A formal model to compute uncertain continuous data

Jéréme Dantdrf, Yann Pollet, and Salima Taibi

1Esitpa, Agri'terr, Mont-Saint-Aignan, France
{jdantan, stai bi }@sitpa.fr
2CNAM, CEDRIC, Paris, France
yann. pol | et @nam fr

Abstract. Current researches in the domain of Information @achmunication
Technologies describe and extend the existing flisma to develop systems
that compute uncertain data. Indeed, handling taicedata is a great challenge
for complex systems. In this article, we providéoemal model to compute
such data rigorously. Such quantities may be iné¢epl as either possible or
probable values, added to their interdependenEmsthis, the algebraic struc-
ture we defined is a vector space. We then pro&igarticular way for mixing
such continuous quantities.
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1 I ntroduction

Current researches in the domain of ICT descrilteexttend existing formalisms to
design systems that have to manage more and mtag lause of the increasing
number of sensors and means of storage. Many agtasientific domains have to
cope with data that may be uncertain, imprecisencomplete, to assist humans in
their decisions. For this, they have to merge étatam many data sources. In the last
forty years many well-known mathematical approadbemodel imperfect data have
been applied, such as probability based calculusiri@reasing amounts of data have
to be processed so that there is not enough timddta cleaning step. Decisions of
experts from various fields are based on aggregatiod data. We have therefore to
take into account their imperfection by a rigorapproach. We propose an algebraic
structure to model data, whose imperfections natnag be covered either by the
classical probability theory, either possibilityedry.

2 State of theart

For a long time, uncertainty modelling remained radded by the probability
theory, which is the mathematical study of phencenelmaracterized by randomness
and uncertainty. However, this approach is littigable for total ignorance represen-
tation, and objective interpretations of probailgitit assigned to such events remain
difficult when handled knowledge are no longer &éditko random and repeatable phe-
nomena (Dubois and Prade, 1988). As against, jfossible to model uncertainty
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thanks to the possibility theory.

The possibility theory (Dubois D., Prade H., 198@adeh L.A., 1978) removes
the strong probability additive constraint and a&ses the events ¢f to a possibility
measure denotell and a necessity measure dendtedthat are both applications
from Q to [0;1], respectively satisfyingil(A U B) = max (I1(A),11(B)) and
N(A N B) = min (N(A), N(B)). The relationship between the possibility of aergv
and its opposite is given HY(4A) = 1 — N(=A) and total ignorance is then given by
I1(A) = [1(=A) = 1, which implies:N(4) = N(=A) = 0. This approach also allows
representing imprecision using notions of fuzzys setd distributions of possibilities.
Thus, a fuzzy set (Zadeh L.A., 1965) F of a set Bdfined by a membership function
ur from E to[0; 1], which associates each element x of E its memipeidgree
Ur(x), to the subset F (i.e.: x belongs "more or lessFt When this membership
function is normalized (i.e. a x value from E sumduy(x) = 1 exists),ur(x) can
then interpreted as the chance that F takes the wvaf:(x) is then a possibility dis-
tribution).

In (Dantan et al., 2015), we provided a formalismboth representing and mani-
pulating quantities which may have a finite numbépossible or probable values.
Such quantities are values of tReset. We provided an algebraic structure to operate
the chained computations on such quantities witpg@rties similar tdR , that does
not allow the classical approaches based on fuely seen in the literature. In this
paper, we provide an extension of this approactotginuous quantities that are on
the one hand, probabilistic, and, on the othergsipdsstic. The continuous mixed
quantities are not in the scope of this articleadidition, we restrict ourselves to quan-
tities belonging to th& set.

3  Approach

The provided approach provides a formalism for beftresenting and manipulat-
ing rigorously quantities which may have a finitenmber of possible or probable val-
ues with their interdependencies. Then, we defmedlgebraic structure to operate
chained computations on such quantities with prigesimilar toR.

Let Q be a universe, with both a possibiliheasurd1 and a probability measure
P, each having values belongingRo The considered values are respectively denoted:
ay, &,..., &1, With possibilitiesa; = M(a), ..., an = M(a.y) ans b, by,..., by, with
probabilities; = P(k), ..., Bn2 = P(hy). In the following of this article, we denote
D1-Distributions onR: D1D(R) with possibilistic bases |B= {X | ; ;i =1, ...} (I
fixed) and probabilistic bases' B {X *1 ;j =1, ...} (J fixed). The types of structures
here considered are aggregation (cartesian prodtiefementary types taken among
R space. We define two types of bases, generatmdfiD vector space of D1D on
the infinite space but countalikespace.

We have defined an internal product on vectors: X ¥ that checks the following
properties: (1) X.X = X (idempotency); (2) X.0 3, @vhere Q is the null vector (ab-
sorbing element); (3) i i,impliesX | . X, 2 = Q; (4) j1 # joimpliesX ™. X" =
0y (5) Xig, - X1z, i2# Oy 5 (B) Xy, in. X? 2 0,5(7) X™ ™ X% 2 £ 0,. With such two



types of vectors bases, we are able distinguisisdlieces of uncertainty during com-
binations of values and then make rigorous comjuutsit

4 Background: uncertainty on discrete quantities

We define a purely possibilistic D1D as a value Waiich may have a finite num-
ber n of possible values: (a.., &) of K™ with their respective associated possibili-
tiesa; =M(ay), ..., any = M(a,) of [0,1]™.

The canonical form of a purely possibilistic D1D ‘la the following expression:
=Yiia;/a;. X;; , with g are the possible values ofa,are the possibilities, associ-
ated to each valug @one of which at least is equal to 1) ang;X(I fixed) correspond
to the patrtition of the univer€® corresponding to values of quantity a.

