
QUERYING XML SCORE DATABASES: XQUERY IS NOT ENOUGH!

Raphaël Fournier-S’niehotta
CNAM

fournier@cnam.fr

Philippe Rigaux
CNAM

philippe.rigaux@cnam.fr

Nicolas Travers
CNAM

nicolas.travers@cnam.fr

ABSTRACT

The paper addresses issues related to the design of query
languages for searching and restructuring collections of
XML-encoded music scores. We advocate against a di-
rect approach based on XQuery, and propose a more pow-
erful strategy that first extracts a structured representation
of music notation from score encodings, and then manipu-
lates this representation in closed form with dedicated op-
erators. The paper exposes the content model, the result-
ing language, and describes our implementation on top of
a large Digital Score Library (DSL).

1. INTRODUCTION

It is now common to serialize scores as XML documents,
using encodings such as MusicXML [11, 16] or MEI [15,
18]. Ongoing work held by the recently launched W3C
Music Notation Community Group [20] confirms that we
can expect in a near future the emergence of large collec-
tions of digital scores.

1.1 Issues with Querying XML score databases

A natural question in a collection management perspec-
tive is the definition of a query and manipulation language
to access, search, and possibly analyze these collections.
While XQuery appears as a language of choice, we con-
sider that it does not constitute, as such, a suitable solution.
There are several reasons that prevent XQuery from being
able to address the complex requirements of music nota-
tion manipulation, at least beyond the simplest operations.

1. Issue 1: Heterogeneity. Score encodings closely
mix information related to the content (e.g., the se-
quence of notes of a voice) and to a specific render-
ing of this content (e.g., voice allocation to a staff,
positioning of notes/lines/pages, and other options
pertaining to scores visualization). While it is not
always obvious to clearly distinguish content from
rendering instructions, mixing both concerns leads
to an intricate encoding from which selecting the rel-
evant information becomes extremely difficult.

c© Raphaël Fournier-S’niehotta, Philippe Rigaux, Nico-
las Travers. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Raphaël Fournier-
S’niehotta, Philippe Rigaux, Nicolas Travers. “QUERYING XML
SCORE DATABASES: XQUERY IS NOT ENOUGH!”, 17th Interna-
tional Society for Music Information Retrieval Conference, 2016.

Extracting for instance melodic information from ei-
ther MusicXML or MEI turns out to be difficult;
and more sophisticated extractions (e.g., alignment
of melodic information for voices) are almost im-
possible.

2. Issue 2: Operations and closure. One of the main
requirements of a query language is a set of well-
defined operations that operate in closed form: given
as input objects that comply to some structural con-
straints (a data model), the language should guaran-
tee that any output obtained by combining the oper-
ators is model-compliant as well. This requirement
allows an arbitrary composition of operations, and
ensures the safety of query results. In our context,
it concretely means that we need operators that ma-
nipulate music notation, and that their output should
consist of valid music notation as well. There is
however no means to achieve that with XQuery, nor
even to simply know whether a query supplies a com-
pliant output or not.

3. Issue 3: Formats. Finally, a last, although less es-
sential, obstacle is the number of possible encod-
ings available nowadays, from legacy formats such
as HumDrum to recent XML proposal mentioned
above. Abstracting away from the specifics of these
formats in favor of the core information set that they
commonly aim at representing would allow to get rid
of their idiosyncrasies.

To summarize, we consider that XML representation of
scores are so far mostly intended as a serialization of docu-
ments that encapsulate all kinds of information, from meta-
data (creation date, encoding agent) to music information
(symbolic representation of sounds and sounds synchro-
nization) via rendering instructions. They are by no means
designed to supply a structured representation of a core as-
pect (music “content”), subject to investigation and manip-
ulation via a dedicated, model-aware query language.

