
1

CaLibRe: A better Consistency-Latency Tradeoff

for
Quorum based Replication systems

Sathiya Prabhu Kumar1,2

Sylvain Lefebvre1

Raja Chiky1

Eric Gressier-Soudan2

1LISITE Laboratory, ISEP Paris, Paris, France
2CEDRIC Laboratory, CNAM Paris, France

The final publication is available at Springer via
http://www.dx.doi.org/10.1007/978-3-319-22852-5_40

http://www.dx.doi.org/10.1007/978-3-319-22852-5_40

CaLibRe: A better Consistency-Latency
Tradeoff for Quorum based Replication systems

Sathiya Prabhu Kumar1,2, Sylvain Lefebvre1, Raja Chiky1, Eric
Gressier-Soudan2

1 LISITE Laboratory, ISEP Paris, France
2 CEDRIC Laboratory, CNAM Paris, France

Abstract. In Multi-writer, Multi-reader systems, data consistency is
ensured by the number of replica nodes contacted during read and write
operations. Contacting a sufficient number of nodes in order to ensure
data consistency comes with a communication cost and a risk to data
availability. In this paper, we describe an enhancement of a consistency
protocol called LibRe, which ensures consistency by contacting a mini-
mum number of replica nodes. Porting the idea of achieving consistent
reads with the help of a registry information from the original protocol,
the enhancement integrate and distribute the registry inside the storage
system in order to achieve better performance.
We propose an initial implementation of the model inside the Cassan-
dra distributed data store and the performance of LibRe incarnation is
benchmarked against Cassandra’s native consistency options ONE, ALL
and QUORUM. The test results prove that using LibRe protocol, an ap-
plication would experience a similar number of stale reads compared to
strong consistency options offered by Cassandra, while achieving lower
latency and similar availability.

1 Introduction

In distributed data storage systems, data is replicated to improve the perfor-
mance and availability of the system. However, ensuring data consistency with
higher availability and minimum request latency is notoriously challenging [1,9].
In order to efficiently handle these challenges, the Dynamo system [7] designed
by Amazon uses a quorum-based voting technique that facilitates configurable
tradeoffs between Consistency, Latency and Availability. This technique inspired
subsequent distributed data storage systems such as Cassandra [14], Volde-
mort [22] and Riak [11]. The quorum-based voting technique ensures consis-
tency based on the math behind the intersection property of the quorum systems
[18,23]. This intersection property can be expressed by the formula R+W > N .
This formula symbolizes that the system can ensure consistency if the sum of the
nodes acknowledging the Read (R) and the nodes acknowledging the Write (W)
is greater than the total number of replicas (N). Since more nodes have to be
contacted, ensuring consistency comes with a communication cost and a threat
to the system availability. Hence, in order to provide fast response time, these

Title Suppressed Due to Excessive Length 3

storage systems rely on eventual consistency and do not satisfy the intersection
property by default. Therefore the user can configure the number of quorum
members to contact during read and write time in order to ensure consistency
on demand.

If the intersection property cannot be satisfied, the system will reject the
operation. The three popular ways of satisfying the intersection property to
ensure strong consistency are as follows: write to all and read from one node,
write to one and read from all nodes, write and read to / from a majority of
nodes.

Most of these storage systems are optimized for write intensive workloads,
which requires the system to acknowledge writes as fast as possible and reconcile
conflicts at read time. For these systems to guarantee the reads with minimum
latency, the default eventual consistency option (non-overlapping quorum) is
desirable. But, if a data item is written with the minimum write quorum (one
node), the only mode to preserve consistency for this data during read time is
reading from all the replicas. However, if one of the nodes is temporarily down or
can not be contacted, the read will fail. The same risk applies when the system
writes to all nodes and reads from one node. When reading and writing from /
to a majority of nodes, failure of one or few replica nodes is tolerable. In that
case, availability guarantees will still be affected if the system is not able to
communicate to a majority of replica nodes. Besides, the latency for both reads
and writes will be affected as well.

Performance of these modern storage systems rely on caching most of the
recent data in order to handle the read requests faster. When a request is for-
warded to all or majority of replicas to retrieve a data item, the possibility that
all replicas have the right data in their cache would be improbable. Hence, the
slowest replica node responding to the request will increase the request latency
and the advantage of cache memory is lost.

