). N is set by the expert domain.
{Follow(α,β)

(1) (T1,T2) . . . Follow(α,β)
(N ) (T1,T2)}

are defined as fuzzy sets. Follow(α,β)
(1) (T1,T2)

has R-Function MF which has as parameters
A = α and B = (α + β). All comparators
{Follow(α,β)

(2) (T1,T2) . . . Follow(α,β)
(N−1) (T1,T2)}

have trapezoidal MF which has as parameters
A = ((K−1)α) and B = ((K−1)α+ (K−1) β),
C = (Kα + (K − 1) β) and D = (Kα + K β);
where 2 ≤ K ≤ N − 1. Follow(α,β)

(N ) (T1,T2)
has L-Function MF which has as para-
meters A = ((N − 1)α + (N − 1) β) and
B = ((N − 1)α + (N − 1) β);

• {Precede(α,β)
(1) (T1,T2) . . . Precede(α,β)

(N ) (T1,T2)}
are a generalization of the crisp time instants
relation “Precede”. Precede(α,β)

(1) (T1,T2)
means that T1 is “just before or approxim-
ately at the same time” T2 w.r.t. (α, β)
and gradually the time gap between T1
and T2 increases until Precede(α,β)

(N ) (T1,T2)
which means that T1 is “long before” T2
w.r.t. (α, β). N is set by the expert domain.
{Precede(α,β)

(1) (T1,T2) . . . Precede(α,β)
(N ) (T1,T2)}

are defined as fuzzy sets. Precede(α,β)
(i) (T1,T2)

is defined as:

Precede(α,β)
(i) (T1,T2) = 1−Follow(α,β)

(i) (T1,T2)

• We define the comparator Same(α,β) which
is a generalization of the crisp time instants
relation “Same”. Same(α,β) (T1,T2) means that
T1 is “approximately at the same time” T2 w.r.t.
(α, β). It is defined as:

Same(α,β) (T1,T2) =Min(Follow(α,β)
(1) (T1,T2),

Precede(α,β)
(1) (T1,T2))

Then, we extend Allen’s work to compare im-
precise time intervals with a fuzzy gradual person-
alized view. We provide a way to model gradual,
linguistic-like description of temporal interval re-
lations. Compared to related work, our work is
not limited to a given number of imprecise rela-
tions. It is possible to determinate the level of
precision that should be in a given context. For
instance, the classic Allen relation “before” may
be generalized in N imprecise relations, where
“Be f ore(α,β)

(1) (I, J)” means that I is “just before”
J w.r.t. (α, β) and gradually the time gap between
I and J increases until “Be f ore(α,β)

(N ) (I, J)” which
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Figure 5: The extended 4D-fluents model in Fuzzy-OWL 2.

Figure 6: An instantiation of the extended 4D-fluents model in Fuzzy-OWL 2.

means that I is long before J w.r.t. (α, β). The
definition of our fuzzy interval relations is based
on the fuzzy gradual personalized time instants
compactors. Let I = [I−, I+] and J = [J−, J+]
two imprecise time intervals; where I− has the
L-function MF (A = I−(1) and B = I−(N )); I+ is a
fuzzy set which has the R-function MF (A = I+(1)

and B = I+(N )); J− is a fuzzy set which has the L-
function MF (A = J−(1) and B = J−(N )); J+ is a
fuzzy set which has the R-function MF (A = J+(1)

and B = J+(N )). For instance, the fuzzy interval
relation “Be f ore(α,β)

(1) (I, J)” is defined as:

∀I+(i) ∈ I+,∀J−( j ) ∈ J− :

Precede(α,β)
(1) (I+(i), J−( j ))

This means that the most recent time instant of
I+(I+(N )) ought to proceed the oldest time instant
of J−(J−(1)):

Precede(α,β)
(1) (I+(N ), J−(1))

In the similar way, we define the others temporal
interval relations, as shown in Table 3.

Finally, we have implemented our fuzzy gradual
personalized extension of Allen’s work in Fuzzy-
OWL 2. We use the ontology editor PROTEGE
version 4.3 and the fuzzy reasoner FuzzyDL. We
propose a set of Mamdani IF-THEN rules to in-
fer the temporal interval relations from the in-
troduced imprecise time intervals which are rep-
resented using the extended 4D-fluents model in
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Figure 7: Fuzzy gradual personalized time instants comparators. (A) Fuzzy sets of
{Follow(α,β)

(1) (T1,T2) . . . Follow(α,β)
(N ) (T1,T2)}. (B) Fuzzy sets of {Precede(α,β)

(1) (T1,T2) . . . Precede(α,β)
(N ) (T1,T2)}. (C)

Fuzzy set of Same(α,β) (T1,T2).

Table 3: Fuzzy gradual personalized temporal interval relations upon imprecise time intervals.

Relation Inverse Relations between bounds Definition

Be f ore
(α,β)
(K ) (I, J ) Af ter

(α,β)
(K ) (I, J ) ∀I+(i) ∈ I+, ∀J−( j ) ∈ J− :

(I+(i) < J−( j ) )
Precede

(α,β)
(K ) (I+(N ), J−(1) )

Meets (α,β) (I, J ) MetBy(α,β) (I, J ) ∀I+(i) ∈ I+, ∀J−( j ) ∈ J− :
(I+(i) = J−( j ) )

Min(Same (α,β) (I+(1), J−(1) ) ∧
Same (α,β) (I+(N ), J−(N ) ))

Overlaps
(α,β)
(K ) (I, J ) OverlappedBy

(α,β)
(K ) (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) < J−( j ) ) ∧ (J−( j ) <
I+(i) ) ∧ (I+(i) < J+( j ) )