1.2 Our approach

We make the case for an approach that leverages music
content information as virtual XML objects. Coupled with
a specialization of XQuery to this specific representation,
we obtain a system apt at providing search, restructuration,
extraction, analytic services on top of large collections of
XML-encoded scores. The system architecture is summa-
rized in Figure 1, and addresses the above issues.

723

Issue 1: Bringing homogeneity. The bottom layer is a
Digital Score Library managing collections of scores se-
rialized in MusicXML, MEI, or any other legacy format
(e.g., Humdrum). This encoding is mapped toward a model
layer where the content structured in XML corresponds to
the model structures. This defines, in intention, collections
of music notation objects that we will call vScore in the fol-
lowing. A vScore abstracts the part of the encoding (here
the content) we wish to focus on, and gets rid of informa-
tion considered as useless, at least in this context.
Issue 2: Defining a domain-specific language. In order
to manipulate these vScores, we equip XQuery with two
classes of operations dedicated to music content: struc-
tural operators and functional operators. The former im-
plement the idea that structured scores management cor-
responds, at the core level, to a limited set of fundamen-
tal operations, grouped in a score algebra, that can be de-
fined and implemented only once. The latter acknowledges
that the richness of music notation manipulations calls for
a combination of these operations with user-defined func-
tions at early steps of the query evaluation process. Model-
ing the invariant operators and combining them with user-
defined operations constitutes the operational part of the
model. This yields a query language whose expressions
unambiguously define the set of transformations that pro-
duce new vScores from the base collections.

Encodings

Mapping

Data model
(virtual collection)

MEI MusicXML
…

Structural
ops

queries

Functional
ops+

Visualisation / analysis

others

Figure 1. Envisioned system

Issue 3: Serialization independence. One mapper has to
be defined for each possible encoding, as shown by the fig-
ure which assumes that MusicXML and MEI documents
cohabit in a single DSL. Adding a new source represented
with a new encoding is just a matter of adding a new map-
per. Each document in the DSL is then mapped to a (vir-
tual) XML document, instance of the model.

1.3 Contributions

In the present paper, we describe the implementation of
the above ideas in NEUMA [17]. The focus is on the model
layer, defined as a virtual XML schema, on the mapping
from raw documents to vScores, and on the integration of
XQuery with structural operators and external functions.
The score algebra, not presented here, is implemented in

our system as XQuery functions, whose meaning should
be clear from the context.

Section 2 gives the virtual XML schema for music con-
tent notation, and Section 3 shows how to create an XML
database referring to vScores. Section 4 presents the query
language and Section 5 discusses salient implementation
choices. Section 6 covers related work and Section 7 con-
cludes the paper.

2. MUSIC NOTATION: THE SCHEMA

We now describe the virtual data model with XML Schema
[22]. The model aims at representing polyphonic scores in
Common Music Notation (CMN). A score is composed of
voices, and a voice is a sequence of events.

2.1 Event type

An event is a value (complex or simple) observed during a
time interval. Events are polymorphic: the value may be
a note representation, a chord representation, a syllable or
any other value (e.g., an integer representing an interval).

The abstract definition of an event is a complex type
with a duration attribute.

<xs:complexType abstract="true" name="eventType">
<xs:attribute type="xs:integer" name="duration"

use="required"/>
</xs:complexType>

From this abstract type, we can derive concrete event
types with specific element names. The most important
are events denoting sounds, which covers simple n ≥ 0
simultaneous sounds, either rests (n = 0), notes (n = 1)
or chords (n > 1). The soundType is derived from the
eventType as follows:

<xs:complexType name="soundType">
<xs:complexContent>
<xs:extension base="eventType">
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="note" type="noteType"/>
<xs:element name="rest" type="restType"/>
<xs:element name="chord" type="chordType"/>

</xs:choice>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Due to space restrictions, we do not detail noteType
(containing ’pitch’ and ’octave’ attributes), restType (em-
pty element) and chordType (list of noteType). As
another example of a concrete event type, lyrics can be rep-
resented with syllabic events (and rests), with type:

<xs:complexType name="syllableType">
<xs:complexContent>
<xs:extension base="eventType">
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="syll" type="xs:string"/>
<xs:element name="rest" type="restType"/>

</xs:choice>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Events are not restricted to musical domains. Events
in the xs:integer domain, for instance, can be used to
represent intervals, obtained by a 2-voices scores analysis.

