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1 Introduction

In this paper we address the problem of optimizing multi-period inventory in the
case of uncertain demands. At each time period, the company produces a certain
quantity of goods which is used to serve a client demand. The unit selling price
was fixed in advance by contract for the time horizon and an expected value of the
quantity to deliver at each time period is known. In case of overproduction, goods
are added to the stock. In case of underproduction the missing goods are either
taken from the stock or bought on the international market. In addition at each
time period the manager can decide to buy more goods and add them to the stock
or to sell a part of the goods in stock, on the international market. The unit price
of purchase (or sale) of these goods on the international market are estimated in
advance for every period, according to the previous years.

But in fact, the demand and the purchasing costs on the international market
are uncertain and may differ from their expected values. Following the Betsimas
and Thiele approach, we assume that there is no known probabilistic distribution
of these values, but each one may vary in a given interval. We also assume that the
variation of the purchasing or selling costs is small, while the real demand can be
far enough from its expected value. Then the prices on the international market can
be approximate in the following way: the unit purchasing cost is set to its expected
value plus the maximum possible gap and the unit selling cost is set to its expected
value minus the maximum possible gap. Doing so, we guarantee a lower bound on
the profits.

The manager takes decisions in two stages: first he before discovering the ac-
tual value taken by the demand, second once uncertainty has been revealed.

In this paper we address the problem of optimizing multi-period inventory in
the case of uncertain demands. We consider a wholesaler who purchases goods
on the international market and stocks them in a warehouse before selling them to
local customers. To serve the demand he can either demand at each time period,
the manager decides the quantity to buy His decisions are made in two stages: first
before discovering the actual value taken by the demand, second once uncertainty
has been revealed.

1



2 Problem definition

2.1 The deterministic case

We consider a inventory problem where We assume that we have the possibility to
store the goods, that are not delivered for the demand, into a storehouse at a certain
cost. At each time period, we have the possibility to buy some goods from the
market, furthermore we can also sell some goods to the market (at a much lower
price). More precisely, the data of the problem are:

• T ∈ N, is the time horizon of the problem

• For each t ∈ [1, ..., T ], we denote respectively by dt ∈ R+ and pt ∈ R+ the
demand and the production at time t.

• α ∈ RT+ and β ∈ RT+ are the vector of costs, respectively to buy some goods
from the market and to sell some goods to the market. Implicitly, α > β.

• c ∈ R+ is the unit cost to store one unit of good in the storehouse during a
time period

• K ∈ R+ is the capacity of the storehouse and s0 ∈ R+ is the initial stock
(we could also define bounds on maximum/minimum load/unload of goods
during a time period but for the sake of simplicity we do not consider this
case here).

In this setting we aim to look for the best policy to minimize the costs. The decision
variables of the problem are:

• x ∈ RT+, where for each t, xt denotes the quantity of goods we buy from the
market at time t

• y ∈ RT+, where for each t, yt denotes the quantity of goods we sell to the
market at time t

• ei ∈ RT+, where for each t, eit denotes the quantity of goods we store into the
storehouse at time t

• eo ∈ RT+, where for each t, eot denotes the quantity of goods we unload from
the storehouse at time t

• s ∈ RT+, where for each t, st denotes the quantity of goods stored in the
storehouse at time t
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The LP formulation of the problem is the following:

(P )



min
T∑
t=1

(αtxt − βtyt) + c
T∑
t=1

st

xt − yt − eit + eot = dt − pt, ∀t = 1, ..., T

st = st−1 + eit − eot , ∀t = 1, ..., T

0 ≤ s ≤ K
x, y, s, ei, eo ∈ RT+

2.2 The robust case

In practice, the demand d is uncertain. We assume that for each t, dt belongs to the
interval [d̄t −∆t, d̄t + ∆t]. Similarly, to the EJOR paper, the robust model can be
formulated into the following mathematical program:

(RP )



max
T∑
t=1

δt≤δ̄

δ∈{0,1}T

min

T∑
t=1

(αtxt − βtyt) + c

T∑
t=1

st

xt − yt − eit + eot = d̄t + δt∆t − pt, ∀t = 1, ..., T

st = st−1 + eit − eot , ∀t = 1, ..., T

0 ≤ s ≤ K
x, y, s, ei, eo ∈ RT+

where δ̄ denotes the uncertainty budget, i.e. the number of time periods where the
demand dt is allowed to take its worst value d̄t + ∆t. We aim therefore to look for
the δ̄ time periods that induce the maximum cost of the problem (P ).