The existing “strong” consistency options offered by these storage systems
are strong enough to ensure data consistency when no partition occurs, but add
some extra communication cost and a risk to data availability. To our knowledge,
there is no softer option that can ensure consistency guarantees with availability
and latency guarantees similar to the default level of eventual consistency.

In this paper, we discuss improvements on a consistency protocol called Li-
bRe [12], which acts as an in-between consistency strategy between the default
eventual consistency and the strong consistency options derived from the inter-
section property.

The original LibRe protocol used a registry, which records the list of replica
nodes containing the most recent version of the data items. Hence, referring to
the registry during read time helps to forward the read requests to a replica node
holding the most recent version of the needed data item.

Instead of relying on a synchronization service such as Zookeeper [10], as
initially proposed in [12], the enhanced protocol distributes the registry over each
node in the cluster and manages the data items entries in the registry only until
all the replicas converge to a consistent state. These mechanisms are detailed

4 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

in section 2.4, along with the protocol description. Since the improvements are
inclined towards higher availability and minimum request latency, its consistency
guarantee is slightly relaxed compared to the original LibRe design [12]. For the
sake of simplicity, in the following sections, the enhanced LibRe protocol that the
paper intended to describe is termed as LibRe and its initial version proposed
in [12] is termed as original LibRe or simply original protocol.

The following section provides a description of the LibRe protocol. The im-
plementation inside the Cassandra distributed data storage system [14] and its
performance evaluations are discussed in section 3. We describe some of the re-
lated works at section 4 before presenting our conclusions and future works in
the last section.

2 LibRe

The LibRe acronym stands for “Library for Replication”. The protocol collects
information about writes until they are fully propagated to all the replica nodes.
If an update is not propagated to all the replica nodes, then an entry for this data
item is added to an in-memory data structure called the LibRe Registry, along
with a version-id and the list of replica nodes holding this latest version. The
version-id is a monotonically increasing value representing the recent version of
the data item, for instance it can be the timestamp of the operation or a version
vector. Consulting the registry at read time helps to avoid forwarding the read
requests to a replica node where the recent update is not effected.

2.1 Targeted System

Key-Value data stores that store an opaque value for a given Key seen enough
popularity in the modern distributed storage systems. Some of these systems
ensure strong consistency, whereas most of the systems such as Dynamo [7],
Riak [11] and Voldemort [22] rely on tunable consistency. In order to tune the
consistency level of the system on a per-query or per-table basis, these storage
systems follow a quorum-based voting technique such as described in section 1.
These systems mostly use a Distributed Hash Table (DHT) [24] for identifying
the replica nodes of a data item. LibRe protocol targets the Key-Value data
stores that offer tunable consistency based on quorum based voting technique
using DHT. In building LibRe we assume that the underlying system provides
failure detection and tolerance mechanisms, which are building blocks for the
reliability of our Registry. Currently, we do not consider the use of LibRe for
inter-cluster replication.

2.2 LibRe Registry

The core of the LibRe protocol is its Registry. The registry is an in-memory
key-value data structure that takes the data identifier as the Key and the list of
replica nodes id (IP addresses) holding the most recent version-id of the data

Title Suppressed Due to Excessive Length 5

item as the Value. During write operation, each replica node tries to add its id in
the list. If the number of ids in the list reaches the total number of replica nodes
for the data item, then confirming the convergence of all replicas, the entry for
the data item in the registry can be safely removed.

Fig. 1: LibRe Architecture Diagram

The registry is distributed over all the nodes in the cluster, but at any point
in time only one copy of the entry for a data item exists. An entry for a data item
di will be stored on only one of the available replica nodes that is responsible
for storing the data item di.

Figure 1 shows the position of LibRe in the system architecture and the
components of the LibRe protocol. Let Ri be a replica set for a data item di,
such that Ri = {r1, r2, ..rn}, where rx is a node identifier, and n is the number
of nodes in the replica set. So, one of the available replica nodes in Ri (say the
first one: r1) will hold the registry and the other two supporting components
of LibRe: the Availability-Manager and the Advertisement-Manager, as shown
in figure 1. The node that holds the registry and the supporting components
is called the Registry Node for the particular data item. For any data item di,
the id of the first replica node obtained via consistent hashing function is the
registry node id. In other words, the replica node that has the lowest token id
is considered as the registry node. The registry is distributed over each node in
the cluster, so each node plays the role of replica node as well as registry node.

