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Abstract

Given a positive integer n we find a graph G = (V,E) on |V | = n vertices
with a minimum number of edges such that for any pair of non adjacent
vertices x, y the graph G − x − y contains a (almost) perfect matching M .
Intuitively the non edge xy and M form a (almost) perfect matching of G.
Similarly we determine a graph G = (V,E) with a minimum number of edges
such that for any matching M̄ of the complement Ḡ of G with size bn2 c − 1,
G− V (M̄) contains an edge e. Here M̄ and the edge e of G form a (almost)
perfect matching of Ḡ.

We characterize these minimal graphs for all values of n.

Keywords: maximum matching, matching extension, expandable graph,
completable graph.

1 Introduction

We shall consider here a kind of reliability problem which occurs rather naturally in
a context where some elements of a complex system may break down either due to
attacks or simply to technical failures.We want to protect a subset of elements (as
small as possible) in order to keep the system working in spite of possible failures
occurring in the rest of the system.

To give a formulation in terms of graphs, we introduce definitions and notations.
Given a simple finite graph G = (V,E) with n vertices v1, v2, . . . , vn and m edges,
we denote by Ḡ = (V, Ē) the complement of G. For any subset F ⊆ E, V (F ) is the
set of endpoints of the edges in F . For any subset X ⊆ V the subgraph induced by
X is denoted by G[X]. We write G −X = G[V \X] and G − v for G − {v}. The
union of two graphs G1, G2 on disjoint vertex sets without any edges between them
is written G1 +G2. NG(v) is the set of neighbors of a vertex v in G; δG(v) = |NG(v)|
is the degree of v in G; a p-vertex is a vertex of degree p in G; if δG(v) = n − 1
then v is universal. For any nonempty subset A ⊆ V we denote by NG(A) the set
of vertices v ∈ V \A having a neighbor in A, i.e. NG(A) =

⋃
v∈ANG(v) \A. Let A,
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B be disjoint sets of vertices. We denote by mG(A,B) the number of edges linking
A and B.

A subset M ⊆ E is a matching if no two edges in M are incident to a same vertex;
µ(G) is the maximum cardinality of a matching in G. G has a perfect matching if
µ(G) = n/2 and an almost perfect matching if µ(G) = (n− 1)/2.

For all definitions related to graphs, see [4].

We intend to determine for two given positive integers d, n a graph G = (V,E)
on n vertices with a minimum number of edges, such that to any matching M̄ of d
edges of Ḡ one can associate a matching of bn/2c − d edges in G − V (M̄). Hence
if the edges of M̄ would be edges in G, then M̄ ∪M would be a (almost) perfect
matching of G. Notice that a feasible set E of edges always exists: take for instance
for E the edges of a complete graph on n vertices from which we remove a matching
of size d.

In our paper we determine the minimum size of expandable graphs G (corre-
sponding to the case d = 1); these are graphs such that for any edge xy in Ē, the
subgraph G − x − y has a (almost-)perfect matching. Similarly we determine the
minimum size of completable graphs G (corresponding to the case d = bn/2c − 1);
these are graphs such that for any matching M̄ of Ḡ with |M̄ | = bn/2c − 1 there
exists an edge uv ∈ G− V (M̄).

In our reliability interpretation the edges of these minimal graphs G are the ones
which should be protected so that one could extend the matchings M̄ of size d to
(almost)-perfect matchings in spite of failures in Ḡ.

Various concepts of matching extension have been studied. Some consider these
extensions in special classes of graphs [1, 5, 11]. In [10, 11] several properties related
to perfect matchings are examined. It is the case of d-extendable graphs defined as
graphs in which every matching of size d can be extended to a perfect matching.
In particular for d = 1, one requires that for any edge xy, G − x − y has a perfect
matching [9]. A graph is bicritical if for any pair {x, y} of vertices, xy being an edge
or not, G− x− y has a perfect matching. Notice that the graphs considered there
have a perfect matching. Clearly a bicritical graph is 1-extendable and also expand-
able. A claw K1,3 is expandable but not 1-extendable and a cycle C6 is 1-extendable
but not expandable.

It is worth underlining that to our knowledge matching extensions by edges of G
or Ḡ have not been associated with the optimization of the size of the graphs. This
is the main motivation for this research.