3 Solving the robust problem

We prove, in this section, that the robust problem (RP ) can be solved in poly-
nomial time using a nested dynamic programming approach. After defining the
Restricted-RP, we study some properties of a class of piecewise linear function,
then we present the dynamic programming algorithm and prove that it converges
to an optimal solution of (RP ) in polynomial time.

Let τ ∈ [1, ..., T ], ζ ∈ [0, ..., δ̄] and σ ∈ [0;K], we define a truncated recourse
problem R(τ, ζ, σ) defined on the (T − τ + 1) last time periods assuming that the
uncertainty budget on that period is ζ and that initially (at t = τ − 1), the initial
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stock in the storehouse is σ. The mathematical formulation of R(τ, ζ, σ) is:

R(τ, ζ, σ)



max
T∑
t=τ

δt≤δ̄

δ∈{0,1}T−τ+1

min
T∑
t=τ

(αtxt − βtyt) + c
T∑
t=τ

st

xt − yt − eit + eot = d̄t + δt∆t − pt, ∀t = τ, ..., T

st = st−1 + eit − eot , ∀t = τ, ..., T, sτ−1 = σ

0 ≤ s ≤ K
x, y, s, ei, eo ∈ RT−τ+1

+

Let v(τ, ζ, σ) be the optimal value of R(τ, ζ, σ). We will prove that, for all (τ, ζ),
the function σ 7→ v(τ, ζ, σ) belongs to the class of function that we introduce
below.

3.1 The class C of non-increasing piecewise linear function

Let f : [a, b] 7→ R, we say that f ∈ Ca,b if there exist f0 ∈ R, a = a0 < a1 <
... < an = b and γ0 > γ1 > ... > γn−1 ≥ 0 such that f(a) = f0 and for all
i = 0, ..., n− 1 f is an affine function on [ai, ai+1] with coefficient −γi, i.e.

f(x) = f0 −
n−1∑
i=0

γi max(min(x− ai, ai+1 − ai), 0)

where n ∈ N defines the size, size(f), of f (see Figure 3.1). We say that (γ0, ..., γn−1)
defines the coefficients of f .

Proposition 1. Let f ∈ Ca,b with coefficients (γ0, ..., γn−1):

f(x) = f0 −
n−1∑
i=0

γi max(min(x − ai, ai+1 − ai), 0). Let L ≤ 0 ≤ U and let us

consider the following function g : [a, b] 7→ R:

g(x) = min
L≤h≤U

g0 − γh+ f(x− h)

Then g ∈ Ca,b with coefficients (γ0, ..., γ, ..., γn−1) (size(g) = size(f) + 1).

Proof. Let x ∈ [a, b]. There exists i = 0, ..., n − 1 such that x ∈ [ai, ai+1]. Let
gx(h) = g0− γh+ f(x− h) and let L ≤ h∗ ≤ U achieve the minimum of gx. We
consider two cases:

• γ > γi:
Notice first that for all h < 0, there exists j ≥ i such that x−h ∈ [aj , aj+1],
therefore, since γj ≤ γi, f(x − h) ≥ f(x) + γih .Hence for all h < 0,
gx(h) ≥ g0−γh+f(x)+γih = g0+f(x)+(γi−γ)h ≥ g0+f(x) = gx(0),
therefore the minimum of gx is achieved for h∗ ≥ 0.
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×
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×
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0

slope : −γ
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Figure 1: Example of function belonging to C of size 3

Let h̄ ≥ 0 be the smallest h ≥ 0 such that x − h̄ = aj with j ≤ i and
γj−1 ≥ γ. If h ≥ h̄, then x − h belongs to some interval [ak, ak+1] where
γk ≥ γ. Similarly to the case ”γ > γi and h < 0” we can prove that the
function gx is non-decreasing on [h̄, h], therefore h∗ ≤ h̄. We now prove
that the function gx is non-increasing on [0, h̄]. Let h ∈ [0, h̄], there exists
k ≤ i such that x − h ∈ [ak, ak+1]. Assume that x − h ∈]ak, ak+1[. gx
admits a derivative at h and g′x(h) = −γ + γk ≤ 0 by definition of h̄. By
continuity of gx we conclude that gx is non decreasing on the whole interval