724 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

<monody>
<rest duration="24"/>
<note duration="16" p="D" o="5"/>
<rest duration="4"/>
<note duration="2" p="E" o="5"/>
<note duration="2" p="F" o="5"/>...

</monody>

<lyrics>
<rest duration="24"/>
<syll duration="16"/>Ah,</syll>
<rest duration="4"/>
<syll duration="2"/>que</syll>
<syll duration="2"/>je</syll>...

</lyrics>

<bass>
<note duration="8" p="D" o="4"/>
<note duration="4" p="C" o="4"/>
<chord duration="4">
<note p="D" o="4" a="-1"/>
<note p="B" o="3" a="-1"/></chord>

<note duration="4" p="A" o="3"/>
<note duration="4" p="G" o="3"/>...

</bass>

Figure 2. Voices representation

2.2 Voice type

A voice is a sequence of events. Its abstract definition is
given by the following schema:

<xs:complexType name="voiceType" abstract="true">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element type="eventType"/>

</xs:sequence>
</xs:complexType>

This type actually represents a function from the time
domain to the domain of events. There is an implicit non-
overlapping constraint: an event begins when its predeces-
sor ends. We can instantiate concrete voice types by simply
replacing the abstract eventType by one of its derived
types (e.g., soundType, syllableType, intType),
like in the following example:

<xs:complexType name="lyricsType">
<xs:extension base="voiceType">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element type="syllableType"/>
</xs:sequence>
</xs:extension>

</xs:complexType>

2.3 Score type

Finally, our virtual notation schema contains a score type
which describes a recursive structure defined as follows:

• if v a voice, then v is a score.

• if s1, · · · , sn are scores, the sequence< s1, · · · , sn >
is a score.

The generic definition of the XML schema for this struc-
ture is given below. Note that element names for scores and
voices will be specified for each specific corpus.

<xs:complexType name="scoreType" abstract="true">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:choice>
<xs:element type="scoreType"/>
<xs:element type="voiceType"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

2.4 Example

Let’s illustrate by an example our types and structure. Fig. 3
is partially represented by the vScore in Fig. 2.

{
�

�
Ah,�

� �

�

�

�

�� �
de !

�

�
que
�

��
sens

��
je

�

�{ �

�
� � � �

��

� �
23� 	

�

�

�

23
{ tu

�

�
é

��

�

�
d'in qui

�

��

Figure 3. A score example

Our model decomposes the score in three voices. The
first one represents the monody of the vocal part. It con-
sists of a sequence of soundType events. The second
voice represents lyrics with syllableType events. And,
finally, the last voice is the bass. Its representation is a se-
quence of soundType events (here, notes and chords).

The vScore itself illustrates the recursive structure that
encapsulates the voices in a tree of score elements. The
upper level combines the bass voice and an embedded
scorewhich combines the monody and lyrics voices.
The structure is as follows.

<air>
<vocal>
<monody>(...)</monody>
<lyrics>(...)</lyrics>

</vocal>
<bass>(...)</bass>

</air>

It should be clear that this representation abstracts a part
of the content that can be found in all the encodings we are
aware of. The choice of the information subset which is se-
lected is here minimal, for the sake of conciseness. We can
obviously extend the representation with additional details
as long as it does not affect the structure. A voice can be
“decorated” by an instrument name, an event by the current
metric or the measure number, a score by its composer, all
represented as additional elements. In general, the issue
relates to what is considered as “content” subject to search
and analysis operations, and what is the suitable represen-
tation for this content. We will stick in the following to the
simple model given above which is sufficient to our needs.

