
c© 2016 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 2, Issue 1, 2016

http://www.ronpub.com/ojiot
ISSN 2364-7108

Controlled Components for Internet of Things
As-A-Service

Tatiana Aubonnet A, Amina Boubendir B, Frédéric Lemoine A, Noëmie Simoni B

A CEDRIC, Conservatoire National des Arts et Métiers,
292 rue Saint-Martin, 75003 Paris, France, {tatiana.aubonnet, frederic.lemoine}@cnam.fr

B Télécom ParisTech, 46 Rue Barrault, 75013 Paris, France
{amina.boubendir, noemie.simoni}@telecom-paristech.fr

ABSTRACT

In order to facilitate developers willing to create future Internet of Things (IoT) services incorporating the non-
functional aspects, we introduce an approach and an environment based on controlled components. Our approach
allows developers to design an IoT ”as-a-service”, to build the service composition and to manage it. This is
important, because the IoT allows us to observe and understand the real world in order to have decision-making
information to act on reality. It is important to make sure that all these components work according to their
mission, i.e. their Quality of Service (QoS) contract. Our environment provides the modeling, generates Architecture
Description Language (ADL) formats, and uses them in the implementation phase on an open-source platform.

TYPE OF PAPER AND KEYWORDS

Regular research paper: controlled IoT service, quality of service, QoS, as a sevice, heterogeneity, cloud, IoT

1 INTRODUCTION

The world of Internet of Things (IoT), Smart Object,
Smart Connected products and cyber Physical System
introduces devices of all kinds that, because of their
ability to ”observe” the physical world and to ”provide”
decision-making information, should be part of the
architecture of the future Internet [5], [37]. The
questions that arise are the following: How can they be
integrated in this all connected context? Can we have a
homogeneous or standardized architecture?

Among the fundamental characteristics of IoT systems
International Telecommunication Union (ITU-T) [9], we
focus on the following characteristics: (i) things-related
services, (ii) heterogeneity and (iii) inter-connectivity.

(i) IoT must provide things-related services taking
into account the inherent requirements of these

services. The architecture that is emerging is a
service oriented architecture (SOA) in which a
semantic consistency is needed between physical
and virtual objects associated with them. So that
such services can be provided in compliance with
these requirements, used technologies will have to
change.

(ii) The heterogeneity is located at several levels. There
are in particular ”the provided data” from very
different fields. We need to understand and know
the field of origin in order to qualify the treatment.
Then the devices themselves will be affected, since
they do not use the same hardware platforms or the
same network. We need to make sure that they are
reliable and that they behave properly.

(iii) With regard to the IoT, any object can be
connected to the infrastructure of information and

16

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

communication. The devices must be managed.

To meet these new challenges for IoT, we need to
rethink the services and ensure their behaviors. With our
proposals for a cloud application to become a services
and micro services composition, and in order to reach
maximum flexibility, to compose ”as-a-service” with our
connected objects, we propose in this paper:

(a) Service Oriented Architecture allowing the
composition of IoT applications in order to
integrate functional and non-functional (e.g.
quality of service) aspects.

(b) Integration of IoT connectivity to its environment.

(c) Management closer to each IoT service during the
operation phase.

The rest of the paper is organized as follows. We
first discuss and analyze related research contributions
in Section 2. We then propose in section 3 an
approach to compose IoT components ”as-a-service”
based on self-controlled components called ”IoT Self-
Controlled service Component” (IoTSCC). A platform
for components based architecture design is also
presented in this section. Moreover, we show in
Section 4 how to add security functionalities. In
Section 5 we present a study case related to warehouse
arrival management. Finally, Section 6 summarizes and
concludes this paper.

2 RELATED WORK

IoT may open new opportunities to create innovative
applications. The Intelligent Network has introduced
the concept of ”Service Creation Environment” (SCE)
[26]. This concept has been introduced with Intelligent
Networks to ease and speed up the development and
implementation of services [8]. An SCE is generally
a graphical user interface for developing services using
predefined components, also called building blocks
(SIB). This approach has been a precursor in separating
the service components and execution logic. The SIBs
make the construction of telecommunication services as
easy as possible. In the same way, the ”as-a-service” in
the IoT should allow a service composition flexibility.

IoT Service Platforms play a fundamental role for
creating and managing IoT applications. It is crucial
to hide the heterogeneity of hardware, software, data
formats, technologies and communication characterizing
IoT [34]. It is responsible for abstracting all the features
of objects, network, and services, and for offering a
loose coupling of components. IoT platforms in [17],
[21] focus on cloud computing architecture to meet

the challenges of flexibility, extensibility and economic
viability of IoT.

Some IoT platforms focus on the development
of IoT architectures that ensure interoperability
between vertical application solutions and different
technologies. For example, the main goal of iCORE
[16] and COMPOSE [22] is to develop an open
network architecture based on objects virtualization that
encompasses the technological heterogeneity.

BlueMix [4] is a platform ”as-a-service” (PaaS)
cloud, developed by IBM. It supports rapid development
of analytic applications, visualization dashboard, and
mobile IoT applications. IBM secures the platform and
infrastructure and provides users with the tools to secure
their apps and connect their device data with it. IBM
IoT foundation (IoTF) [25] is the hub where users can
set up and manage their connected devices. A device, in
order to be connected, will require a device management
agent that is a collection of logic installed on a device
that allows it to connect to the cloud Internet of Things
services as a managed device.

AWS IoT [2] is a platform that enables users to
connect devices to AWS Services [1] and other devices,
secure data and interactions, process and act upon
device data, and enable applications to interact with
devices even when they are offline. It provides
secure, bidirectional communication between Internet-
connected things (such as sensors, actuators, embedded
devices, or smart appliances) and the Amazon Web
Services (AWS) cloud. This enables users to collect
telemetry data from multiple devices and store and
analyze the data. The rules engine makes it possible
to build IoT applications that gather, process, analyze
and act on data generated by connected devices at global
scale without having to manage any infrastructure.

Azure IoT Hub [6] is a fully managed service that
enables reliable and secure bidirectional communication
between millions of IoT devices and a solution back
end. Azure IoT Hub can reliably receive, process or
store millions of events per second from devices for
analysis and provides extensive monitoring for device
connectivity and device identity management events.

The SPRINT project [15] provides a platform to
connect the software tools used by the industrial
companies within the project and allows integration
of different sub-systems at the design level. Other
platforms as BUTLER [18] or MobilityFirst [38] aim to
develop open architectures providing secure location and
context-aware services.

All IoT platforms focus on the same problems
such as homogenizing and transforming an object
so that it becomes a little smarter and can be
managed by understanding the same device management
commands, securing communication between devices or

17

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

between devices to cloud services, obtaining diagnostic
information, both for connectivity and for the devices
themselves (rich device metadata, status information)
and managing scalability by sending/receiving bulk
operations on/from many devices at a time.