2.3 LibRe Messages

The LibRe protocol is based on two types of messages, namely: the Advertise-
ment Message (figure 2a) and Availability Message (figure 2b), corresponding
respectively to the Advertisement-Manager and Availability-Manager of the Li-
bRe components shown in figure 1. The figure 2 and the corresponding algo-
rithms 1 and 2 discussed at the section 2.4 show the improvements of the LibRe
protocol over the original algorithm discussed in the paper [12].

Advertisement Message: From figure 1, a client can connect to any node in the
system. Some storage systems call this node the Coordinator node [14]. In the

6 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

(a) LibRe Write/Update Operation (b) LibRe Read Operation

Fig. 2: LibRe Sequence Diagram

usual system behavior, a write request will be forwarded to all the replica nodes
that are available. If the coordinator node receives back the required number of
acknowledgements (or votes) from the replica nodes for the write, the coordinator
issues a success response to the client. If the sufficient number of vote is not
received within a timeout period, the coordinator issues a failure response to the
client. LibRe protocol follows this default system behavior, but in addition, after
a successful write operation, the replica node sends an advertisement message to
the registry node asynchronously. The replica node sends advertisement message
only for the data item that are configured to use LibRe. The advertisement
message consists of the data key, version-id and originating node id.

Availability Message: When the coordinator node receives a read request that
is configured to use LibRe protocol, the coordinator sends an availability mes-
sage to the Registry Node of this particular data item. The availability message
contains the original read message received from the client and the data key of
the needed data item. When the registry node receives an availability message,
it finds a replica node from the registry and forwards the original read message
to that replica node. The replica node sends the read response directly to the
coordinator node and the coordinator forwards it to the client. If an entry for a
data key is not found in the registry, then the read message will be forwarded
to one of the available replica nodes.

2.4 LibRe Protocol

Algorithm 1 describes the role of LibRe’s Advertisement Manager during update
operation. The update for a data item can be issued when its replicas are in
converged state or in diverged state.

When a replica node sends an advertisement message regarding an update,
the Availability Manager of the LibRe node takes on the following actions. First
the protocol checks whether the data-key already exists in the Registry : line
3. If the data-key exists in the registry (replicas are in diverged state), line 3:
the version-id logged in the registry for the respective data-key is compared to

Title Suppressed Due to Excessive Length 7

Algorithm 1 Update Operation

rk = {ni, nj , ...}: set of replica nodes holding recent version of data item k.
ek =< vk, rk >: record where v is a version-id and r is a replica set.
R : k → ek: Map of data item keys k to corresponding entry record.
N : Number of replicas

1: function advertisementManager(k, v, n)
2: entry ← R.k
3: if entry 6= ø and entry.v = v then
4: entry.r ← entry.r ∪ {n}
5: if |entry.r| = N then
6: R← R \ {k}
7: end if
8: else if entry = ø or v > entry.v then
9: entry.v ← v

10: entry.r ← {n}
11: end if
12: R.k ← entry
13: end function

the one sent with the update message. If the version-id logged in the registry
matches with the version-id of the operation (replica convergence), then line 4:
the node id (IP-address) will be appended to the existing replica list. Line 5-6:
If the number of replicas in the list is the same as the total number of replicas
for data item k, then replicas are in converged state, and the entry is deleted.
If the entry does not exist in the registry or the version-id of the operation is
greater than the existing version-id in the registry (line 8): the entry is created
or reinitialized with the operation’s version-id and the sender node id (lines 9
and 10). Finally the entry is recorded in the registry (line 12). This setup helps
to achieve Last Writer Wins policy [17,19].

Read Operation Algorithm 2 describes the LibRe policy during the read op-
eration. According to the algorithm, since the Registry keeps information about
the replica nodes holding the recent version of data item k, the nodes infor-
mation will be retrieved from the registry (line 2). Line 3: If an entry for the
data-key exists in the registry, line 4: one of the replica nodes from the entry
will be chosen as the target node. The method first() (line 4 and 6) returns the
closest replica node sorted via proximity. Line 5: if the Registry does not contain
an entry for the needed data-key, then, line 6: one of the replica nodes that are
responsible for storing the data item will be retrieved locally via DHT lookup.
Finally, the read message will be forwarded to the chosen target node: line 8.