Recall that the schema intends to define a virtual score
representation which is derived at search time (according
to rules explained in the next sections) from the actual
serialization. We briefly explain the mapping from Mu-
sicXML or MEI documents to vScores.

2.5 Mapping from MusicXML or MEI

In MusicXML, scores are organized as a tree of score,
part-group, and part elements. Voices are numbered
with respect to the part they belong to, and represented as
nested elements of notes, rest and chords. Our mapping
unifies the score, groups and parts in a recursive nesting of
score elements and (virtually) splits the music and lyrics
as two associated voices.

In MEI, the score structure is based on score, staves and
groups of staves. Voices are represented as layer objects
deeply nested in a hierarchy of measure and staff con-
tainers. Our mapping extracts the voice events from the
complex imbrication of MEI elements or organizes them
according to our recursive score structure.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 725

3. MUSIC NOTATION: THE DATABASE

XML databases are collections of documents. Although
the definition of a schema for a collection is not manda-
tory, it is a safe practice to ensure that all the documents
it contains share a similar structure. In our context, a col-
lection of digital scores is a regular XML collection where
one or several elements are of scoreType type. Here is
a possible example:

<xs:complexType name="opusType">
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="composer" type="xs:string"/>
<xs:element name="published" type="xs:string"/>
<xs:element type="scoreType"/>

</xs:sequence>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexType>

Note that this schema is strict regarding meta-data (title,
composer) but very flexible for the music notation because
we are using here the generic scoreType. It follows that,
from one document to the other in standard notations (mu-
sicXML, MEI, HumDrum), the score structure, the number
of voices and their identifiers may vary. Such a flexibility is
definitely not convenient when it comes to querying a col-
lection, since we cannot safely refer to the components of
a score. It seems more appropriate to base the organization
of score collections on an homogeneous score structure. A
Quartet collection for instance would only accept scores
complying to the following structure:

Quartet(id: int, title: string,
composer: string, published: date,
music: Score [v1, v2, alto, cello])

The XML Schema formalism accepts the definition of
restriction of a base type. In our case, the restriction con-
sists in specializing the scoreType definition to list the
number and names of voices, like in quartetType:

<xs:complexType name="quartetType">
<xs:complexContent>
<xs:restriction base="scoreType">
<xs:sequence>
<xs:element name="v1" type="soundVoiceType"/>
<xs:element name="v2" type="soundVoiceType"/>
<xs:element name="alto" type="soundVoiceType"/>
<xs:element name="cello" type="soundVoiceType"/>
</xs:sequence>
</xs:restriction>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexContent>
</xs:complexType>

Using QuartetType in place of ScoreType in the
collection schema ensures that all the vScores in the col-
lection match the definition. Voices’ names are specified
and can then be used to access to the (virtual) music nota-
tion to start applying operations and transformations. This
can be done with XQuery, as explained in the next section.

4. XQUERY + SCORE ALGEBRA = QUERIES

With a well-defined collection and a clear XML model to
represent the notation of music content, we can now ex-
press queries over this collection with XQuery. However,
executing such queries gives rise to the following issues:

Issue 1: We cannot directly evaluate an XQuery expres-
sion, since they are interpreted over instances which are
partly virtual (scores, voices and events) and partly mate-
rialized (all the rest: title, composer, etc.).
Issue 2: Pure XQuery expression would remain limited to
exploit the richness of music notation;

The first issue is solved by executing, at run-time, the
mapping that transforms the serialized score (say, in Mu-
sicXML) to a vScore, instance of our model. This is fur-
ther explained in the next section, devoted to implementa-
tion choices. To solve the second issue, we implemented a
set of XQuery functions forming a score algebra. We in-
troduce it and illustrate the resulting querying mechanism
with examples.