These platforms provide undeniable help for
quick implementation, but have they not all implicit
management aspects always adapted to a particular
context? Are they not the result of a compromise?
The architect has to be allowed to select, customize
and adapt her/his solutions according to behavioral
progress. Theoretical models of the IoT architecture
and the definition of an initial set of key building
blocks are indeed key objectives of [20] and IoT-A
[13], respectively. The works [14], [19] focus on
business services and on the development of SOA-based
architectures and dynamic environments to semantically
integrate services into IoT but without offering a
loose coupling of components allowing re-composition
according to behavioral changes during the session.

Furthermore, observance and integration of Quality
of Service (QoS) is mandatory for IoT services and
applications. The solutions provided by these platforms,
as well as the standardization works of the ITU-T, ETSI
oneM2M [23][24][9] are not sufficient and not complete,
in our view, for the IoT and Cloud Computing. Indeed,
service components (”as-a-service”) in this IoT/Cloud
environment must offer to the user, who will select them,
not only a feature but well-defined behavior (QoS) too.
This led us to propose a control allowing a component to
monitor its compliance with the contract.

We note that in the mobile context there is a missing
feature, the continuity of service. Our motivation is
to design, manage and control components, reacting
throughout the life cycle and during running time.
That is why we present our approach of IoT ”as-a-
service” composition and control mechanisms to satisfy
the continuity of service and the compliance with the
contract.

3 PROPOSITIONS FOR AN AS-A-SERVICE IOT
DESIGN

Since IoT is about smart objects [36] being first sensed
then controlled and managed remotely across network
infrastructure, there is a need to go towards an effective,
structured and efficient realization of such a definition.
For the purpose, we propose that IoT devices should be
introduced in the ”as-a-service” ecosystem of the Cloud.
This is a major direction to acquire a significant role for
meeting the need for remote control and management.
We suggest in this section an approach to achieve this.
We first describe the approach step-by-step and highlight
the features introduced at each step of the transformation

Figure 1: Representation of a smart object

approach of the smart object into a controllable IoT
service component (Section 3.1). We then define more
precisely the proposed solutions in the architectural
dimension (Section 3.2), the organizational dimension
(Section 3.3) and the functional dimension (Section 3.4).

3.1 From Smart Objects to IoT Services

In order to make a software component compliant with
the IoT services world, we propose an approach that
allows it to cover progressively the properties required
for this transformation.

Our approach involves six steps.

Step 1: To structure
In an ecosystem where a service is available through
a network, we need to distinguish, and thus structure,
the service according to two parts: the functional
part representing the offered functionality and the
non-functional part containing control functionality
representing the automation and policies serving the
functional part and the management functionality that
allows the coherence of the global system. In a fractal
approach [30], a smart object is represented as a business
component, which is the functional aspect of the smart
object, with its use interface as shown in Figure 1.

The smart object needs to have control and
management interfaces. That is why we propose to
adopt the Grid Component Model (GCM) [29][33].
The resulting smart object structure at this step will
be transformed to become a component including a
management membrane with two interfaces: one control
interface and one management interface. Membrane
is proposed in the Grid Component Model (GCM)
and standardized by the European Telecommunications
Standards Institute (ETSI) [10, 11, 12, 3]. Thus, we
have the possibility of dialogue with the two previously
defined parts (functional and non-functional).

Step 2: To integrate
To integrate the smart object into an IoT context,
we propose to add, in the membrane, a management
component named ”IoT processing” with management
interfaces to allow the smart object to be invoked and
managed with respect to an IoT profile.

We detail the ”IoT processing” component in this

18

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

Figure 2: Representation of an IoT service

paper and define the micro-services that compose it.
Thus, the smart object can be represented as an IoT
service component as shown in Figure 2 and is integrated
in its IoT environment with:

• Functional content (business) and external client
and server interfaces.

• A membrane for the non-functional aspects, with
management and control interfaces to be connected
and to communicate within the IoT environment
(with other objects for example).

Step 3: To self-control
For the control aspect, we propose to embed a QoS agent
in order to introduce the needed autonomic aspect in
an environment that is meant to scale and is subject to
become rapidly more complex.

We have defined this auto-control for components in
cloud services [27] and we propose to extend it to IoT
services. The aim of introducing autonomic control
of components is to enforce monitoring mechanisms
that collect information concerning the behavior of the
component in order to control the respect of service level
agreement (SLA) and QoS level and react in case of non-
compliance.

Thus, at this stage, the IoT service becomes a self-
controlled IoT service Component, we call it IoTSCC
that we detail later (See step 6). We rely on a recursive
service architecture, where a service may comprise a set
of self-controlled service components or micro-services.
So the IoT SCC can be integrated within global self-
controlled service architecture.

Step 4: To design as-a-service
This step aims to make sure that an offered service
component can be added, removed or composed with
other services, without crashing the whole organization,
i.e., the global service architecture.

The ”as-a-service” design is meant to allow the
customization, flexibility in composing service offers,
adaptability of the offered services or solutions as well
as an on-the-fly deployment. For this purpose, a set
of properties need to be verified for designing an IoT
SCC as an IoT SCC as-a-service. The elementary
units constructed as the IoT service need to rely on the
following main properties of SOA and cloud services:
statelessness, autonomy and loose coupling.

Statelessness means that the service performs the
same processing to all requests without keeping any
information about their data or their contexts. This
allows a service to always offer the same function to all
clients/requests. The service component should have one
type of interface. And for the service to be stateless,
its operations should be conceived to perform the
processing without depending on information received
during a precedent invocation.

Autonomy means that a service is able to achieve its
functionalities without needing another service or human
intervention. In this direction, we propose to conceive a
service as a ”black box” composed of a set of operations
executed in the same manner and in the same order for
all requests.

Loose Coupling means that the bindings or links
between service components in a service composition
are unattached or even rigid, in order to eliminate all
types of functional coupling between services. Thus,
loose coupling ensures a flexible composition of service
components. Service composition consists of generating
a global service by composing or chaining a set of
elementary service components. This composition
would thus be customizable and flexible by adding,
replacing, and removing service elements according to
users needs.

In addition, for software engineering needs, the
properties of reusing and mutualization are strongly
recommended in this approach.

19

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

Figure 3: Controlled IoT Service (IoTSCC)

Reuse is needed to simplify the software development
of services that meets the new needs: IoT SCC
service components would be reusable thanks to the
generic character of their interfaces (usage, control and
management).

Mutualization means that the service component is a
multi-tenant service element. This allows different users
to call the service component and enforces the loose
coupling property required by SOA service requirements
[35].

Step 5: To describe
Like in web services, a service component needs to be
correctly visible by users who would request it. For that,
there is a need for service description and service registry
using formal processes. These two properties allow to
establish a service catalog of IoT SCC components. That
is what is performed, adopting description and registry
properties in a mode of web services.