Min(Precede (α,β)
(K ) (I−(N ), J−(1) )∧

Precede(K )(α,β) (J−(N ), I+(1) ) ∧
Precede

(α,β)
(K ) (I+(N ), J+(1) ))

Star t s
(α,β)
(K ) (I, J ) Star tedBy

(α,β)
(K ) (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) = J−( j ) ) ∧ (I+(i) < J+( j ) )

Min(Same (α,β) (I−(1), J−(1) ) ∧
Same (α,β) (I−(N ), J−(N ) ) ∧
Precede

(α,β)
(K ) (I+(N ), J+(1) ))

During
(α,β)
(K ) (I, J ) Contains

(α,β)
(K ) (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+(i) ∈ J+ :
(J−( j ) < I−(i) ) ∧ (I+(i) < J+(i) )

Min(Precede (α,β)
(K ) (J−(N ), I−(1) )∧

Precede
(α,β)
(K ) (I+(N ), J+(1) ))

Ends
(α,β)
(K ) (I, J ) EndedBy

(α,β)
(K ) (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) < J−( j ) ) ∧ (I+(i) = J+( j ) )

Min(Precede (α,β)
(K ) (J−(N ), I−(1) )∧

Same (α,β) (I+(1), J+(1) ) ∧
Same (α,β) (I+(N ), J+(N ) ))

Equal (α,β) (I, J ) Equal (α,β) (I, J ) ∀I−(i) ∈ I−, ∀I+(i) ∈

I+, ∀J−( j ) ∈ J−, ∀J+( j ) ∈ J+ :
(I−(i) = J−( j ) ) ∧ (I+(i) = J+( j ) )

Min(Same (α,β) (I−(1), J−(1) ) ∧
Same (α,β) (I−(N ), J−(N ) ) ∧
Same (α,β) (I+(1), J+(1) ) ∧
Same (α,β) (I+(N ), J+(N ) ))
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Fuzzy-OWL2. For each temporal interval rela-
tion, we associate a Mamdani IF-THEN rule. For
instance, the Mamdani IF-THEN rule to infer the
“Overlaps(α,β)

(1) (I, J)” relation is the following:

(define-concept Rule0 (g-and (some Precede(1/1)

Fulfilled) (some Precede(1/2) Fulfilled) Fulfilled)
(some Precede(1/3) Fulfilled) (some Overlaps(1)

True))) // Fuzzy rule

We define three input fuzzy variables,
named “Precede(1/1)", “Precede(1/2)” and
“Precede(1/3)", which have the same MF than
that of “Precede(α,β)

(1) ”. We define one output
variable “Overlaps(1)” which has the same mem-
bership than that of the fuzzy object property
“FuzzyRelationIntervals”. “Precede(1/1)", “Pre-
cede(1/2)” and “Precede(1/3)” are instantiated
with, respectively, (I−(N ) − J−(1)), (J−(N ) − I+(1))
and (I+(N ) − J+(1)).

5 Conclusion

In this paper, we proposed two approaches to
represent and reason on imprecise time intervals
in OWL: a crisp-based approach and a fuzzy-based
approach. (1) The crisp-based approach is based
only on crisp environment. We extended the 4D-
fluents model to represent imprecise time intervals
and crisp interval relations in OWL 2. To reason on
imprecise time intervals, we extended the Allen’s
interval algebra in a crisp way. Inferences are
done via a set of SWRL rules. (2) The fuzzy-
based approach is entirely based only on fuzzy
environment. We extended the 4D-fluents model
to represent imprecise time intervals and fuzzy
interval relations in Fuzzy-OWL 2. To reason on
imprecise time intervals, we extend the Allen’s
interval algebra in a fuzzy gradual personalized
way. We infer the resulting fuzzy interval relations
in Fuzzy-OWL 2 using a set of Mamdani IF-THEN
rules.

Concerning the choice between these two ap-
proaches (the crisp-based one or the fuzzy-based
one), as a fuzzy ontology is an extension of crisp
ontology, researchers may choose any of our two

approaches for introducing imprecise interval man-
agement in their knowledge bases whatever these
latter are crisp or fuzzy. However our fuzzy-based
approach allows more functionalities, in particular
it is suitable to represent and reason on gradual
interval relations such as “middle before” or “ap-
proximately at the same time”. Hence, in the
case of manipulating a fuzzy knowledge base, we
encourage researchers to choose the fuzzy-based
approach to model and reason on imprecise time
intervals. The main interest of the crisp-based
approach is that this solution can be implemented
with classical crisp tools and that the program-
mers are not obliged to learn technologies related
to fuzzy ontology. Considering that crisp tools
and models are more mature and better support
scaling, the crisp-based approach is more suitable
for marketed products.

The works presented in this paper have been
tested in two projects, having in common to man-
age life logging data: (1) In the VIVA project, we
aim to design the Captain Memo memory pros-
thesis (Herradi et al. 2015; Métais et al. 2012) for
Alzheimer Disease patients. Among other func-
tionalities, this prosthesis manages a knowledge
base on the patient’s family tree, using an OWL
ontology. Imprecise inputs are especially numer-
ous when given by an Alzheimer Disease patient.
Furthermore, dates are often given in reference to
other dates or events. Thus we have been using
the “fuzzy” solution reported in this paper. One
interesting point in this solution is to deal with a
personalized slicing of the person’s life in order
to sort the different events. (2) The QUALHIS
project aims to allow Middle Ages specialized his-
torians to deal with prosopographical data bases
storing Middle age academic’s career histories.
Data come from various archives among Europe
and data about a same person are very difficult to
align. Representing and ordering imprecise time
interval is required to redraw the careers across
the different European universities who hosted the
person. We preferred the “crisp” solution in order
to favour the integration within the existing crisp
ontologies and tools, and to ease the management
by Historians.
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