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Abstract. Current researches in the domain of Information and Communication 
Technologies describe and extend the existing formalisms to develop systems 
that compute uncertain data. Indeed, handling uncertain data is a great challenge 
for complex systems. In this article, we provide a formal model to compute 
such data rigorously. Such quantities may be interpreted as either possible or 
probable values, added to their interdependencies. For this, the algebraic struc-
ture we defined is a vector space. We then provide a particular way for mixing 
such continuous quantities. 
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1 Introduction 

Current researches in the domain of ICT describe and extend existing formalisms to 
design systems that have to manage more and more data, because of the increasing 
number of sensors and means of storage. Many actors of scientific domains have to 
cope with data that may be uncertain, imprecise or incomplete, to assist humans in 
their decisions. For this, they have to merge data from many data sources. In the last 
forty years many well-known mathematical approaches to model imperfect data have 
been applied, such as probability based calculus. But increasing amounts of data have 
to be processed so that there is not enough time for data cleaning step. Decisions of 
experts from various fields are based on aggregations of data. We have therefore to 
take into account their imperfection by a rigorous approach. We propose an algebraic 
structure to model data, whose imperfections nature may be covered either by the 
classical probability theory, either possibility theory. 

2 State of the art 

For a long time, uncertainty modelling remained addressed by the probability 
theory, which is the mathematical study of phenomena characterized by randomness 
and uncertainty. However, this approach is little suitable for total ignorance represen-
tation, and objective interpretations of probabilities, assigned to such events remain 
difficult when handled knowledge are no longer linked to random and repeatable phe-
nomena (Dubois and Prade, 1988). As against, it is possible to model uncertainty 



thanks to the possibility theory.  
The possibility theory (Dubois D., Prade H., 1988), (Zadeh L.A., 1978) removes 

the strong probability additive constraint and associates the events of Ω to a possibility 
measure denoted � and a necessity measure denoted � , that are both applications 
from Ω  to �0; 1� , respectively satisfying: �	
 ∪ � � max		�	
, �	�  and 
�	
 ∩ � � min		�	
, �	�. The relationship between the possibility of an event 
and its opposite is given by �	
 � 1 � �	�
 and total ignorance is then given by 
�	
 � �	�
 � 1, which implies: �	
 � �	�
 � 0. This approach also allows 
representing imprecision using notions of fuzzy sets and distributions of possibilities. 
Thus, a fuzzy set (Zadeh L.A., 1965) F of a set E is defined by a membership function 
��  from E to �0; 1�, which associates each element x of E its membership degree  
��	�, to the subset F (i.e.: x belongs "more or less" to F). When this membership 
function is normalized (i.e. a x value from E such as ��	� � 1 exists), ��	� can 
then interpreted as the chance that F takes the value x (��	� is then a possibility dis-
tribution). 

In (Dantan et al., 2015), we provided a formalism for both representing and mani-
pulating quantities which may have a finite number of possible or probable values. 
Such quantities are values of theR set. We provided an algebraic structure to operate 
the chained computations on such quantities with properties similar toR , that does 
not allow the classical approaches based on fuzzy sets seen in the literature. In this 
paper, we provide an extension of this approach to continuous quantities that are on 
the one hand, probabilistic, and, on the other, possibilistic. The continuous mixed 
quantities are not in the scope of this article. In addition, we restrict ourselves to quan-
tities belonging to the ℝ set. 

3 Approach 

The provided approach provides a formalism for both representing and manipulat-
ing rigorously quantities which may have a finite number of possible or probable val-
ues with their interdependencies. Then, we defined an algebraic structure to operate 
chained computations on such quantities with properties similar to ℝ.  

Let Ω be a universe, with both a possibility measure Π and a probability measure 
P, each having values belonging to ℝ.	 The considered values are respectively denoted: 
a1, a2,…, an1,  with possibilities α1 = Π(a1), …, αn1 = Π(an1) ans b1, b2,…, bn2, with 
probabilities β1 = P(b1), …, βn2 = P(bn2). In the following of this article, we denote 
D1-Distributions on ℝ: D1D(ℝ) with possibilistic bases BI = {X  I, i   ; i = 1, …} (I 
fixed) and probabilistic bases BJ = {X  

J, j
   ; j = 1, …} (J fixed). The types of structures 

here considered are aggregation (cartesian product) of elementary types taken among 
ℝ space. We define two types of bases, generating the D1D vector space of D1D on 
the infinite space but countable ℝ space. 