To design application or service, the architect chooses
multi-tenant IoT SCC components in the provider’s
catalog, based on the specified nominal/offered QoS and
threshold value. The catalog is a showcase for reusable
components. If the composition is entirely IoTSCC-
composed then it can be put in a catalog.

Step 6: To invocate
In order to be agile and not to be static and only
configurable, the IoTSCC component has to be invoked
through an API (Application Programming Interface). It
must be standardized.

IoT service includes interfaces dedicated to QoS

control or compliance, IoT service control and
programming. These interfaces are classified into three
groups: use, control and management (Figure 3).

To summarize, this approach provides calibrated
services (components) to evaluate the quality of services
(QoS) that the service provider wants to offer and to
help the architects to build service compositions. Four
criteria are proposed to describe the QoS: availability,
reliability, processing time, and capacity. The offered
QoS also called nominal QoS is evaluated according
to resource conditions of the underlying level. The
service provider creates her/his catalog by adding
calibrated SCC components. To design an application
or service, the architect chooses/selects multi-tenant
SCC components from the provider’s catalog, based on
the specified nominal or offered QoS and the required
resources to realize this QoS. In case of Out Contract, the
component can be replaced by an ubiquitous (software)
or a redundant (hardware) component. However, in case
services are not calibrated using the four QoS criteria,
the QoS control approach cannot be applied.

The QoS in our approach represents the non-
functional aspect of the component (i.e. its behavior)
defined and calibrated by the four criteria. Any behavior
that cannot be described with these criteria is not covered
by our approach. The approach cannot provide services
with not calibrated QoS, services with imposed QoS in
composition or services that cannot be replaced within
our approach in case of Out Contract.

This approach allows to build the service components,
but we also need at this stage to build the ”global

20

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

system structure”. Indeed, the deployment of an IoT
service application requires an integrated management
approach. To help achieve such management in an
IoT environment, we have proposed in previous papers
conceptual models related to five different dimensions of
management: architectural, organizational, functional,
informational, and relational dimension [39]. The
proposition we make in this article is based on a
combined use of these conceptual models in order
to deploy a dynamic management of IoT service
components in an IoT or a cloud system as we present
in the following subsections.

3.2 Architectural Dimension

It is known that the architectural dimension is the
definition of the global structure. We rely on a horizontal
architecture, rather than architecture in silos. We have
described above the structure at the component level.
It is an architect who builds her/his domain from these
components. For example, she/he can adapt the emission
mode by introducing a database and a service component
that emits at predefined regular periods or in a continuous
way. He can also introduce a gateway that allows
adaptation to network protocols and plays the role of
intermediary function with cloud access.

There are two types of view: horizontal and vertical.
The horizontal view of the global structure is composed
of nodes (representation of processing capabilities) and
links (representation of transport capabilities). And
there is the vertical view in which IoT objects need
service components (software) at different visibility
levels: first physical level and network level, then
next components at a cloud (service and application)
level. The architect will define the composition based
on the global coherence and decisions to distribute.
She/He will follow the proposed procedure. The
architect structures the ”smart objects” and makes them
”IoT Service” by integrating our ”IoT Processing”
component. Then, based on the service contracts
(SLA) that the architect has to guarantee and for
which she/he has alternative solutions based on possible
malfunctions, she/he transforms the ”IoT service” in
”IoT SCC” in order to have QoS based decision. The
architect composes an application based on as-a-service
properties.

For the specification, verification and validation of
the architecture of applications built from IoTSCC
components, we use the VerCors platform from INRIA
[32]. Components can be connected with other
components within the same membrane or with non-
functional interfaces of other components. Having a
tool-supported methodology is important for the design
phase, when the designer builds an application, using

functional components as basic bricks, and assembling
them into compositions.

VerCors helps the user to specify the architecture
of an application, the interfaces, and the behavior
of assembled components. Furthermore, the tool
can generate executable code containing the whole
architecture description and the skeleton of the final
application. Several validations are performed like
structural coherency aspects of the application model
for ensuring that the code generation will terminate
correctly, and that the code will not fail during
deployment of the application components. A
library of components integrating the non-functional
aspects (IoT Processing, monitors and QoS-Control)
is provided. These components would be instantiated
by the application developer to deploy the architecture.
VerCors is then in charge of verifying the (static)
coherence of the architecture and providing a formal
description of the architecture in an ADL (Architecture
Description Language) file, which will be included in the
specification of the application.

3.3 Organizational Dimension

According to the proposed architecture, different
responsibilities need to be defined. Thus, the
organizational dimension defines ”who does what”. We
propose two kinds of scenarios: with and without IoT
gateways (Figure 4).

With IoT gateways: the IoT gateway is in charge
of collecting information from IoT devices and making
some local analysis and transmitting a report to the
cloud. IoT devices make their own report to the IoT
gateway. A gateway manages a group of IoT devices.
In the same way, the gateway re-transmits control
commands from the cloud to the IoT devices. The
volume of data exchanged and thus the communication
resources are extremely low since the analysis would be
done on the site by the gateway. Only results would be
sent. It is a scenario worth to promote.

Without IoT gateways: IoT devices are directly
connected to the cloud and assume the same
functionalities of the previously detailed gateway.

The dynamic management of an IoT system requires:
local capabilities for issues that need rapid reactions,
distributed capabilities for mobility-like issues, and
centralized capabilities for strategic decisions.

Our proposition is that this organizational dimension
relies on the QoS agent by integrating it very accurately
in the architecture. It will play the role of an
organizational driver as it acts in real-time during the
execution to verify the SLA QoS level compliance and
reacts dynamically in an autonomous manner in case of
non QoS contract compliance during a user session. The

21

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

Figure 4: Organization with Gateways

QoS agent offers control and distributed management
of QoS. It also plays an important role in the dynamic
monitoring of the end-to-end IoT session QoS. More
precisely, through the management interface, we can
assign to a managed component an autonomous role with
a given level of intelligence and information to enable the
component to make required decisions [32].

Our architecture is valid whatever the organization.
We focused on architecture independently of
organization. Other organizations like fog computing
and dew computing are thus complementary [40, 42].

3.4 Functional Dimension: IoT Micro-Services

In this section, we describe in detail the components and
micro-services proposed in our approach:

(A) IoT processing

(B) IoTSCC

(C) Messaging Service

(A) IoT Service integrating ”IoT processing”
The IoT service component we propose is within
the functional dimension. It plays an important
role in the IoT service delivery. Thanks to the
embedded ”IoT processing” component, the component
becomes autonomous and manageable. Managing smart
objects in this way requires appropriate non-functional
complementary aspects that we propose to be carried out
by micro-services.

Micro-services, here, describe a particular way
of designing software applications as series of
independently deployable ”micro” services. We define
and propose a set of micro-services to be introduced
according to the following needs:

(i) For the management:

• Get capabilities: means to ask for the characteristics
and capabilities of the smart object (screen
definition, screen size, memory size, supported
codecs, etc.).