In the next section we will characterize the expandable graphs of n vertices with
a minimum number of edges. The case where the expandable graphs are constrained
to be connected is treated in the third section. Then Section 4 will be devoted to
completable graphs on n vertices with a minimum number of edges. Finally we will
mention in the conclusion some variations and generalizations.
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2 Minimal expandable graphs

We want to find a graph G with a minimum number of edges such that for every pair
u, v of non adjacent vertices of G it is always possible to extend the non-edge uv to
a perfect (or almost perfect) matching using only edges of G that are not incident
to u or v, formally µ(G− u− v) = bn/2c − 1.

We say that G is expandable if for any non-edge uv 6∈ E there exists a matching
M of G− u− v with |M | = bn/2c − 1.

An expandable graph G = (V,E) on n vertices with a minimum number of edges
is a Minimum Expandable Graph. The size |E| of its edge set is denoted by Exp(n).
The set of minimal expandable graphs of order n is called MEG(n).

Since the problem is trivial for n ≤ 3 we shall assume n ≥ 4.

Proposition 2.1 For 4 ≤ n ≤ 7 we have:

• Exp(4) = 3 and MEG(4) = {K1,3, K̄1,3};

• Exp(5) = 3 and MEG(5) = {K3 + 2K1};

• Exp(6) = 6 and MEG(6) = {2K3};

• Exp(7) = 6 and MEG(7) = {2K3 +K1, C5 +K2}.

Proof: Let n = 4. One can verify that K1,3 and its complement K̄1,3 are ex-
pandable. Suppose that there exists G = (V,E) ∈ MEG(4) with |E| = 2 : then G
has two non adjacent 1-vertices v1, v2; so µ(G − v1 − v2) = 0 < 1. The only graph
with three edges non isomorphic to K1,3 or K̄1,3 is P4, and P4 is not expandable.

Let n = 5. One can verify that K3 + 2K1 is expandable. Suppose that there
exists G = (V,E) ∈MEG(5) with |E| = 2: then G has two non adjacent 1-vertices
v1, v2; so µ(G − v1 − v2) = 0 < 1. The only non isomorphic graphs with 3 edges
are K3+2K1, P4+K1, P3+K2, K1,3+K1. Among them only K3+2K1 is expandable.

Let n = 6. One can verify that 2K3 is expandable. Suppose that there exists
G = (V,E) ∈ MEG(6) with |E| ≤ 5: if G has a 1-vertex v1, its neighbor v2 must
be universal otherwise µ(G− v2 − vi) < 2, vi /∈ NG(v2). But G = K1,5 is clearly not
expandable. So G has a 0-vertex and then the five remaining vertices must induce
K5 which has more than six edges.

We prove that the only graph in MEG(6) is 2K3. Suppose that there exists
G ∈ MEG(6) and G 6= 2K3. It cannot have a 0-vertex. If G has a 1-vertex then
its neighbor must be universal and G consists of a spanning star and an additional
edge; such a G is not expandable. It follows that all vertices have degree two and
thus G ∈ {C6, 2K3} but C6 is not expandable, hence G = 2K3.

Let n = 7. One can verify that 2K3 +K1 and C5 +K2 are expandable. Suppose
that there exists G = (V,E) ∈ MEG(7) with |E| ≤ 5: If there exists a 0-vertex u
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then G− u must be expandable and from above |E| ≥ 6. So there are at least four
1-vertices and two of them v1, v2 are in two different connected components then
µ(G− w1 − w2) < 2 where w1, w2 are the neighbors of v1, v2.

We prove that MEG(7) = {2K3 + K1, C5 + K2}. Suppose that there exists
G = (V,E) ∈MEG(7), |E|= 6, and G 6= 2K3 +K1, C5 +K2. If G has one 0-vertex
u then G− u must be expandable: so G− u = 2K3 and G = 2K3 + K1. It follows
that the number k of 1-vertices in G is at least two.

Two 1-vertices cannot have a common neighbor otherwise G must be a spanning
star which is clearly not expandable. Moreover, the neighbors of 1-vertices must
induce a clique: if k > 2, since |E| = 6, then k = 3 and there is a 0-vertex: a
contradiction.

So G has exactly two 1-vertices and five 2-vertices. Hence G ∈ {C5 + K2, P3 +
C4, P4 + C3}: P4 + C3 and P3 + C4 are not expandable, and K2 + C5 has been
excluded. �

We now consider the case n ≥ 8 even.

Property 2.1 If G = (V,E) ∈MEG(n) with n ≥ 8 even and |E| ≤ 3
2
n− 1 then G

is 2-edge-connected.