We define a purely probabilistic D1D as a valuehliolhr may have a finite number
n, of probable values: (bb,,..., b) of K™2 with their respective associated prob-
abilities B; = P(b), ..., Bn2 = P(k2) of [0,1]™2. The n values (b, b,,..., b)) com-
pletely define the probability distributionf/on R, associated to the probabilistic
variable b3; is equal to zero except on valugsl,..., b,

The canonical form of a purely probabilistic D1D'‘ib the following expression:
b = Y™, b;/B;. X", with by are the probable values off}y,are the probabilities, asso-
ciated to each valug fthe sum ofj; is equal to 1) and X1 (J fixed) correspond to
the partition of the univers® corresponding to values of quantity b.

4.1 Internal composition law (+)

The following expressiona,+ a, = Y2; ay /@y ;. X1 + X2, ag,j/ @z . Xz I8
evaluated with a composed sum ofj(B &) / (01 minayy) . Xy Xz;, i.e.a;+a, =
Z?:ll 721 (ar; +ay)/(ay; mina, ;). X1 ;. X5 ;.

The following expressiond, + b, = %2, by /B X' + 372, bz_]-/,b’zyj.XlZ'f is
likewise evaluated with a composed product afi tbby)) / (B - Bz)) - Xt X3
by + b, = 2?:11 7121 (by; + by j)/(Byy * Brj). X1 X2

As a special case, if both operands are express#teisame basis (i.e. they are
dependent, or in other words linked), then the fdenis simplified. We check that it
can take into account rigorously dependencies taartdicially explode the number
of possible values.

4.2  Internal composition law (*)

Similarly to +, the product internal compositiorwlas evaluated with composed
products of (& * az;) / (a1 Minaz)) . Xy Xz (possibility) and (by; + by ;) /(B *
B_(2,))) (probability). Finally, we showed that D10R() has a vector space structure
onR.



5 Continuous quantities

5.1 Combinations of continuous possibilistic quantities (trapezoids)

In this case, we restrict ourselves to possibilistefficients and to trapezoids. So
this is purely continuous possibilistic D1D. We nihget the following canonical ex-
pressiona = Y, a;. T(Ay; . a;, Ay . a;)/a; . X, whereT (44, .a;, 45, . a;) is a trape-
zoid centered onawith kernel atAj;. 8 and support;aA,;.

The resulting computations are degraded trapez@idssidering that the symme-
tric trapezoid centered on, &ith kernel atAy;. g and support;ath,. a, § (i.e. a. T
(A1i- &, Ay @) is stable for the four main algebraic operatiens, *, /. Here are the
values for the resulting cores and supports founmkgebraic operations:

+ Addition: a + b =Y [Gio Ia. T\ ai, Az a;) +2; [njo]/ by. T'(Ky. b, K. b).

We then get the following expression: a + B [mI min FIJO V@+h).TAu a+
K]_j. h, )\Zi- g+ sz. h) ] )
- Subtraction: a- b [0V a. T ai Az a) -2 [ P01/ by. T(ky. b, Ko 1) -

We then get the following expression: a - b.F [O“ min ruo V@E-b). 7M. a+
Klj-bj: )\Zi- a+ sz. h) ] )
al
« Product: a*b = [0l a. T an Az a) * 3 [ VoIl by. T(ky. b, Kz b).

We then get the following expression: a * &5 [mI min r“0 V(@i*bj).7(a.h
* (A + Ky, a . g Az +Ky). )
- Division: a/b =% [MoV &. T(y. ai Az a) /X [P0 1/ by. T(y. b, Ky ). We

then get the following expression: a / .5 [mI min r“0 IV (@ilb)).T(a.bh* (A

+Ky), a. b Ay +Ky).

5.2 Combinations of continuous probabilistic quantities (gaussian
distribution)

In this case, we restrict ourselves to probahidlistefficients and to Gaussian dis-
tributions. We then get the following expressibr= Y™, b;. N(4; . b;)/B; . X/*. The
probability density orR is then the weighted sum of n gaussian densitethe in-
ternal composition law + (sum) case , to combing. e(at+b), with
b=3¥",b.N(;.b)/B; . X", we have to make a convolution of two density func
tions of the following formula}y p . (o; (x)). We reduce such computations to
gaussian densitig€(o;) * N(o,) convolutions, that result to Gaussian densities of

the formnN (,/0—12 + 022).

In the internal composition law * (product) caseeaidue term appears when cal-
culating the product of two gaussian distributiohkis term might be ignored consi-
dering that random variations are small comparethéomain values. However, in



other cases, this residue does not give a gaudssaibution but a Bessel function,
which means that the law continuous probabilisti®are not stable by the law *.

6 Conclusion

The provided approach provides a formalism for beftresenting and manipulat-
ing rigorously quantities which may have possibi@mbable values with their inter-
dependencies. Then, we define an algebraic steitbuoperate chained computations
on such quantities with properties similafita

We have extended our formalism on continuous qti@sitiin special cases such as
trapezoids for possibilities and normal distribngdor probabilities), some algebraic
properties of D1D have been maintained. Howevenkinations of continuous quan-
tities, including probabilistic ones require adulitdl assumptions that make the com-
putations not mathematically rigorous.

The next steps are to compute mixed continuoustiigesn by considering either
the trapezoidal possibility distributions as intdssof cumulative distribution func-
tions (Destercke S., Dubois D., 2009) or probabjibssibility transformations (Du-
bois et al, 2004).
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