• Remote configurations: means to configure the
smart object remotely.

• Register service: allows the smart object to register
with the gateway or the cloud to be known, to
inform about its presence and to become part of a
trusted community.

(ii) For the control:

• Remote control: act remotely and control the smart
object

• Time synchronization: synchronize the set of nodes
of a community

Externally communication interfaces are also defined
(see Figure 3): (i) a server interface (IoTProcess)
allowing management and (ii) a client interface allowing
control.

In the following, we define the self-controlled
component that we call IoT Self-Controlled service
Component (IoTSCC).

(B) Controlled IoT Service (IoTSCC)
Based on our experience in the cloud domain, we have
a proposition to make concerning the control of the
functionality or operation provided by the IoT service
component. It appears to us that it is more accurate and
reliable to connect and keep connecting only objects that
respect their SLA parameters’ values when performing
their functionalities, i.e., that ensures SLA compliance.
Initially, components would be chosen according to the
service they offer (functional aspect: usage interface)

22

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

and the QoS level they offer (non-functional aspects:
management and control interface) (see Figure 3). Then,
the proposed SCC component control checks that the
same QoS level promised initially is maintained during
the processing of service requests. This non-functional
control is integrated in the component membrane. It
relies on the triptych (trio): in monitor, out monitor
and a non-functional component for the control of QoS
SLA compliance that translates the behavior (and thus
the QoS level) expected initially at the designing phase
and proposed as the offered QoS level when selecting the
components.

This enforces us to propose an additional but required
property for this approach: the offered QoS, which
selects a service component according to its functionality
but also according to its promised behavior (QoS level
measured at design time). Thus, we propose an IoT
service component that we call ”IoTSCC” as shown in
Figure 3. It is a controlled IoT service component that
is enabled for self-monitoring and self-control. As we
have demonstrated in OpenCloudware Project [7], the
Self-Controlled service Component (SCC) controls also
functional aspects.

The membrane (non-functional aspects) of the
IoTSCC (controlled IoT service component) is
composed of:

• An IoT processing component for the management
of the smart object or a component of any type
(connection, sensor or even cloud service).

• Two monitoring mechanisms: a monitor at
the entrance of the functional component called
”InMonitor” and a monitor at the back of the
functional component called ”OutMonitor”. They
play a role of interceptors. The service requests
arriving to the smart object are intercepted, and
then transmitted (of course without being altered)
for processing the functional content of the smart
object through the corresponding internal request
interfaces. The OutMonitor intercepts the outgoing
service requests or responses. They provide
measure information about the interfaces of the
functional component.

• A QoS component is added to the functional
component of the smart object . It is in
charge of inspecting the respect of the service
contract. The QoS component checks the current
behavior (availability, reliability, processing time,
and capacity) of the functional component and
its conformity with the contract (the processing
feature). For this, it compares each measured
current value to the corresponding threshold value.

The sub-components in the membrane (monitors and
QoS control agent) are active in order to perform
a monitoring of the QoS level at run-time (during
processing of requests) and notify in case of degradation
of the QoS level by comparing the measured QoS
parameters at run time and the QoS parameters at
design time (offered/promised QoS levels). Any detected
offset between the run time QoS and the design time
QoS would mean a non-respect of SLA. In this case,
it sends an OutContract notification. Management
after the detection of an OutContract event is out of
scope of this paper. The analysis of a composition
is complex and is still an open issue, however, some
cases are simplified. Namely, if the OutContract come
from a primitive component, it can be replaced (by an
ubiquitous component (in case of software component)
or by a redundant component (in case of hardware
component).

IoTSCC provides the usage interface, which is a
functional interface (in blue on Figure 3). It provides
the processing functions performed by the smart object
and which is the offered service to the users as well as
non-functional interfaces (in green on Figure 3). We
distinguish two types of non-functional interfaces:

• Management interface: a server interface, it
contains the necessary mechanisms to manage the
configuration of the non-functional components in
the membrane.

• Control interface: a client interface. It contains
the mechanisms controlling the service behavior. It
verifies whether the non-functional behavior of the
smart object is meeting the service contract. Our
IoTSCC structure makes an IoT service component
homogeneous. But as modeling allows abstraction,
the structure may be applied to different services,
either at a device level or a (cloud) service level.

(C) Messaging Service
In addition to the logical bus acting as a hub, we propose
different possibilities for sending data using a ”Service
Messaging” component that can be composed with the
IoTSCC component. Figure 5 represents the following
composition:

• An IoTSCC component (defined above).

• A database component used to store information
(measurements for example) produced by the
IoTSCC component.

• A ”Message Processing” component used to
consume information stored in a database
component to send it to a caller in different
ways:

23

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

Figure 5: IoT as a service (IoTAaS)

– On demand reporting service: the information
is sent when a calling component requests it.

– Periodic reporting service: the information is
sent recurrently at regular time intervals.

– Scheduled reporting service: the information
sent is planned or scheduled to be sent at
defined times. Each one of these services may
be self-controlled and thus becomes an SCC
with the triptych (InMonitor, OutMonitor
and QoS control components). If the
service architect wishes to make a whole
self-controlled service composition, she/he
introduces the previous triptych again in
the membrane of the highest level of the
composition.

In order to be designed as-a-service, all service
components should meet the required properties defined

in Section 3.1. That is: statelessness autonomy,
loose couplings, description, registry, invocations and
management (with respect of separation of functional
and non-functional aspects of the Grid Component
Model). This composition is called IoTAaS (Figure 5).

To compose IoT SCC services, the service
composition can, of course, be extended with further
components like security service, presented in the next
subsection.

4 SECURED IOT

Concerning the security of the IoT we note a significant
change. This open, heterogeneous and mobile
environment is vulnerable. It presents significant risks
in terms of security. Indeed, the borders of the system
are more open since the system is extended: from
smart objects to the gateway, then to the cloud. In

24

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

addition, IoT devices that generate information, which
is accountable and subject to be billed, or IoT devices
that require device integrity validation, should provide a
trusted secure execution environment or trusted platform
for executing high security applications.

Smart objects that require device integrity validation
should provide a trusted execution environment. All
data produced through the execution of functions within
the trusted environment should be unknowable to
unauthorized external entities. The trusted environment
should perform confidential functions (such as storing
secret keys and providing cryptographic calculations
using those secret keys) needed to perform integrity
check and validation of smart object devices.

IoT domain needs a trusted environment. The security
level can be defined by the architect by choosing
appropriate security services in the provider’s catalog.
It creates a secured composition with the security level
she/he wishes according to an appropriate architecture
and organization.