Proof: First we assume that G is not connected. G cannot have an even
component C, otherwise µ(G−u−v) < n/2−1 where u ∈ C, v 6∈ C. G cannot have
three (odd) components otherwise by taking any pair of non adjacent vertices u, v
in two odd components we get µ(G − u − v) < n/2 − 1. So G consists of two odd
components. Any odd component C is a clique else for any pair of vertices u, v ∈ C
with uv 6∈ C we have µ(G− u− v) < n/2− 1. Let p be the size of one component.
We have |E| =

(
p
2

)
+
(

n−p
2

)
which is minimal for p = n/2. However, as n ≥ 8, we

have 2
(

n/2
2

)
≥ 3

2
n. So G is connected.

Suppose that there exists an edge uv such that G−uv consists of two components
C1, C2, u ∈ C1, v ∈ C2. Let ni = |V (Ci)|, i = 1, 2. W.l.o.g. n2 ≥ n1. If both n1, n2

are even then there exists a pair of vertices u,w with w ∈ C2, w 6= v, such that
µ(G− u− w) < n/2− 1 so both n1, n2 are odd.

The vertex u, resp. v, is universal in C1, resp. C2, else G is not expandable. We
have n2 ≥ 5 and in C2 there are four vertices v1, v2, v3, v4 6= v.

First, suppose that n1 ≥ 3, so in C1 there are two vertices u1, u2 6= u. Now in
G− u− v1, resp. G− v − u1 there are (n1 − 1)/2, resp. (n2 − 1)/2, edges making a
perfect matching M1 in C1 − u, resp. M2 in C2 − v. W.l.o.g. we can suppose that
v3v4 ∈ M2. If v1v3 6∈ E, resp. v1v4 6∈ E, in G − v1 − v3, resp. G − v1 − v4, to get
µ(G−v1−v3) = n/2−1, resp. µ(G−v1−v4) = n/2−1, u and v have to be matched
and the vertex v4, resp. v3, must be adjacent to a vertex z ∈ C2, z 6= v, v1, v3, resp.
z ∈ C2, z 6= v, v1, v4. Hence we have |E| ≥ (n−1)+(n1−1)/2+(n2−1)/2+2 = 3

2
n.

Second, suppose that n1 = 1. We have n2 ≥ 7 and C2 = {v, v1, v2, . . . , vn−2}.
In G − u − v1 there are (n2 − 3)/2 = (n − 4)/2 edges making a matching M2 in
C2 − v − v1: w.l.o.g. we can suppose that v3v4, v5v6 ∈M2.

We have mG({vi}, {v3, v4, v5, v6}) ≤ 2, i = 1, 2, else |E| ≥ (n− 1) + n−4
2

+ 3 = 3n
2

.
Let v1vj /∈ E and v2vk /∈ E for some j, k ∈ {3, 4, 5, 6}. Then mG({v2}, {vi, i =
3, ..., n− 2}) ≥ 1 else µ(G− v1− vj) <

n
2
− 1 and mG({v1}, {vi, i = 3, ..., n− 2}) ≥ 1
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else µ(G− v2− vk) < n
2
− 1. Now |E| ≥ (n− 1) + n−4

2
+ 2 = 3n

2
− 1 and so E cannot

contain anymore edges andmG({v1}, {v3, v4, v5, v6}) ≤ 1, mG({v2}, {v3, v4, v5, v6}) ≤
1. W.l.o.g., v1v3 /∈ E, v2v3 /∈ E, v2v6 /∈ E. Since v4v5 /∈ E, the vertex v3 must be
adjacent to a vertex z ∈ C2, z 6= v, v1, v2, v4, v5 else µ(G−v4−v5) <

n
2
−1, and then

|E| ≥ 3n
2

. �

A direct consequence of this property is that all degrees in G are at least 2.

Property 2.2 If G = (V,E) ∈ MEG(n), n even and |E| ≤ 3
2
n − 1 then any

2-vertex belongs to a triangle.

Proof: If NG(v) = {u,w} and uw 6∈ E then µ(G−u−w) < n/2−1; so uw ∈ E.
�

Property 2.3 If G = (V,E) ∈ MEG(n) with n ≥ 6 even and |E| ≤ 3
2
n − 1 then

for all 2-vertices u, v ∈ V, u 6= v, we have NG(u) 6= NG(v).