2.5 LibRe Reliability

As mentioned in section 2.1, the reliability and fault tolerance of the LibRe pro-
tocol relies on the guarantees of the targeted system. The systems that use DHT
for quorum based voting actively take care of the ring membership and failure
detection [7]. The underlying DHT helps to find the first available replica node.
In the event of node joining and/or leaving the cluster, the Consistent Hashing
technique supports minimal redistribution of the nodes keys. In such case, there

8 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

Algorithm 2 Read Operation

rk = {ni, nj , ...}: set of replica nodes holding recent version of data item k.
ek =< vk, rk >: record where v is a version-id and r is a replica set.
R : k → ek: Map of data item keys k to corresponding entry record.
Dk =< ni, nj , ... >: replica nodes for data item k that are obtained via default method.

1: function getTargetNode(k,Mread)
2: replicaNodes← R.k.r
3: if replicaNodes 6= ø then
4: n← replicaNodes.first()
5: else
6: n← Dk.first()
7: end if
8: forward(Mread, n)
9: end function

will be a change in the first available replica node (registry node) for a few data
items and the registry information for these data-keys would not be available.
In that case, the registry information will be rebuilt on the new registry node
by sending successive advertisement messages to this node. This may lead to
small and time limited inconsistencies in the system. Therefore, LibRe sacrifices
Consistency in favor of Availability: cf. algorithm 2. If a registry node that has
been unavailable joins back the cluster, the stale registry information has to be
flushed during a handshaking phase. Besides, periodic local garbage collection is
needed to keep the registry information clean between replica nodes.

2.6 LibRe Cost

The tradeoff provided by the LibRe protocol comes at the expense of some
additionnal cost on message transfers and memory consumption.

Extra Message Transfers: In LibRe, a lookup in the registry is required dur-
ing a read operation on contacting the availability manager of the registry node
to read from a right replica node. However, this operation represent constant
cost, as the number of messages sent for achieving the consistent read does not
depend on the number of replicas involved, as mentioned in section 2.3. Besides,
the latency spent during this lookup can be gained back via managing the cache
memory efficiently. During write operations, notifying the advertisement man-
ager about an update is asynchronous and does not affect the write latency.
Although these messages are an additional effort when compared to the default
eventual consistency option, it is better than the strong consistency options that
communicate to a majority or all replica nodes during reads and/or writes.

Registry in-memory data structure: LibRe manages the registry informa-
tion in-memory. This information is distributed among all the nodes in the cluster
and is maintained only for the data items whose recent update is not effected
on all replica nodes. Moreover, eventual consistency guarantees of the targeted
system and the periodic local garbage collection of the LibRe protocol helps to
reduce the amount of information to be kept in-memory.

Title Suppressed Due to Excessive Length 9

3 CaLibRe: Cassandra with LibRe

Cassandra [14] is one of the most popular open-source NoSql systems that sat-
isfies the system model specified in section 2.1. Hence, we decided to implement
the LibRe protocol inside the Cassandra workflow and evaluate its performance
against Cassandra’s native consistency options: ONE, QUORUM and ALL. Al-
though Cassandra is a column family store, we used it as a Key-Value store
during test setup: refer section 3.1. LibRe protocol was implemented inside Cas-
sandra release version 2.0.0. In the native workflow, while querying a data, the
endpoints (replica nodes) addresses are retrieved locally via matching the token
number of the data item over the nodes token numbers. The IP-address of the
first alive endpoint (without sorting the endpoints by proximity), will be cho-
sen as the registry node for the replica sets it is responsible. A separate thread
pool for the LibRe messaging service is designed for handling the LibRe mes-
sages effectively. On system initialisation, all LibRe registries are empty until a
write request is executed, which will trigger the protocol and start filling up the
registries. CaLibRe can be configured to work either by passing a list of data
items in a configuration file, or by specifying directly the name of the table(s) to
monitor. Currently, the version-id used in CaLibRe is the hash of the modifying
value. However, it will be replaced by a timestamp in the future.