We show how we are responding to security issues
through architectural and organizational aspects and
how our architecture is best suited to counter some
attacks. In our work, we take into account the
concept of security ”as-a-service”. Thus, security is
provided ”as-a-service” and it is offered as service
components in accordance to the spatial and temporal
needs. The user preferences and security objectives are
guaranteed. To ensure these objectives in IoT and Cloud
environment, we can use the following security services:
authentication, authorization, certificates, encryption,
time stamping, and digital signatures. We have
contributed to include these service components in the
standard ETSI EG 202 009-2 [41].

Authentication provides the assurance for the claimed
identity of an entity such as a smart object. Authorization
”as-a-service” adds the process of granting of permission
based on authenticated identification. A certificate is
issued by a certification body in accordance with the
conditions of its accreditation. In IoT environment the
certificate can be associated with identifier meta-data for
interoperability. Non-repudiation provides the ability to
prove that an action or event has taken place, so that this
event or action cannot be repudiated later. Usually, non-
repudiation is based on digital certificates, electronic
signatures and other similar data stored safely as the
proof of the occurrence of an action or event. These
four security services will form an IoT trust environment
allowing the different degrees of security.

Encryption ensures the reversible transformation of
data by a cryptographic algorithm to produce cipher text,
i.e. hiding the information content of the data posted by
a smart object or a gateway. Time stamping enables a
security service that attests the existence of electronic

data at a precise instant of time. Time stamping
services are useful and probably indispensable to support
long-term validation of signatures. A digital signature
allows a recipient of the data unit to prove its origin
and integrity and protect the sender and the recipient
against forgery by unauthorized persons. Figure 6 shows
a secured IoT service with an authentication security
service (IoTAaSS).

Advantages of using SeaaS (secure as a service) in IoT
are multiple. IoT providers have applications (health,
energy production, defense, etc.) that differ by their
levels of security. So, they adapt the security level
according to the business component and application
context by choosing, for example, a more complex
algorithm for authentication. Thus the authentication
service component can be replaced, if needed, without
changing other components of composition.

Our approach decomposes security service into
elementary services in order to allow better and accurate
organization. Fog and Dew computing [40, 42] may
be secure solutions by limiting the amount of data sent
to cloud servers. Sensitive data could remain local
(IoT/Gateway) while not sensitive data could be sent to
outside.

According to these organizations and the
confidentiality of sensitive data, security must be
provided at different levels. For example: (i) at the smart
object that processes sending/receiving messages within
a trusted environment and (ii) at the gateway that collects
data for the connected objects (Gather Information) and
sends them within a trusted environment to the cloud.

Security Attacks
Our architecture is best suited to counter some attacks,
because some security attacks can be hindered with a
composition of adequate services. We present some of
them:

• Man-in-the-middle attack is an attack where the
attacker secretly relays and possibly alters the
communication between two parties who believe
they are directly communicating with each other
[31]. For preventing such attack, strong encryption
services between the client and the server can
be used. In this case the server authenticates a
client’s request by presenting a digital certificate,
and then only connection could be established. Our
architecture provides a secure environment so any
unauthorized IoT cannot be connected to the inner
network.

• The number of connected objects can be significant.
A poorly secured object can jeopardize the security
of others. Multi-objects management presents a

25

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

Figure 6: Secured IoT as a service (IoTAaSS)

major risk for security. Our architecture allows
decentralizing a part of security closer to the
business component.

• Denial-of-service attack is an attempt to
temporarily or indefinitely interrupt or suspend
services of a host connected to the Internet. Denial
of service is typically accomplished by flooding the
targeted machine with superfluous requests in an
attempt to overload the system and prevent some
or all legitimate requests from being fulfilled [43].
Our architecture monitors the QoS based on four
criteria (availability, reliability, processing time,
and capacity) so a DoS attack will be detected.
The service will thus be replaced by an ubiquitous
(software) or a redundant (hardware) component.

The next section presents a study case illustrating our
proposals.

5 DESIGN AND IMPLEMENTATION OF A
STUDY CASE

This section presents a study case implementing our
IoTAaS component. Section 5.1 describes the study
case. Section 5.2 shows that the proposed service
component architecture can easily be implemented to
provide complex services or applications. Finally other
scenarios are provided in 5.3.

5.1 Study Case Description

We propose to build warehouse arrival management
services (Figure 7). The goal is to automate and
streamline the handling of trucks that arrive at a
warehouse. Each truck carries dangerous products
placed on a different container that are continuously
monitored. The statuses of the containers are thereby
sent to a cloud application. The truck is also monitored
especially in order to know its location in real time. An
employee located in the warehouse can consult the truck
arrival board. The board knows the estimated arrival time
of each truck and can prepare its unloading.

26

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

Figure 7: Warehouse arrival management based on IoTAaS

Approaching trucks are assigned automatically to a
specific dock number. The dock number is sent to the
driver, together with the expected arrival window. The
driver confirms or corrects the expected arrival time.
Corrections may be necessary due to prescribed driving
breaks. The status of approaching trucks is shown on
display in the arrival hall and on the mobile phone of
all warehouse employees. The display shows expected
arrival time and planned dock. All communications have
to be secured. The design and implementation of the
study case includes four phases:

• Diagram design on VerCors Component Editor
(VCE) [32] with classes and interfaces

• Checking of the validity of the diagram

• Generation of the ADL file and code template of
classes and interfaces.

• Code implementation and execution.

5.2 Design and Implementation Phases

In the architect role we used VerCors Component Editor
(VCE) [32] to begin designing the architecture. We

follow the steps proposed in Section 3. We have
a component with a membrane separating the usage
plan from the control and management plans (Step 1,
Figure 1). The encapsulated SmartObject can be a tilt
sensor, level sensor or a force sensor located in/or each
container. We add an IoTProcessing sub-component
(Step 2, Figure 2) to transform it into an IoT service.
We decide to control it, thus we add the QosControl and
the two In and Out monitors (Step 3, Figure 3). The
component becomes an IoTSCC.

We wish that this component continuously reports
its measurements. So, we make a composition with
a database in order to store measures and a periodic
reporting component. We choose to control this
composition, so we add the QosControl and two
monitors. The final composition is called IoT as-a-
service (IoTAaS) (Step 4, Figure 5). At this step,
the IoTAaS could be placed in a provider’s catalog
for reusing (Step 5). We cover the architectural,
organizational, and functional dimensions previously
defined.

The communication is not secured, so we make a
new composition first by reusing the previously defined
IoTAaS component from the provider’s catalog and

27

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

Figure 8: Composition located on IoT Gateway responsible of gathering information

second by adding a securing component. The final
composition forms a Secured IoT as-a-service (Figure 6).
We can repeat the same process to make more complex
compositions if needed.

We placed the IoTAaSS previously defined component
at different locations. The chosen architecture is defined
as follows:

(i) An IoTAaSS is located on each container
monitoring its movement or its status with the
help of gyroscopes, accelerometers or pressure
sensors.