4.1 Designing a score algebra

We designed a score algebra in a database perspective, as
a set of operators that operate in closed form: each takes
one or two vScores (instances of scoreType) as input
and produces a vScore as output. This brings composi-
tion, expressiveness, and safety of query results, since they
are guaranteed to consist of vScore instances that can, if
needed, be serialized back in some standard encoding (see
the discussion in Section 1 and the system architecture,
Fig. 1). The algebra is formalized in [8], and implemented
as a set of query functions whose meaning should be clear
from the examples given next.

4.2 Queries

The examples rely on the Quartet corpus (refer to the Sec-
tion 3 for its schema). Our first example creates a list of
Haydn’s quartets, reduced to the titles and violin’s parts.

for $s in collection("Quartet")
where $s/composer="Haydn"
return $s/title, Score($s/music/v1, $s/music/v2)

Recall that music is a QuartetType element in the
Quartet schema. This first query shows two basic opera-
tors to manipulate scores: projection on voices (obtained
with XPath), and creation of new scores from components
(voices or scores) with the Score() operator.

A third operator illustrated next is MAP. It represents
a higher-order function that applies a given function f to
each event in a vScore, and returns the score built from f ’s
results. Here is an example: we want the quartets where the
v1 part is played by a B-flat clarinet. We need to transpose
the v1 part 2 semi-tones up.

for $s in collection("Quartet")
where $s/composer="Haydn"
let $clarinet := Map ($s/music/v1, transpose (2))
let $clrange := ambitus ($clarinet)
return $s/title, $clrange,

Score($clarinet, $s/music/v2,
$s/music/alto, $s/music/cello)

This second query shows how to define variables that
hold new content derived from the vScore via user defined
functions (UDFs). For the sake of illustration we create
two variables, $clarinet and $clrange, calling re-
spectively transpose() and ambitus().

726 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

In the first case, the function has to be applied to each
event of the violin voice. This is expressed with MAP

which yields a new voice with the transposed events. By
contrast, ambitus() is directly applied to the voice as a
whole. It produces a scalar value.

MAP is the primary means by which new vScores can
be created by applying all kinds of transformations. MAP

is also the operator that opens the query language to the
integration of external functions: any library can be inte-
grated as a first-class component of the querying system,
providing some technical work to “wrap” it conveniently.

The selection operator takes as input a vScore, a Boolean
expression e, and filters out the events that do not satisfy
e, replacing them by a null event. Note that this is dif-
ferent from selecting a score based on some property of
its voice(s). The next query illustrates both functionali-
ties: a user-defined function “lyricsContains” selects all
the psalms (in a Psalters collection) such that the vocal part
contains a given word (“Heureux”), “nullify” the events
that do not belong to the measures five to ten, and trim the
voice to keep only non-null events.

for $s in collection("Psalters")
let $sliced := trim(select ($s/air/vocal/monody,

measure(5, 10)))
where lyricsContains ($s/air/vocal/lyrics, "Heureux")
return $s/title, Score($sliced)

We can take several vScores as input and produce a doc-
ument with several vScores as output. The following ex-
ample takes three chorals, and produces a document with
two vScores associating respectively the alto and tenor voices.

for $c1 in collection("Chorals")[@id="BWV49"]/music,
$c2 in collection("Chorals")[@id="BWV56"]/music,
$c3 in collection("Chorals")[@id="BWV12"]/music

return <title>Excerpts of chorals 49, 56, 12</title>,
Score($c1/alto, $c2/alto, $c3/alto),
Score($c1/tenor, $c2/tenor, $c3/tenor)

Finally, our last example shows the extended concept of
score as a voice synchronization which are not necessarily
“music” voices. The following query produces, for each
quartet, a vScore containing the violin 1 and cello voices,
and a third one measuring the interval between the two.

for $s in collection("Quartet")/music
let $intervals := Map(Score($s/v1,$s/cello),interval())
return Score ($s/v1, $s/cello, $intervals)

Such a “score” cannot be represented with a traditional
rendering. Additional work on visualization tools that would
closely put in perspective music fragments along with some
computed analytic feature is required.