We have defined an internal product on vectors: Z = X.Y that checks the following 
properties: (1) X.X = X (idempotency); (2) X.0 = 0v, where 0v is the null vector (ab-
sorbing element); (3) i1 ≠ i2 implies X  I, i1. X I, i2  = 0v; (4) j1 ≠ j2 implies X  

I, i1. X 
I, i2

  = 
0v; (5) X I1, i1. X I2, i2  ≠ 0v ; (6) X I1, i1. X 

I2, i2
  ≠ 0v ;(7) X 

I1, i1. X 
I2, i2

  ≠ 0v. With such two 



types of vectors bases, we are able distinguish the sources of uncertainty during com-
binations of values and then make rigorous computations. 

4 Background: uncertainty on discrete quantities 

We define a purely possibilistic D1D as a value “a” which may have a finite num-
ber n1 of possible values: (a1,…, an1) of ��  with their respective associated possibili-
ties α1 = Π(a1), …, αn1 = Π(an1) of �0,1�� . 

The canonical form of a purely possibilistic D1D “a” is the following expression: 
� ∑ "#/%# . &',#�

#()  , with ai are the possible values of a, αi are the possibilities, associ-
ated to each value ai (one of which at least is equal to 1) and X I, i  (I fixed) correspond 
to the partition of the universe Ω corresponding to values of quantity a. 

We define a purely probabilistic D1D as a value b which may have a finite number 
n2 of probable values: (b1, b2,…, bn2) of ��* with their respective associated prob-
abilities β1 = P(b1), …, βn2 = P(bn2) of �0,1��*. The n2 values (b1, b2,…, bn2) com-
pletely define the probability distribution b/βi on ℝ, associated to the probabilistic 
variable b. βi is equal to zero except on values b1, b2,…, bn2. 

The canonical form of a purely probabilistic D1D “b” is the following expression: 
+ � ∑ +#/,# . &-,#�

#() , with bj are the probable values of b, βj are the probabilities, asso-
ciated to each value bj (the sum of βj is equal to 1) and X J, j  (J fixed) correspond to 
the partition of the universe Ω corresponding to values of quantity b. 

4.1 Internal composition law (+) 

The following expression:	").	"/ � ∑ "),#/%),# . &),#� 
#() . ∑ "/,0/%/,0 . &/,0�*

0()  is 

evaluated with a composed sum of (a1,i + a2,j) / (α1,i min α2,j) . X1,i. X2,j , i.e. ").	"/ �
∑ ∑�*

0() 	"),# . "/,0/	%),#min %/,0. &),#� 
#() . &/,0. 
The following expression: +) . +/ � ∑ +),#/,),# . &),# .� 

#() ∑ +/,0/,/,0 . &/,0�*
0()  is 

likewise evaluated with a composed product of (b1,i * b2,j) / (β1,i . β2,j) . X1,i. X2,j, 
+) . +/ � ∑ ∑�*

0() 	+),# . +/,0/	,),# ∗� 
#() ,/,0. &),# . &/,0 

As a special case, if both operands are expressed in the same basis (i.e. they are 
dependent, or in other words linked), then the formula is simplified. We check that it 
can take into account rigorously dependencies to not artificially explode the number 
of possible values. 

4.2 Internal composition law (*) 

Similarly to +, the product internal composition law is evaluated with composed 
products of (a1,i * a2,j) / (α1,i min α2,j) . X1,i. X2,j (possibility) and  	+),# . +/,0/	,),# ∗
,_	2, 4 (probability). Finally, we showed that D1D (R ) has a vector space structure 
onR . 