(ii) The IoTAaSS performs a periodic and secured
reporting to the IoT Gateway. This latter is
responsible for gathering all the data sent by the
IoTAaSS.

(iii) The IoT Gateway performs a periodic and secured
reporting too to the warehouse arrival application
located in the Cloud.

The truck embeds a composition responsible for
notifying the dock number to the driver, for allowing
the driver to confirm or correct the expected arrival
time and periodically for sending the truck location
to the warehouse arrival application with the help of

an IoTAaSS. The data are sent securely and directly
to the warehouse arrival application bypassing the IoT
gateway.

The warehouse arrival application is a composition
based on SCC located in the Cloud. Its function is
to gather data from the fleet of trucks (containers and
truck statuses), to notify the dock number to the driver,
to take into account her/his corrections concerning
the arrival time, and to create the arrival board to
the intention of the warehouse employees. Figure 8
shows another example of composition located on IoT
Gateway responsible for gathering information. The
first component (AuthenticationProcessSCC) verifies
the identity of the IoTAaSS sending the request.
The GatheringSCC component stores information in a
database component.

Note that there are two open sessions. The first one
(blue) takes place between the truck composition and
the warehouse arrival application; the second one (green)
takes place between the IoT Gateway and the warehouse
arrival application. The warehouse arrival application is
a central unit. Each session is seen as a composition.
With our architecture, the architect can control the whole
session if she/he desires it, like any composition by
adding QoSControl and Monitors.

At any stage of the design, with VCE, we have

28

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

Listing 1: Extract of ADL code
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<!DOCTYPE d e f i n i t i o n PUBLIC ”− / / o b j e c t w e b . o rg / / DTD F r a c t a l ADL 2 . 0 / / EN”
” c l a s s p a t h : / / o rg / o b j e c t w e b / p r o a c t i v e / c o r e / component / a d l / xml / p r o a c t i v e . d t d”>
<!−− A u t o m a t i c a l l y g e n e r a t e d by Vercors , INRIA Sophia−A n t i p o l i s −−>
<d e f i n i t i o n name=”IoTSCC”>

< i n t e r f a c e name=” I R e q u e s t ” r o l e =” s e r v e r ” s i g n a t u r e =” i n t e r f a c e s . I R e q u e s t ”/>
< i n t e r f a c e name=” I R e q u e s t ” r o l e =” c l i e n t ” s i g n a t u r e =” i n t e r f a c e s . I R e q u e s t ”
c o n t i n g e n c y =” o p t i o n a l ” i n t e r c e p t o r s =” OutMoni tor . I n t e r c e p t o r ”/>
<component name=” S m a r t O b j e c t ”>

< i n t e r f a c e name=”command (a c t u a t o r) / mesures (s e n s o r) ” r o l e =” s e r v e r ”
s i g n a t u r e = ” . i n t e r f a c e s . A u t o G e n e r a t e d I n t e r f a c e ”/>
. . .
<c o n t e n t c l a s s =” c l a s s e s . B u s i n e s s ”/>
<c o n t r o l l e r de sc =” p r i m i t i v e ”/>

</ component>
<b i n d i n g c l i e n t =” S m a r t O b j e c t . C1” s e r v e r =” t h i s . I R e q u e s t ”/>
. . .
<c o n t e n t c l a s s = ” . c l a s s e s . C o m p o s i t e D e f a u l t C l a s s ”/>
<c o n t r o l l e r de sc =” c o m p o s i t e”>

< i n t e r f a c e name=” IC o nf i gM o n i t o r−c o n t r o l l e r ” r o l e =” s e r v e r ”
s i g n a t u r e =” i n t e r f a c e s . I C o n f i g M o n i t o r ”/>
. . .
<component name=” I n M o n i t o r”>

. . .
<c o n t e n t c l a s s =” c l a s s e s . Moni to r ”/>
<c o n t r o l l e r de sc =” p r i m i t i v e ”/>

</ component>
<component name=” OutMoni tor”>

. . .
<c o n t e n t c l a s s =” c l a s s e s . Moni to r ”/>
<c o n t r o l l e r de sc =” p r i m i t i v e ”/>

</ component>
<component name=” QoSControl”>

. . .
<c o n t e n t c l a s s =” c l a s s e s . QoSControl ”/>
<c o n t r o l l e r de sc =” p r i m i t i v e ”/>

</ component>
<component name=” I o T P r o c e s s i n g ”>

. . .
<c o n t r o l l e r de sc =” p r i m i t i v e ”/>

</ component>
<b i n d i n g c l i e n t =” t h i s . I Co n f i g Mo n i t o r−c o n t r o l l e r ” s e r v e r =” I n M o n i t o r . S2”/>
. . .

</ c o n t r o l l e r >
</ d e f i n i t i o >

29

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

the possibility to check the validity of the diagram.
When a diagram is completed, VCE can generate a
set of files allowing the deployment of the application
like code template of classes and interfaces, and
Architecture Description Language (ADL) for the
architecture description. An extract of an ADL file
is given in Listing 1. The developer implements the
missing service methods of the components in the java
classes created with the generated skeleton. These files
are then used to build an executable application that can
be executed within the GCM/ProActive [28] execution
environment (Step 6).

5.3 Other Scenarios

This approach takes into account the point of view
of the architect and promotes flexibility of the
commercial offer. Concerning the commercial offer,
this approach allows to select the service that best
fits the needs according to required and offered QoS
(desired behavior). A service may have several
providers. Architects compare and choose the service
according to QoS level. Management is increasingly
complex. Human errors are more numerous than those of
automatons, so all automation that can be implemented
has to be promoted. Our approach allows to build more
and more complex services including our triptych (In and
out monitors and the QoScontrol components) to control
the desired behavior. We give other short examples of
IoT scenarios /applications for which our architecture fits
well:

• Analytic services: Users may wish to use analytics
for several purposes. There are many analytic
services’ providers who may offer their own
catalog. Analytic services are numerous because of
their different algorithms providing their own QoS.

• Smart Building: Smart building is a IoT service that
utilizes a collection of sensors, controllers, alerter,
gateways deployed at the appropriate places in the
building combined with applications. The server
resides on the Internet to enable the automatic
management of the building. A smart building
system can greatly reduce the cost involved in
managing the building like energy consumption
and labor cost. With the smart building system,
services like video monitor, light control, air-
condition control and power supply can all be
managed at the control center. Some services
can be triggered automatically to save the precious
time in case of fire, intruder, gas leak, etc. A
provider of smart building services is a company
that provides smart building services. It is in charge
of installing the device all around the building

and provides the service that is used to manage
the control center. A service may be offered by
several providers. Architects compare and choose
the service according to the QoS level.