5. IMPLEMENTATION

Our system integrates an implementation of our score alge-
bra, a mapping that transforms serialized scores to vScores,
and off-the-shelf tools (a native XML database, BASEX 1 ,
a music notation library for UDFs, MUSIC21 2 [4]). This
simple implementation yields a query system which is both
powerful and extensible (only add new functions wrapped
in XQuery/BASEX). We present its salient aspects.

1 http://basex.org
2 http://web.mit.edu/music21

5.1 Query processing

The architecture presented in Figure 4 summarizes the com-
ponents involved in query processing. Data is stored in
BASEX in two collections: the semi-virtual collection (e.g.,
Quartet) of music documents (called opus), and the col-
lection of serialized scores, in MusicXML or MEI. Each
virtual element scoreType in the former is linked to an
actual document in the latter.

MEI /
MusicXML

XQuery

XML/
vScores XQuery functions

Mappers,
Operators
Music21…

1

3

2

4

Collection
link

virtual instances

mapping

query results
……

concrete instances
…

…

algebra

Serialized scores

Figure 4. Architecture

The evaluation of a query proceeds as follows. First
(step 1), BASEX scans the virtual collection and retrieves
the opus matching the where clause (at least for fields
that do not belong to the virtual part, see the discussion at
the end of the section). Then (step 2), for each opus, the
embedded virtual element scoreType has to be materi-
alized. This is done by applying the mapping that extracts
a vScore instance from the serialized score, thanks to the
link in each opus.

Once a vScore is instantiated, algebraic expressions, rep-
resented as composition of functions in the XQuery syn-
tax, can be evaluated (step 3). We wrapped several Python
and Java libraries as XQuery functions, as permitted by
the BASEX extensible architecture. In particular, algebraic
operators and mappers are implemented in Java, whereas
additional, music-content manipulations are mostly wrap-
ped from the Python Music21 toolbox.

The XQuery processor takes in charge the application of
functions, and builds a collection of results (that includes
instances of scoreType), finally sent to the client appli-
cation (step 4). It is worth noting that the whole mecha-
nism behaves like an ActiveXML [1] document which ac-
tivates the XML content on demand by calling an external
service (here, a function).

5.2 Mappers

In order to map scores from the physical representation to
the virtual one, references to physical musical parts are
matched, according to the collection schema. To achieve
this, an ID is associated to each voice element of the ma-
terialized score. This ID directly identifies the underlying
part of the physical document.

The main mapping challenge is to identify virtual and
serialized voices, in particular when they are not standard-
ized according to the collection schema. We need to gen-

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 727

erate IDs for each parts on the underlying encoding (Mu-
sicXML, MEI, etc.), even for monody and lyrics parts which
can be merged on the physical document. Most of them
can be done automatically with metadata information given
by the collection schema.

5.3 Manipulating vScores with SCORELIB

The SCORELIB Java library is embedded in every BASEX
query in order to process our algebraic operations on vS-
cores. The library is responsible for managing the link be-
tween the virtual and the physical score, whatever the en-
coding format. Whenever a function activates a vScore by
calling a function (whether a structural function of the al-
gebra, or a user-defined function), the link is used to get
and materialize the corresponding score.

Once vScore has been materialized, it is kept in a cache
in order to avoid repeated and useless applications of the
mapping. Temporary vScores produced by applying alge-
braic operators are kept in the cache as well.

The Score() operator creates the final XML docu-
ment featuring one or several instances of scoreType. It
combines scores produced by operators and referred to by
XQuery variables.