[0, h̄], therefore h∗ =

{
U if h̄ ≥ U
h̄ otherwise

and

g(x) =

{
g0 − γU + f(x− U) if h̄ ≥ U
g0 − γh̄+ f(x− h̄) otherwise

(1)

• γi ≥ γ:
Similarly to the previous case, we prove that the minimum of gx is attained
for h∗ ≤ 0. Let h̄ ≤ 0 be the biggest h ≤ 0 such that x − h̄ = aj with
j > i and γj ≤ γ. Similarly to the previous case, we have that h∗ ={
L if h̄ ≤ L
h̄ otherwise

and

g(x) =

{
g0 − γL+ f(x− L) if h̄ ≤ L
g0 − γh̄+ f(x− h̄) otherwise

(2)
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We can now give the general expression of g(x):
Let i ∈ [0, ..., n − 1] be the smallest index such that γ > γi. Then, by for all
x ∈ [ai, ai + U ], h̄ = x− ai, hence by Equation 1:

g(x) = g0 − γ(x− ai) + f(x− (x− ai))
= g0 + γai + f(ai)− γx

If x > ai + U , then h̄ = U , hence by Equation 1:

g(x) = g0 − γU + f(x− U)

Similarly, for all x ∈ [ai − L, ai], h̄ = x− ai, hence by Equation 2:

g(x) = g0 − γ(x− ai) + f(x− (x− ai))
= g0 + γai + f(ai)− γx

and for all x < ai − L

g(x) = g0 − γL+ f(x− L)

We conclude therefore that g is a function belonging to Ca,b with coefficients
(γ0, ..., γi−1, γ, γi..., γn−1)

Corollary 1. Let f ∈ Ca,b with coefficients (γ0, ..., γn−1):

f(x) = f0 −
n−1∑
i=0

γi max(min(x− ai, ai+1 − ai), 0). Let L1 ≤ 0 ≤ U1, L2 ≤ 0 ≤

U2 and let us consider the following function g : [a, b] 7→ R:

g(x) = min
L1≤h1≤U1
L2≤h2≤U2

g0 − γh1 − γ′h2 + f(x− h1 − h2)

with γ′ < γ. Then g ∈ Ca,b with coefficients (γ0, ..., γ, ..., γ
′, ..., γn−1).

Proof. Let g1(x) = min
L1≤h≤U1

g0 − γh + f(x − h). By Proposition 1, g1 ∈ Ca,b

with coefficients (γ0, ..., γ, ..., γn−1). Hence, since
g(x) = min

L2≤h≤U2

−γ′h + g1(x − h), we conclude that g ∈ Ca,b with coefficients

(γ0, ..., γ, ..., γ
′, ..., γn−1).

Let f1, f2 ∈ Ca,b respectively with coefficients (γ0, ..., γn−1), (γ′0, ..., γ
′
m−1),

and define f = max(f1, f2). It is obvious that f ∈ Ca,b. Let I ⊆ [0, ...,m− 1] be
the set of indexes i such that γ′i is not one coefficient of f1. Then we notice that the
size of f is bounded by:

size(f) ≤ size(f1) + |I|
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3.2 The dynamical program

Let (τ, ζ, σ) fixed, we define f(dt − pt, σ1, σ2) has the cost induced at time t = τ
if σ−K ≤ σ1 ≤ σ quantity of goods are (un)loaded from the storehouse and if σ2
quantity of goods produced at t = τ are sold to the market. We have:

f(dt−pt, σ1, σ2) =

{
ατ max(dt − pt − σ1, 0)− βτσ2 + c(σ − σ1 − σ2) if dt ≥ pt
ατ max(σ1, 0) + c(σ + σ2) otherwise

(3)
The Bellman’s equation verified by v(τ, ζ, σ) is:

v(τ, ζ, σ) = max
δτ∈{0,1}

 min
σ−K≤σ1≤min(σ,max(dt−pt,0))

0≤σ2≤max(pt−dt,0)

(
f(dt − pt, σ1, σ2) + v(τ + 1, ζ − δτ , σ − σ1 − σ2)

)
(4)

where dt = d̄t + δt∆t

Using the results of the previous section, we can prove (10 pages later ...), with
the same kind of ideas than the ones developed in the EJOR article that the nested
dynamical program solve the robust inventory problem in polynomial time.
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