• Secure remote patient care and monitoring: E-
health applications, that provide the capability
for remote monitoring and care, eliminate the
need for frequent office or home visits by care
givers, provide great cost-saving and convenience
as well as improvements. ”Chronic disease
management” and ”aging independently” are
among the most prominent use cases of remote
patient monitoring applications. Monitoring
devices and associated services are multi-providers.
Furthermore, electronic health records and their
analysis require an high security environment based
on our IoT security services.

More elements about the actors and their relationships
for these use cases are presented in details in ETSI TR
118 501 [23].

6 SUMMARY AND CONCLUSIONS

We have presented an innovative approach to domain
engineering based on IoT as-a-service components, QoS
control and self-management mechanisms. We have
described the whole approach, step by step, in order to
allow developers to design an IoT ”as-a-service”, to build
the service composition and to manage it.

This approach has been assessed and refined in the
OpenCloudware project. Our IoT service creation
environment adopted service composition approach.
Thus, the proposed IoT service components have the
properties recommended by SOA, namely: statelessness,
autonomy, and loose coupling, extended with the
following properties: description, registry, reuse,
mutualization, and self-management. The IoT service
components are QoS based, applicable in all phases of
the life cycle to satisfy the continuity of service. Our
approach ensures that IoT users have QoS control on IoT
services in a dynamic way. Our proposal is backed-up
by a design and verification VCE platform, used to build
early models of the applications, check their properties,
and generate code supported by GCM/proactive open
source execution environment. These environments were
used in the implementation of a study-case scenario that
shows the feasibility of our proposals.

ACKNOWLEDGEMENTS

This work is supported by the OpenCloudware project.
OpenCloudware is funded by the French FSN (Fond

30

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

national pour la Société Numérique), and is supported
by Pôles Minalogic, Systematic and SCS.

The authors would like to thank Professor H. Dayan
for his help and relevant remarks. We would also like
to thank Professor Bernard Lemaire for his advice in
finalizing this paper.

REFERENCES

[1] “Amazon Web Services (AWS).” [Online].
Available: https://aws.amazon.com

[2] “AWS IoT.” [Online]. Available: https://aws.
amazon.com/iot/

[3] “[ETSI TS 102 830: Grid; grid component
model; part 4: Gcm fractal java api,” European
Telecommunications Standards Institute (ETSI),
Tech. Rep., standard.

[4] “IBM Bluemix.” [Online]. Available: http://www.
ibm.com/Bluemix

[5] “Internet of Things: Science fiction
or business fact?” [Online].
Available: https://hbr.org/resources/pdfs/comm/
verizon/18980 HBR Verizon IoT Nov 14.pdf

[6] “Microsoft Azure IoT Hub.” [Online]. Available:
https://azure.microsoft.com/en/services/iot-hub/

[7] “The OpenCloudware project.” [Online].
Available: http://www.opencloudware.org/

[8] “Y.2001 : General overview of NGN.” [Online].
Available: https://www.itu.int/rec/T-REC-Y.2001/
en

[9] “Y.2060 : Overview of the Internet of
things.” [Online]. Available: https://www.itu.int/
rec/T-REC-Y.2060-201206-I/en

[10] “ETSI TS 102 827: GRID; Grid Component
Model; Part 1: GCM Interoperability
Deployment,” European Telecommunications
Standards Institute (ETSI), Tech. Rep., 2008,
standard.

[11] “ETSI TS 102 828: GRID; Grid Component
Model; Part 2: GCM Application Description,”
European Telecommunications Standards Institute
(ETSI), Tech. Rep., 2008, standard.

[12] “ETSI TS 102 829: GRID; Grid Component
Model; Part 3: GCM Fractal Architecture
Description Language (ADL),” European
Telecommunications Standards Institute (ETSI),
Tech. Rep., 2009, standard.

[13] “FP7-ICT 257521, IoT-A - Internet of Things
Architecture,” 2010. [Online]. Available: http:
//www.iot-a.eu

[14] “FP7-ICT 257852, EBBITS Enabling
the Business-Based Internet of Things and
Services,” 2010. [Online]. Available: http:
//www.ebbits-project.eu

[15] “FP7-ICT 257909, SPRINT Software Platform
for Integration of Engineering and Things,” 2010.
[Online]. Available: http://www.sprint-iot.eu/

[16] “FP7-ICT 287708, iCORE Internet Connected
Objects for Reconfigurable Ecosystem,” 2010.
[Online]. Available: http://www.iot-icore.eu/

[17] “Nsf, FIA CNS-1040672, NEBULA a trustworthy,
secure and evolvable Future Internet Architecture,”
2010. [Online]. Available: http://nebula-fia.org/

[18] “FP7-ICT 287901, BUTLER uBiquitous, secUre
internet-of-things with Location and contExt-
awaReness,” 2011. [Online]. Available: http:
//www.iot-butler.eu/

[19] “FP7-ICT 288385, IoT.est Internet of Things
Environment for Service Creation and Testing,”
2011. [Online]. Available: http://ict-iotest.eu

[20] “National Basic Research 973 Program of China
under Grant No. 2011cb302701, Basic Research on
the Architecture of Internet of Things,” 2011.

[21] “FP7-ICT 317674, BETaaS Building the
Environment for the Things as a Service,” 2012.
[Online]. Available: http://www.betaas.eu/

[22] “FP7-ICT 317862, COMPOSE Collaborative
Open Market to Place Objects at your
SErvice,” 2012. [Online]. Available: http:
//www.compose-project.eu/

[23] “ETSI ETSI TR 118 501: oneM2M Use
Case collection,” European Telecommunications
Standards Institute (ETSI), Tech. Rep., 2015,
standard.

[24] “ETSI ETSI TR 118 502: Architecture Part
1: Analysis of the architectures proposed
for consideration by oneM2M,” European
Telecommunications Standards Institute (ETSI),
Tech. Rep., 2015, standard.

[25] “IBM Watson IoT Platform,” Sep. 2015. [Online].
Available: https://internetofthings.ibmcloud.com

[26] T. Aubonnet and N. Simoni, “PILOTE: a service
creation environment in next generation networks,”
in 2001 IEEE Intelligent Network Workshop, May
2001, pp. 36–40.

[27] T. Aubonnet and N. Simoni, “Service Creation
and Self-management Mechanisms for Mobile
Cloud Computing,” in Wired/Wireless Internet
Communication - 11th International Conference,

31

https://aws.amazon.com
https://aws.amazon.com/iot/
https://aws.amazon.com/iot/
http://www.ibm.com/Bluemix
http://www.ibm.com/Bluemix
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf
https://azure.microsoft.com/en/services/iot-hub/
http://www.opencloudware.org/
https://www.itu.int/rec/T-REC-Y.2001/en
https://www.itu.int/rec/T-REC-Y.2001/en
https://www.itu.int/rec/T-REC-Y.2060-201206-I/en
https://www.itu.int/rec/T-REC-Y.2060-201206-I/en
http://www.iot-a.eu
http://www.iot-a.eu
http://www.ebbits-project.eu
http://www.ebbits-project.eu
http://www.sprint-iot.eu/
http://www.iot-icore.eu/
http://nebula-fia.org/
http://www.iot-butler.eu/
http://www.iot-butler.eu/
http://ict-iotest.eu
http://www.betaas.eu/
http://www.compose-project.eu/
http://www.compose-project.eu/
https://internetofthings.ibmcloud.com

Open Journal of Internet of Things (OJIOT), Volume 2, Issue 1, 2016

WWIC 2013, St. Petersburg, Russia. Proceedings,
2013, pp. 43–55.