Proof: Suppose that NG(u) = NG(v) = {x, y}. Necessarily xy ∈ E. If zx 6∈ E
for some z ∈ V −{u, v, y} then µ(G− z− x) < n/2− 1. By symmetry both x, y are
universal and 2|E| = Σv∈V δ(v) ≥ 2(n− 1) + 2(n− 2) = 2(2n− 3) > 2(3

2
n− 1). �

For the proof of the next proposition, we need the following definitions.

We define the family of hammocks H(n): for any even integer n ≥ 4, the
hammock H(n) is the graph with n vertices and edge set E = {vivi+1, 1 ≤ i ≤
n− 1} ∪ {vnv1} ∪ {vivn+2−i, 1 < i ≤ n/2}. See Figure 1.

Figure 1: H(10) the hammock on 10 vertices.

We define the family of fish F(n): for any even integer n ≥ 6, the fish F(n) is
the graph with n vertices where {vi : 1 ≤ i ≤ n− 2} induces the hammock H(n− 2)
and {v1, vn−1, vn} induces K3. See Figure 2.

We define the family of candies C(n): for any even integer n ≥ 8, the candy C(n)
is the graph with n vertices where {vi : 1 ≤ i ≤ n − 2} induces the fish F(n − 2)
and {vn/2−1, vn−1, vn} induces K3. See Figure 3.

For more relations between these graphs see Problem 9 in [12].
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Figure 2: F(10) the fish on 10 vertices.

Figure 3: C(12) the candy on 12 vertices.

Definition 2.1 Let G = (V,E) be a graph with a triangle uvw such that u is a
2-vertex. Gu = (V u, Eu) is the graph obtained from G by contracting the triangle
uvw in a vertex zu with NGu(zu) = NG(v)∪NG(w)−{u, v, w}. Then, V u = (V −u−
v−w)∪{zu}, |V u| = n−2, Eu = E− (EG({u, v, w}, V −{u, v, w})∪{uv, vu, wv})∪
{zuvi : vi ∈ NG({u, v, w})} and |Eu| ≤ |E| − 3.

Proposition 2.2 For n ≥ 8, n even, Exp(n) = 3
2
n− 1.

Proof: Let n ≥ 8 be even. One can verify that C(n),H(n),F(n) have 3
2
n − 1

edges and are expandable.
Starting with n = 8 we give an inductive proof.

Let n = 8. We show that Exp(8) = 11. Suppose that |E| ≤ 10. First we suppose
that G contains two disjoint triangles T1 = {v1, v2, v3} and T2 = {v4, v5, v6}. If
δ(v7) ≥ 3 then G is not 2-edge-connected whether v7v8 ∈ E or v7v8 6∈ E. So
δ(v7) = δ(v8) = 2. If v7v8 6∈ E then G − v7 − v8 = 2K3 thus G is not expandable.
Then v7v8 ∈ E: w.l.o.g. v7v1 ∈ E so by Property 2.1 v8v1 ∈ E and then G cannot
be 2-edge-connected. Thus any pair of triangles intersects.

We have Σ8
i=1δ(vi) ≤ 20, and, w.l.o.g., we can suppose that δ(vi) = 2, 1 ≤ i ≤ 4.

First we suppose that v1v2, v3v4 ∈ E: from Property 2.2 v1v2 and v3v4 are contained
in two triangles which intersect. So v1, v2, v3, v4 have a common neighbor; but then
µ(G− v1 − v3) < n/2− 1.

Second we suppose that v1v2 ∈ E is the unique edge connecting two 2-vertices.
Let v5 be the common neighbor of v1, v2. Since v3, v4 belongs to two different trian-
gles and any pair of triangles intersect we have v3v5, v4v5 ∈ E. Since from Property
2.3 the second neighbors of v3, v4 are distinct we have w.l.o.g. v3v6, v4v7 ∈ E. Then
from Property 2.2 v5v6, v5v7 ∈ E. This implies that δ(v8) < 2: a contradiction.

6



Finally, v1, v2, v3, v4 induce a stable set. Since the four vertices belong to four
edge disjoint triangles, we have |E| ≥ 12: a contradiction.

We suppose now that the proposition is true for G ∈ MEG(n − 2), n ≥ 10:
Exp(n− 2) = 3

2
(n− 2)− 1.

Let G be expandable with |E| ≤ 3
2
n − 1, i.e.

