

Importance of factors contributing to work-related stress: comparison of four metrics

Mounia N. Hocine, Natalia Feropontova, Ndèye Niang, Karim Aït-Bouziad, Gilbert Saporta

Conservatoire national des arts et métiers, Paris, France

9th June 2017

Outline

- Background Aim
- Study data on stress and stressors
- Four metrics to rank stressors
- Results
- Conclusion

Background

- Stress: a major public health issue
- → has negative effects on both physical and psychological health
- → is an inevitable part of organizational life

The aim: Reduce work-related stress level

Decision makers would like to be provided with statistical tools that can help them <u>identify risk factors</u> requiring a priority action

Study data

Data collection

- Provided by Stimulus (expert in occupational health & wellbeing)
 → 10 000 anonymous employees randomly drawn from different companies.
- Tools:
 - 1st questionnaire on work-related stress
 - 2nd questionnaire on job characteristics

 \rightarrow both administrated to employees during their routine visit in preventive medicine service.

Study data

Stress measurement

- 1st questionnaire: 25 items to measure individual psychological stress at work
 - \rightarrow 8-point Likert scale.
- Example:

"I'm confused and I lack focus and concentration", answer varies from 1 "not at all" to 8 "enormously"

Stress score = Σ responses \in [25-200]

Study data Psychosocial factors measurement

• 2^{nd} questionnaire: 58 items to measure the impact of job characteristics (stressors) \rightarrow 6-point Likert scale.

• Ex. 1: "My company does not care about employees well-being" answer varies from 0 "totally disagree" to 5 "totally agree"

The 58 items are grouped by the experts into 5 blocks: Context (14 items), Job control (14 items), Relationships (12 items), Tasks (12 items) Recognition (6 items).

Combined approach

• We used Importance-Performance Analysis

• Importance: calculated using Structural Equation Modeling

Hocine, Aït Bouziad, Légeron, Dab, Saporta, Plos One 2016

Step 1: Structural Equation Modeling

Conceptual model

Step 2: Importance-Performance Analysis

- Performance: <u>measured</u> as the score mean of 10 000 responses
- Importance: <u>calculated</u> using the suggested formulae:

Importance (kth item) = |Outer weight (kth item in jth block)| x

Path coefficient (jth block, stress)

 \rightarrow Graphical based decision making

Results

Limitations

- The suggested method (Plos One 2016) is not easy to use by decision makers
- Regression coefficients cannot be used directly to provide decision makers with ranked predictors ????

Alternative methods

We explore alternative metrics to calculate predictor's importance:

- Weifila method: variance decomposition
- Random forest
- Attributable Risk: logistic regression

1. Weifila "Weighted first last"

• A variance decomposition method used in linear regression context.

$$E(Y_1) = \alpha + \beta_1 X_1 + \dots + \beta_p X_p$$

- Assign to each predictor X_j a part of variance W(j) = weighted average between first and last allocation:
- Allocation "first": $First(j) = cov(y_1; X_j)$
- Allocation "last": $Last(j) = sr^2(j)$

$$L = \sum_{j} Last(j), \qquad F = \sum_{j} First(j)$$

Justification intuitive de L et F?

Decision rule

- if $L < \mathbb{R}^2 < F$ then $W(j) = Last(j)\left(\frac{F-R^2}{F-L}\right) + First(j)\left(\frac{R^2-L}{F-L}\right)$
- if $F < R^2 < L$ then $W(j) = Last(j)\left(\frac{R^2 F}{L F}\right) + First(j)\left(\frac{L R^2}{L F}\right)$

By construction: $\sum_{j} W(j) = R^2$

2. Random forest

- Random forests are a combination of tree predictors
- Each tree depends on the values of a random vector sampled independently with the same distribution for all trees in the forest
- We use bagging to generate random vectors......
- Principe du calcul de l'importance?

3. Attributable risk

For each stressor, the association with "overstress"; a binary variable:

Overstress =
$$\begin{bmatrix} 1 & \text{if stress score} \ge 110 \\ 0 & \text{if not} \end{bmatrix}$$

can be evaluated by estimating an odds-ratio ightarrow logistic regression

Items	OR	95% Confidence	Interval (OR)
nsp09	3,81	3,21	4,52
nsp13	1,57	1,31	1,87
nsp54	1,49	1,27	1,76
nsp25	1,74	1,38	2,19
nsp18	1,37	1,16	1,61
nsp03	1,37	1,12	1,68
nsp37	1,28	1,09	1,51
nsp01	1,28	1,08	1,50
nsp38	1,34	1,10	1,63

3. Attributable risk (2)

The OR does not consider the exposure rate to the stressor. We suggest to calculate an attributable risk for each factor, as a measure of performance.

Results

Ranking

Weifila	AR	R. Forest
nsp09	nsp09	nsp09
nsp54	nsp13	nsp25
nsp25	nsp54	nsp54
nsp14	nsp24	nsp45
nsp13	nsp41	nsp13
nsp44	nsp25	nsp03

Results

Stressors to improve

- 1. « I have to work fast in a short timeframe »
- 2. « My promotion prospects are weak »
- 3. inverse of « My company offers me interesting career opportunities »
- 4. « I work in a noisy and hectic atmosphere »
- 5. inverse of « I am rewarded when I reach my goals »

Results

Stressors to maintain

- 1. « I frequently see the work pile up without being able to eliminate the backlog »
- 2. inverse of « My work gives me many opportunities to perform interesting tasks »
- 3. inverse of « My work means a lot to me »
- 4. « My job is about monotonous and repetitive tasks »
- 5. inverse of « I can achieve professional life personal life balance »
- 6. « I'm living or I expect to live an undesirable change that might affect my career »

Conclusion

• Sequence of the performed approach:

 Attributable Risk based approach is a useful tool easy to implement to help managers to rank professional psychosocial factors regarding their impact on stress level.

Perspectives

Causal analysis: to determine stressors on which to act in order to reduce psychosocial disorders associated with stress.

→ Causal graphs (Bühlmann, P. 2013)

→ Validation using longitudinal data collection

References

- Henri Wallard. Using Explained Variance Allocation to analyse Importance of Predictors. 16th ASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece
- Clarke, S. G., & Cooper, C. L. The risk management of occupational stress. Health, Risk & Society 2000.
- 3. Vinzi, E, Russolillo, G. Partial least squares algorithms and methods. Wiley Interdisciplinary Reviews: Computational Statistics 2013.
- 4. Martilla, J. A., & James, J. C. Importance-performance analysis. The journal of marketing 1977.
- 5. Bühlmann, P. Causal statistical inference in high dimensions. Mathematical Methods of Operations Research 2013.

Outcome of interest

Two different outcomes related to the level of stress. Continuous variable:

• Y₁= stress score

Binary variable of "over-stress":

• $Y_2 = \begin{bmatrix} 1 & \text{if stress score} \ge 110 \\ 0 & \text{if not.} \end{bmatrix}$