3.1 CaLibRe performance evaluation using YCSB

Test Setup The experiment was conducted on a cluster of 19 Cassandra and
CaLibRe instances that includes 4 medium, 4 small and 11 micro instances of
Amazon EC23 cloud service and 1 large instance for the YCSB test suite [6]. All
instances were running Ubuntu Server 14.04 LTS - 64 bit. The workload pattern
used for the test suite was the “Update-Heavy” workload (workload-a), with a
record count of 100000, operation count of 100000, thread count of 10 and the
Replication-Factor as 3. YCSB by default stores 10 columns per RowKey. We
used RowKey as the data key, for which, an entry will be managed in the LibRe
Registry. Using RowKey as the data key could leads to a situation like, if one or
few columns of a RowKey is updated on a replica node rn, the registry would
assume rn contains the recent version for all the columns of the RowKey. In
order to avoid this situation, we update all the 10 columns during each update.
The test case evaluate the performance and consistency of the 19 Cassandra
instances with different consistency options (ONE, QUORUM and ALL) against
19 CaLibRe instances with a consistency option ONE. Performance is evaluated
by measuring read and write latencies and consistency is evaluated for each
level by counting the number of stale reads. In order to simulate a significative
number of stale reads, a partial update propagation mechanism was injected into
the Cassandra and CaLibRe cluster to account for the system performance under
this scenario [13]. Hence, during update operations, instead of propagating the
update to all 3 replica, the update will be propagated to only 2 of the replicas.

3 http://aws.amazon.com

http://aws.amazon.com

10 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

(a) Read Latency (b) Write Latency

(c) Stale Reads

Fig. 3: CaLibRe Performance Evaluation

Test Evaluation Figures 3a, 3b and 3c respectively show the evaluation of
Read Latency, Write Latency and the number of Stale Reads of Cassandra with
different consistency options against CaLibRe: Cassandra with LibRe protocol.
In figure 3a, the entity ONE represents the read and write operations with con-
sistency option ONE. The read and write operations with consistency option
QUORUM is indicated by the entity QUORUM. The entity ONE-ALL repre-
sents the operations with write consistency option ONE and read consistency
option ALL. The entity CALIBRE represents our implementation of the LibRe
protocol developed inside Cassandra. Due to the injection of the partial update
propagation, ROWA (Read One, Write All) principle could not be tested, as
writes would always fail.

The read latency graph in figure 3a, shows that the 95th Percentile Latency
of CALIBRE is similar to the other consistency options of Cassandra. The 99th
Percentile Latency of CALIBRE and cassandra with consistency level ONE re-
mains same and better than the other options ONE-ALL and QUORUM. The
minimum and average latencies of CALIBRE are slightly higher when compared
to Cassandra with consistency level ONE but better than the consistency op-

Title Suppressed Due to Excessive Length 11

tions QUORUM and ONE-ALL. This is due to the fact that LibRe protocol
imposes an additionnal call to the registry for all requests.

The write latency graph in figure 3b shows that the 95th percentile write
latency of CALIBRE is the same as the 95th percentile latency of QUORUM,
and that CALIBRE is faster in other metrics: 99th Percentile, Minimum and
Average latencies of QUORUM. However, while comparing to the entities ONE
and ONE-ALL, some of the write latency metrics of CALIBRE are slightly higher
(but are not significant). This is due to the fact that both in ONE and ONE-ALL,
writes need only one acknowledgement from a replica node. In CALIBRE also
writes need only one acknowledgement but there is an extra messaging service
in the background.

Graph 3c shows the number of stale reads for each level of consistency. Cas-
sandra with consistency level ONE shows the highest number of stale reads.
There were a few stale reads in the other consistency options, but these num-
bers are negligible when compared to the total number of requests. From these
results, it is possible to conclude that CaLibRe offers a level of consistency similar
to one provided by the QUORUM and ONE-ALL levels with better latency.

4 Related Works

Quorum systems are well studied in the literature. There are multiple works
aiming at improving the performance and reliability of quorum systems [16,15,2].
However, in all these works, a sufficient amount of nodes has to be contacted
in order to satisfy the intersection property. Apart from the works on quorum
systems, there are also a few works in the literature whose approaches are similar
to some of the approaches followed in the LibRe protocol. One of the most famous
work that has similar approach of the LibRe protocol is the ’NameNode’ of the
Hadoop Distributed File System (HDFS) [20].

The HDFS NameNode manages metadata of files in the file system and helps
to locate needed data in the cluster. But, on the contrary to the LibRe reg-
istry, which maintains metadata about small data items, the HDFS NameNode
manages metadata of large file blocks. In addition to this, the NameNode is a
centralized registry that stores information about the whole cluster, which can
make the whole system unavailable in case of failure of the NameNode. In our
approach, the LibRe registry only stores the location of partially propagated
writes, and in case of failure of a registry node, availability of the system is not
affected.