∑
v∈V δG(v) ≤ 3n − 2. It follows

from Property 2.1 that there is at least one 2-vertex u, so there are v, w ∈ V such
that NG(u) = {v, w} and from Property 2.2 vw ∈ E.

Claim 2.1 If G = (V,E) is expandable with n ≥ 8, n even, and |E| ≤ 3
2
n− 1 then

Gu = (V u, Eu) is expandable and |Eu| ≤ 3
2
(n− 2)− 1.

Proof: Let x, y ∈ V u with xy /∈ Eu. There are two cases.
If x, y 6= zu then x, y ∈ V and xy /∈ E. Since G is expandable there is a matching

M in G − x − y with |M | = n
2
− 1; w.l.o.g., uv ∈ M , uw, vw /∈ M , and there is

t ∈ V − u − v s.t. wt ∈ M . So, zut ∈ Eu. Let Mu = (M − uv − wt) ∪ {zut}:
|Mu| = |M | − 1 = n

2
− 2 and Mu is a perfect matching in Gu − x− y.

If x = zu and then y ∈ V −u−v−w, we have vy /∈ E and wy /∈ E (else zuy ∈ Eu).
Since G is expandable, there is a matching M in G − v − y with |M | = n

2
− 1 and

uw ∈M . Let Mu = M−uw: |Mu| = |M |−1 = n
2
−2 and Mu is a perfect matching

in Gu − x− y.
Therefore, Gu is expandable.
Since |E| ≤ 3

2
n− 1 and |Eu| ≤ |E| − 3, we have |Eu| ≤ 3

2
n− 4 = 3

2
(n− 2)− 1.

�

Now let G = (V,E) ∈ MEG(n), n ≥ 10: then |E| ≤ 3
2
n − 1 and there is

u ∈ V with NG(u) = {v, w} and vw ∈ E. From Claim 2.1, Gu is expandable and
|Eu| ≤ 3

2
(n−2)−1. By hypothesis, Exp(n−2) = 3

2
(n−2)−1 so |Eu| = 3

2
(n−2)−1

and Gu ∈MEG(n− 2).
Finally, |E| ≥ |Eu| + 3⇒ |E| ≥ 3

2
n− 1. Since |E| ≤ 3

2
n− 1 we have Exp(n) =

|E| = 3
2
n− 1. �

Property 2.4 Let G = (V,E) ∈ MEG(n), n ≥ 10, n even. For a triangle uvw
such that u is a 2-vertex we have NG(v) ∩NG(w) = {u}.

Proof: This is a direct consequence of Proposition 2.2, else |E| > |Eu| + 3 ≥
3
2
n− 1. �

Proposition 2.3 For n ≥ 8, n even, MEG(n) = {C(n),H(n),F(n)}.

Proof: Starting with n = 8 we give an inductive proof.

Let G = (V,E) ∈ MEG(8). We have |E| = 11, i.e. Σ8
i=1δ(vi) = 22, since

δ(G) ≥ 2, w.l.o.g., we can suppose that δ(v1) = δ(v2) = 2.
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Claim 2.2 Let G = (V,E) ∈MEG(8). If there are two 2-vertices u, v with uv 6∈ E
then NG(u) ∩NG(v) = ∅.

Proof: Let u = v1, v = v2, we suppose that v1v2 6∈ E and NG(v1)∩NG(v2) 6= ∅.
It follows from Property 2.3 that |NG(v1) ∩ NG(v2)| = 1; w.l.o.g. let NG(v1) =
{v3, v4} and NG(v2) = {v3, v5}. From Property 2.2 v3v4, v3v5 ∈ E, moreover
v4v5 ∈ E else G is not expandable; hence G[{v1, . . . , v5}] has seven edges. From
Property 2.1 we have mG({v1, . . . , v5}, {v6, v7, v8}) ≥ 2, but Σ8

i=1δ(vi) = 22 implies
mG({v1, . . . , v5}, {v6, v7, v8}) = 2 and δ(vi) = 2, i = 6, 7, 8. Hence G[{v6, v7, v8}] has
exactly two edges, w.l.o.g. v6v8, v7v8, so v6v7 6∈ E, contradicting Property 2.2. �

Claim 2.3 Let G ∈ MEG(8). If there are two 2-vertices u, v with uv ∈ E then
NG(u) ∩NG(v) = {w}, δ(w) ≥ 4, and there is another 2-vertex x 6= u, v.