5 Continuous quantities 

5.1 Combinations of continuous possibilistic quantities (trapezoids)  

In this case, we restrict ourselves to possibilistic coefficients and to trapezoids. So 
this is purely continuous possibilistic D1D. We then get the following canonical ex-
pression: " � ∑ "# . 5	6)# 	. "# , 6/# 	. "#/%# 	. &',#�

#() , where 5	6)# 	. "# , 6/#	. "# is a trape-
zoid centered on ai, with kernel ai ±λ1i. ai and support ai ±λ2i. ai  

The resulting computations are degraded trapezoids. Considering that the symme-
tric trapezoid centered on ai, with kernel ai ±λ1i. ai and support ai ±λ2i. ai , âi (i.e. ai . T 
(λ1i. ai, λ2i. ai)) is stable for the four main algebraic operations +, -, *, /. Here are the 
values for the resulting cores and supports four main algebraic operations: 

• Addition: a + b = ∑i [
αi

0 ]/ ai . T (λ1i. a i, λ2i. a i) + ∑ j [
ηj

0 ]/ bj . T (κ1j. bj, κ2j. bj). 

We then get the following expression: a + b = ∑i,j [
αi min ηj

0 ]/ (ai + bj) . T (λ1i. ai + 
κ1j. bj, λ2i. ai + κ2j. bj). 

• Subtraction: a - b = ∑i [
αi

0 ]/ ai . T (λ1i. a i, λ2i. a i) - ∑ j [
ηj

0 ]/ bj . T (κ1j. b j, κ2j. bj) . 

We then get the following expression: a - b = ∑i,j [
αi min ηj

0 ]/ (ai - bj) . T (λ1i. ai + 
κ1j.b j,  λ2i. ai + κ2j. bj). 

• Product:  a * b = ∑i [
αi

0 ]/ ai . T (λ1i. a i, λ2i. a i) * ∑ j [
ηj

0 ]/ bj . T (κ1j. b j, κ2j. bj). 

We then get the following expression: a * b = ∑i,j [
αi min ηj

0 ]/ (a i * b j) . T ( ai . bj 
* (λ1i + κ1j), ai . bj (λ2i + κ2j). 

• Division: a / b = ∑i [
αi

0 ]/ ai . T (λ1i. a i, λ2i. a i) / ∑ j [
ηj

0 ]/ bj . T (κ1j. b j, κ2j. bj). We 

then get the following expression: a / b = ∑i,j [
αi min ηj

0 ]/ (a i / b j) . T ( ai . bj * (λ1i 
+ κ1j), ai . bj (λ2i + κ2j). 

5.2 Combinations of continuous probabilistic quantities (gaussian 
distribution) 

In this case, we restrict ourselves to probabilistic coefficients and to Gaussian dis-
tributions. We then get the following expression: + � ∑ +# . �	6# 	. +#/,# 	. &-,#�

#() . The 
probability density on ℝ is then the weighted sum of n gaussian densities. In the in-
ternal composition law + (sum) case , to combine e.g. (a+b), with 
+ � ∑ +# . �	6# 	. +#/,# 	. &-,#�

#() , we have to make a convolution of two density func-
tions of the following formula: ∑i pi .N (σi (x)). We reduce such computations to 
gaussian densities �	7) ∗ 	�	7/ convolutions, that result to Gaussian densities of 

the form � 897)/ .	7//:. 

In the internal composition law * (product) case, a residue term appears when cal-
culating the product of two gaussian distributions. This term might be ignored consi-
dering that random variations are small compared to the main values. However, in 



other cases, this residue does not give a gaussian distribution but a Bessel function, 
which means that the law continuous probabilistic D1D are not stable by the law *. 

6 Conclusion 

The provided approach provides a formalism for both representing and manipulat-
ing rigorously quantities which may have possible or probable values with their inter-
dependencies. Then, we define an algebraic structure to operate chained computations 
on such quantities with properties similar toR .  

We have extended our formalism on continuous quantities. In special cases such as 
trapezoids for possibilities and normal distributions for probabilities), some algebraic 
properties of D1D have been maintained. However, combinations of continuous quan-
tities, including probabilistic ones require additional assumptions that make the com-
putations not mathematically rigorous. 

The next steps are to compute mixed continuous quantities, by considering either 
the trapezoidal possibility distributions as intervals of cumulative distribution func-
tions (Destercke S., Dubois D., 2009) or probability-possibility transformations (Du-
bois et al, 2004).  
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