BigTable [4], which is a data store designed by Google, uses a two level lookup
before contacting the actual data node for accomplishing reads and writes. In
BigTable, the UserTable that needs to be contacted for accomplishing reads and
writes is found by looking at a ROOT tablet followed by a METADATA tablet.
This enables to have a scalable and fast lookup. The earlier version of HBase [8],
which is an open source implementation of BigTable, used a similar two-level
lookup for finding data in the system. In the later version, the two-level lookup
is reduced to a single lookup in the METADATA table. However, BigTable and

12 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

HBase ensure strong consistency, so there is no context of stale replicas in these
data stores. In LibRe, we use a single lookup to identify a fresh replica node only
for reading some data items that are configured to use LibRe protocol.

In [21], Tlili et al. designed a reconciliation protocol for collaborative text
editing over a peer to peer network using a Distributed Hash Table (DHT).
According to the protocol, for each document, a master peer is assigned via
the lookup service of the DHT. The master peer holds the last modification
timestamp of the documents in order to identify missing updates of a replica
peer in order to avoid update conflicts. This master-peer assignment is similar
to the Registry Node assignment in the LibRe protocol. However, in LibRe, the
registry node holds the version-id of the recent update and the replica nodes
holding it in order to avoid reading from a stale replica.

The Global sequence protocol designed by Burckhardt et al. in [3] uses two
states for an update: known sequence and a pending updates sequence. When an
update is issued by a client, the update is kept in the pending updates list, and
broadcasts its origin and a sequence number to all the replicas. Once an echo
is received confirming all the needed copies received the update, the particular
update from the pending updates list is removed. Similarly, in LibRe, when an
update is applied on a replica copy, the version-id of the update along with the
replica id is kept in a Registry. Once a confirmation is received from all the
replica nodes, the entry for the corresponding data item will be removed from
the registry. However, GSP focusses on ordering the write operations, whereas
LibRe focusses on reading the value of the recent write.

The PNUTS Database [5] from Yahoo uses a per-record mastership over
per-table or per-tablet mastership and forwards all updates of the record to
this master in order to provide timeline consistency during read operations. In
contrast, LibRe allows any replica to process an update and chooses a registry
node per data item in order to identify the most recent version of the data item.

5 Conclusion and Future Works

The work described in this document aims at enhancing the tradeoffs between
Consistency, Latency and Availability of an eventually consistent Key-Value
store. Our protocol: LibRe prevents the system from forwarding read requests
to the replica nodes that contain stale replica for the needed data item. In order
to identify replica nodes that contain stale replicas, LibRe uses a monotonically
increasing version-id for each data item. The initial implementation of LibRe
protocol was developed inside Cassandra NoSql data store. This so-called ’CaL-
ibRe’ implementation offers LibRe protocol as an additional consistency option
for Cassandra storage system.

The performance of the CaLibRe implementation was benchmarked against
the native consistency options of Cassandra using YCSB on a 19 nodes CaLi-
bRe and Cassandra cluster. The performance results prove that CaLibRe pro-
vides lower request latency compared to the strong consistency levels offered
by Cassandra, combined to a similar number of stale reads. Hence we can safely

Title Suppressed Due to Excessive Length 13

conclude that using the LibRe protocol gives a new tradeoff between consistency,
latency and availability. However, the performance results were not tested under
nodes joining or leaving the clusters. During such events, LibRe protocol would
experience temporary inconsistency, which has to be studied in the future works.

Additional works are required to optimize the performance of the CaLibRe
implementation. Another perspective to this work is to study the influence of
the nature of the version-id (timestamp, version vector, vector clocks, ...). Also,
evaluating the LibRe performance under a real world use case is considered.