5.4 Indexing music features

User Defined Functions (UDFs) are necessary to produce
derived information from music notation, and have to be
integrated as external components. Getting the highest note
of a voice for instance is difficult to express in XQuery,
even on the regular structures of our model. In general,
getting sophisticated features would require awfully com-
plex expressions. In our current implementation, UDFs are
taken from MUSIC21 and wrapped as XQuery functions.
This works with quite limited implementation efforts, but
can be very inefficient since every score must be materi-
alized before evaluating the UDF. Consider the following
example which retrieves all the quartets such that the first
violin part gets higher than e6:
for $s in collection("Quartet")
where highest($s/music/v1) > ’e6’ return $s

A naive, direct evaluation maps the MusicXML (or MEI)
document as a vScore, passes it to the XQuery function
that delegates the computation to the user library (e.g., MU-
SIC21 or any other) and gets the result. This has to be done
for each score in the collection, even though they do not all
match the selection criteria.

A solution is to materialize the results of User Defined
Functions as metadata in the virtual document and to index
this new information in BASEX. This can directly serve as
a search criteria without having to materialize the vScore.
The result of the highest() function is such a feature. Index
creation simply scans the whole physical collections, runs
the functions and records it result in a dedicated index
sub-element of each opus, automatically indexed in BA-
SEX. To evaluate the query above, it uses the access path
to directly get the relevant opus.
for $s in collection("Quartet")[index/v1/highest > ’e6’]
return $s

6. RELATED WORK

Accessing to structured music notation for search, analy-
sis and extraction is a long-term endeavor. Humdrum [13]
works on plain text (ASCII) file format, whereas MUSIC21
[4] deals with MIDI channels modeled as musical layers.
Both can import widely used formats like MusicXML or
MEI. Both are powerful toolkits, but their main focus is
on the development of scripts and not database-like access
to structured content. As a result, using, say MUSIC21 to
express the equivalent of our queries would require to de-
velop ad-hoc scripts possibly rather complex. It becomes
all the more complicated when dealing with huge collec-
tions of scores. On the other hand, there are many com-
putations that a database language cannot express, which
motivated our introduction of UDFs in the language.

Other musical score formalisms rather target generative
process and computer-aided composition. This is the case
of Euterpea [12] (in Haskell), musical programming ap-
proaches [3, 6, 7, 14] and operations on tiled streams in T-
Calculus [14]. They follow the paradigm of abstract data
types for music representation, bringing a simplification to
the music programming task, but they are not adapted to
the conciseness of a declarative query language.

Since modern score formats adopt an XML-based se-
rialization, XQuery [23] has been considered as the lan-
guage of choice for score manipulation [9]. THoTH [21]
also proposes to query MusicXML with patterns analy-
sis. For reasons developed in the introduction, we believe
that a pure XQuery approach is too generic to handle the
specifics of music representation.

Our work is inspired by XQuery mediation [10, 5, 2,
19], and can be seen as an application of method that com-
bines queries on physical and virtual instances. It borrows
ideas from ActiveXML [1], and in particular the definition
of some elements as “triggers” that activate external calls.

7. CONCLUSION

We propose in the present paper a complete methodology
to view a repository of XML-structured music scores as
a structured database, equipped with a domain-specialized
query language. Our approach aims at limiting the amount
of work needed to implement a working system. We model
music notation as structured scores that can easily be ex-
tracted from existing standards at run-time; we associate to
the model an algebra to access to the internal components
of the scores; we allow the application of external func-
tions; and finally we integrate the whole design in XQuery,
with limited implementation requirements.

We believe that this work brings a simple and promising
framework to define a query interface on top of Digital Li-
braries, with all the advantages of a concise and declarative
approach for data management. It also offers several inter-
esting perspectives: automatic content management (split
a score in parts, distribute them to digital music stands),
advanced content-based search, and finally advanced min-
ing tasks (derivation of features, annotation of scores with
these features).

728 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

8. REFERENCES

[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo.
The active XML project: an overview. VLDB J.,
17(5):1019–1040, 2008.

[2] Serge Abiteboul and et al. WebContent: Efficient P2P
Warehousing of Web Data. In VLDB’08 Very Large
Data Base, pages 1428–1431, August 2008.

[3] Mira Balaban. The music structures approach to
knowledge representation for music processing. Com-
puter Music Journal, 20(2):96–111, 1996.