[28] F. Baude, L. Henrio, and C. Ruz, “Programming
Distributed and Adaptable Autonomous
Components - the GCM/ProActive Framework,”
Software, Practice and Experience, 2015.

[29] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto,
V. Getov, L. Henrio, and C. Pérez, “GCM: A Grid
Extension to Fractal for Autonomous Distributed
Components,” Annals of Telecommunications -
annales des télécommunications, 2008.

[30] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani, “The FRACTAL component
model and its support in Java,” Software: Practice
and Experience, vol. 36, no. 11-12, pp. 1257–1284,
Sep. 2006.

[31] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-
the-Middle Attack to the HTTPS Protocol,” IEEE
Security Privacy, vol. 7, pp. 78–81, Jan. 2009.

[32] A. Cansado and E. Madelaine, “Specification
and Verification for Grid Component-Based
Applications: From Models to Tools,” in Formal
Methods for Components and Objects, ser. Lecture
Notes in Computer Science, F. S. d. Boer, M. M.
Bonsangue, and E. Madelaine, Eds. Springer
Berlin Heidelberg, Oct. 2008, no. 5751, pp.
180–203.

[33] A. Cansado, E. Madelaine, and P. Valenzuela,
“VCE: A Graphical Tool for Architectural
Definitions of GCM Components,” Spain, 2008.

[34] M. Chen, V. Leung, R. Hjelsvold, and X. Huang,
“Smart and interactive ubiquitous multimedia
services,” Computer Communications, vol. 35,
no. 15, pp. 1769 – 1771, 2012.

[35] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess,
and D. Savio, “Interacting with the SOA-Based
Internet of Things: Discovery, Query, Selection,
and On-Demand Provisioning of Web Services,”
IEEE Transactions on Services Computing, vol. 3,
no. 3, pp. 223–235, 2010.

[36] F. Mattern, “From smart devices to smart
everyday objects,” in Proceedings of smart objects
conference, 2003, pp. 15–16.

[37] F. Mattern and C. Floerkemeier, “From the Internet
of Computers to the Internet of Things,” in From
Active Data Management to Event-Based Systems
and More, ser. Lecture Notes in Computer Science,
K. Sachs, I. Petrov, and P. Guerrero, Eds. Springer
Berlin Heidelberg, 2010, no. 6462, pp. 242–259.

[38] D. Raychaudhuri, K. Nagaraja, and
A. Venkataramani, “MobilityFirst: A Robust

and Trustworthy Mobility-centric Architecture for
the Future Internet,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 16, no. 3, pp. 2–13, Dec. 2012.

[39] N. Simoni, S. Znaty, N. Perdigues, and S. Arsenis,
Gestion de réseau et de service: similitude des
concepts, spécificité des solutions. Paris, France:
Interditions : Masson, 1997.

[40] K. Skala, D. Davidovic, E. Afgan, I. Sovic,
and Z. Sojat, “Scalable Distributed Computing
Hierarchy: Cloud, Fog and Dew Computing,”
Open Journal of Cloud Computing (OJCC),
vol. 2, no. 1, pp. 16–24, 2015. [Online].
Available: https://www.ronpub.com/publications/
ojcc/OJCC 2015v2i1n03 Skala.html

[41] T. Aubonnet and N. Simoni and P. Hebert, “ETSI
EG 202 009-2: ”User Group; Quality of telecom
services; Part 2: User related parameters on a
service specific basis V1.3.1,” pp. 1–75, 2014,
standard.

[42] Y. Wang, “Definition and Categorization of Dew
Computing,” Open Journal of Cloud Computing
(OJCC), vol. 3, no. 1, pp. 1–7, 2016. [Online].
Available: https://www.ronpub.com/publications/
ojcc/OJCC 2016v3i1n02 YingweiWang.html

[43] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey
of Defense Mechanisms Against Distributed Denial
of Service (DDoS) Flooding Attacks,” IEEE
Communications Surveys Tutorials, vol. 15, no. 4,
pp. 2046–2069, 2013.

32

https://www.ronpub.com/publications/ojcc/OJCC_2015v2i1n03_Skala.html
https://www.ronpub.com/publications/ojcc/OJCC_2015v2i1n03_Skala.html
https://www.ronpub.com/publications/ojcc/OJCC_2016v3i1n02_YingweiWang.html
https://www.ronpub.com/publications/ojcc/OJCC_2016v3i1n02_YingweiWang.html

T. Aubonnet, A. Boubendir, F. Lemoine, N. Simoni: Controlled Components for Internet of Things As-A-Service

AUTHOR BIOGRAPHIES

Tatiana Aubonnet is assistant
professor at computer science
department of CNAM (Paris).
She holds a PhD in computer
and network science from
Télécom ParisTech and an
Habilitation from Pierre
and Marie Curie University
(University of Paris VI). Her
research interests cover service

creation and management in Next Generation Networks.

Amina Boubendir is a PhD
student at Orange Labs
Networks France and at
Télécom Paris Tech in the
Department of Networking
and Computer Science. Her
main research interests focus
on management of network
operations and services as well
as the application of service-

oriented and model-driven engineering to Telco Cloud
and Network Functions Virtualization.

Frédéric Lemoine has an
engineering degree in computer
science, microelectronics and
automatics. He is a research
engineer and development
project manager at the computer
science department of CNAM
(Paris). His expertise includes
programming and modeling
languages, heterogeneous

parallel systems programming, embedded systems and
mobile devices programming.

Noëmie Simoni is an Emeritus
Professor of Telecom-Paristech.
She was Head of Architecture
and Engineering of Networks
and Services (AIRS) research
group at the Department of
Computer Science and Network.
Her research interests include
QoS management and modeling
of complex systems. Her

expertise, gained through many academic projects and
industrial contracts, covers wide range of management
topics. Today, her main work is focused on
network convergence and service convergence, network
virtualization and cloud computing.

33

	Introduction
	Related Work
	Propositions for An as-a-service IoT Design
	From Smart Objects to IoT Services
	Architectural Dimension
	Organizational Dimension
	Functional Dimension: IoT Micro-Services

	Secured IoT
	Design and Implementation of A Study Case
	Study Case Description
	Design and Implementation Phases
	Other Scenarios

	Summary and Conclusions