References

1. Abadi, D.J.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer 45(2), 37–42 (2012)

2. Agrawal, D., El Abbadi, A.: The generalized tree quorum protocol: An efficient
approach for managing replicated data. ACM Trans. Database Syst. 17(4), 689–
717, http://doi.acm.org/10.1145/146931.146935

3. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence protocol:
A robust abstraction for replicated shared state. Tech. rep., Microsoft Research
(2015), http://research.microsoft.com/apps/pubs/default.aspx?id=240462

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4 (2008)

5. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data
serving platform. Proc. VLDB Endow. 1(2), 1277–1288 (Aug 2008), http://dx.
doi.org/10.14778/1454159.1454167

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154. SoCC ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1807128.1807152

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (Oct 2007),
http://doi.acm.org/10.1145/1323293.1294281

8. George, L.: HBase: The Definitive Guide. O’Reilly Media, 1 edn. (2011)

9. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (Jun 2002),
http://doi.acm.org/10.1145/564585.564601

10. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordina-
tion for internet-scale systems. In: Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference. pp. 11–11. USENIXATC’10, USENIX
Association, Berkeley, CA, USA (2010), http://dl.acm.org/citation.cfm?id=

1855840.1855851

11. Klophaus, R.: Riak core: building distributed applications without shared state.
In: ACM SIGPLAN Commercial Users of Functional Programming. pp. 14:1–14:1.
CUFP ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/

1900160.1900176

http://doi.acm.org/10.1145/146931.146935
http://research.microsoft.com/apps/pubs/default.aspx?id=240462
http://dx.doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.14778/1454159.1454167
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/564585.564601
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://doi.acm.org/10.1145/1900160.1900176
http://doi.acm.org/10.1145/1900160.1900176

14 Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, Eric Gressier-Soudan

12. Kumar, S.P., Chiky, R., Lefebvre, S., Soudan, E.G.: Libre: A consistency protocol
for modern storage systems. In: Proceedings of the 6th ACM India Computing
Convention. pp. 8:1–8:9. Compute ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2522548.2522605

13. Kumar, S., Lefebvre, S., Chiky, R., Soudan, E.: Evaluating consistency on the fly
using ycsb. In: IWCIM, 2014. pp. 1–6 (Nov 2014)

14. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (Apr 2010), http://doi.acm.org/10.1145/
1773912.1773922

15. Malkhi, D., Reiter, M.: Byzantine quorum systems. pp. 569–578. STOC ’97, ACM
(1997), http://doi.acm.org/10.1145/258533.258650

16. Malkhi, D., Reiter, M., Wright, R.: Probabilistic quorum systems. pp. 267–273.
PODC ’97, ACM (1997), http://doi.acm.org/10.1145/259380.259458

17. Marc Shapiro, Nuno Preguica, C.B., Zawirski, M.: A comprehensive study of con-
vergent and commutative replicated data types. RR-7506, INRIA (2011)

18. Naor, M., Wool, A.: The load, capacity, and availability of quorum systems.
SIAM J. Comput. 27(2), 423–447 (Apr 1998), http://dx.doi.org/10.1137/

S0097539795281232

19. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(Mar 2005), http://doi.acm.org/10.1145/1057977.1057980

20. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. pp. 1–10 (May 2010)

21. Tlili, M., Akbarinia, R., Pacitti, E., Valduriez, P.: Scalable p2p reconciliation in-
frastructure for collaborative text editing. In: Advances in Databases Knowledge
and Data Applications (DBKDA), 2010 Second International Conference on. pp.
155–164 (April 2010)

22. Voldemort, P.: Physical architecture options. http://www.project-voldemort.

com/voldemort/design.html (April 2015)
23. Vukolic, M.: Remarks: The origin of quorum systems. Bulletin of the EATCS 102,

109–110 (2010), http://dblp.uni-trier.de/db/journals/eatcs/eatcs102.html
24. Zhang, H., Wen, Y., Xie, H., Yu, N.: Distributed Hash Table - Theory, Platforms

and Applications. Springer Briefs in Computer Science, Springer (2013), http:

//dx.doi.org/10.1007/978-1-4614-9008-1

http://doi.acm.org/10.1145/2522548.2522605
http://doi.acm.org/10.1145/2522548.2522605
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/258533.258650
http://doi.acm.org/10.1145/259380.259458
http://dx.doi.org/10.1137/S0097539795281232
http://dx.doi.org/10.1137/S0097539795281232
http://doi.acm.org/10.1145/1057977.1057980
http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
http://dblp.uni-trier.de/db/journals/eatcs/eatcs102.html
http://dx.doi.org/10.1007/978-1-4614-9008-1
http://dx.doi.org/10.1007/978-1-4614-9008-1

	CaLibRe: A better Consistency-Latency Tradeoff for Quorum based Replication systems