[4] Michael Scott Cuthbert and Christopher Ariza. Mu-
sic21: A Toolkit for Computer-Aided Musicology and
Symbolic Music Data. In Proceedings of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 637–642, 2010.

[5] AnHai Doan, Alon Halevy, and Zachary Ives. Princi-
ples of Data Integration. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2012.

[6] Dominique Fober, Stéphane Letz, Yann Orlarey, and
Frédéric Bevilacqua. Programming Interactive Music
Scores with INScore. In Sound and Music Computing,
pages 185–190, Stockholm, Sweden, July 2013.

[7] Dominique Fober, Yann Orlarey, and Stéphane Letz.
Scores level composition based on the guido music no-
tation. In ICMA, editor, Proceedings of the Interna-
tional Computer Music Conference, pages 383–386,
2012.

[8] R. Fournier-S’niehotta, P. Rigaux, and N. Travers.
An Algebra for Score Content Manipulation. Tech-
nical Report CEDRIC-16-3616, CEDRIC laboratory,
CNAM-Paris, France, 2016.

[9] Joachim Ganseman, Paul Scheunders, and Wim
D’haes. Using XQuery on MusicXML Databases for
Musicological Analysis. In Proceedings of the Interna-
tional Conference on Music Information Retrieval (IS-
MIR), 2008.

[10] H. Garcia-Molina, J.D. Ullman, and J. Widom.
Database System Implementation. Prentice Hall, 2000.

[11] Michael Good. MusicXML for Notation and Analysis,
pages 113–124. W. B. Hewlett and E. Selfridge-Field,
MIT Press, 2001.

[12] Paul Hudak. The Haskell School of Music – From Sig-
nals to Symphonies. (Version 2.6), January 2015.

[13] David Huron. Music information processing using the
humdrum toolkit: Concepts, examples, and lessons.
Computer Music Journal, 26(2):11–26, July 2002.

[14] David Janin, Florent Berthaut, Myriam Desainte-
Catherine, Yann Orlarey, and Sylvain Salvati. The T-
Calculus : towards a structured programing of (musi-
cal) time and space. In Proceedings of the first ACM

SIGPLAN workshop on Functional art, music, model-
ing and design (FARM’13), pages 23–34, 2013.

[15] Music Encoding Initiative. http://
music-encoding.org, 2015. Accessed Oct.
2015.

[16] MusicXML. http://www.musicxml.org, 2015.
Accessed Oct. 2015.

[17] Philippe Rigaux, Lylia Abrouk, H. Audéon, Na-
dine Cullot, C. Davy-Rigaux, Zoé Faget, E. Gavi-
gnet, David Gross-Amblard, A. Tacaille, and Virginie
Thion-Goasdoué. The design and implementation of
neuma, a collaborative digital scores library - require-
ments, architecture, and models. Int. J. on Digital Li-
braries, 12(2-3):73–88, 2012.

[18] Perry Rolland. The Music Encoding Initiative (MEI).
In Proc. Intl. Conf. on Musical Applications Using
XML, pages 55–59, 2002.

[19] Nicolas Travers, Tuyêt Trâm Dang Ngoc, and Tianx-
iao Liu. Tgv: A tree graph view for modeling untyped
xquery. In 12th International Conference on Database
Systems for Advanced Applications (DASFAA), pages
1001–1006. Springer, 2007.

[20] W3C Music Notation Community Group.
https://www.w3.org/community/music-notation/,
2015. Last accessed Jan. 2016.

[21] Philip Wheatland. Thoth music learning software,
v2.5, Feb 27, 2015. http://www.melodicmatch.com/.

[22] XML Schema. World Wide Web Consortium, 2001.
http://www.w3.org/XML/Schema.

[23] XQuery 3.0: An XML Query Language.
World Wide Web Consortium, 2007.
https://www.w3.org/TR/xquery-30/.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 729