Proof: From Property 2.2 uvw is a triangle of G, and from Property 2.1
δ(w) ≥ 4. Since Σ8

i=1δ(vi) = 22 and δ(z) ≥ 2 for all vertices z there is x 6= u, v such
that δ(x) = 2. �

We have the following cases:

• no two 2-vertices are linked: v1v2 6∈ E, from Claim 2.2 we have NG(v1) ∩
NG(v2) = ∅. W.l.o.g. we have NG(v1) = {v3, v4}, NG(v2) = {v5, v6}, δ(vi) ≥
3, 3 ≤ i ≤ 6; from Property 2.2 v3v4, v5v6 ∈ E and by Claim 2.2 δ(v7), δ(v8) 6=
2. It follows that δ(vi) = 3, 3 ≤ i ≤ 8. If v3v7, v4v7 ∈ E then µ(G−v7−v2) < 3.
Thus, w.l.o.g. NG(v7) = {v3, v5, v8}. Then NG(v8) = {v4, v6, v7}, so G = H(8);

• two 2-vertices are linked: v1v2 ∈ E, from Claim 2.3 we have v1v3, v2v3 ∈
E, δ(v3) ≥ 4 and there is a 2-vertex v8. From Claim 2.2 v3 6∈ NG(v8) so,
w.l.o.g. NG(v8) = {v6, v7} and v6v7 ∈ E (Property 2.2). From Property 2.1
mG({v6, v7, v8}, V − {v6, v7, v8}) ≥ 2.

– one of v6, v7, say v6, is a 2-vertex: if δ(v4) = 2 then v4v3 ∈ E or v4v7 ∈ E
contradicting Claim 2.2. So δ(v4) ≥ 3, and by symmetry δ(v5) ≥ 3. Thus
δ(v4) = δ(v5) = 3 and G = C(8);

– both v6, v7 have degree at least three: as above δ(v4), δ(v5) 6= 2, so v3

is a 4-vertex and v4, . . . , v7 are 3-vertices. Clearly NG(v4) 6= {v3, v6, v7}
(otherwise there are three edges v3v5) so v4v5 ∈ E. Now NG(v4) =
{v5, v6, v7} is impossible, so w.l.o.g., NG(v4) = {v3, v5, v6} and NG(v5) =
{v3, v4, v7}, and G = F(8).

We suppose now that n ≥ 10 and MEG(n−2) = {C(n−2),H(n−2),F(n−2)}.

We show that MEG(n) = {C(n),H(n),F(n)}. Let G = (V,E) ∈MEG(n).
We have Σv∈V δ(v) = 3n−2, so at least two vertices have a degree 2. From Prop-

erty 2.1 three of them cannot be connected together, else they induce a component
C3.
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Let us consider the case where G contains two 2-vertices u, v such that uv ∈ E.
From Property 2.2 we have NG(u) = {v, w}, NG(v) = {u,w}. We have G− u− v =
Gu with zu = w and thus Gu ∈ {C(n− 2),H(n− 2),F(n− 2)}.

Assume that Gu = C(n − 2). First, suppose that δGu(w) = 2: In G, w has
three neighbors of degree two u, v, x and one neighbor of degree four y; clearly, we
have µ(G − u − y) < n/2 − 1. Second, suppose that δGu(w) = 4: In G w, has four
neighbors of degree two u, v, x, y; so µ(G−u− y) < n/2− 1. Actually, suppose that
δGu(w) = 3. As shown by Figure 4, the vertex w has a neighbor x in G such that
µ(G− u− x) < n/2− 1.

w

x

vu

Figure 4: G is not expandable.

Now, assume that Gu = H(n− 2). With the same argument as above the vertex
w cannot have a degree three in Gu. Thus w is one of the two 2-vertices of Gu.
Hence G = F(n).

Assume now that Gu = F(n− 2). With the same kind of arguments as above w
is the vertex of degree two in Gu which is not adjacent to another 2-vertex. Hence
G = C(n).

From now on we consider the case where no two 2-vertices in G are adjacent.
First we prove that there is in G a triangle abc with δG(a) = 2 and δG(b) =

δG(c) = 3. From Property 2.2 there is a triangle uvw in G where u is a 2-vertex
and δG(v), δG(w) ≥ 3. If δG(v) = δG(w) = 3, uvw is the required triangle. Now
assume that such a triangle does not exist, i.e. δG(v) > 3 and δG(w) ≥ 3. From
Property 2.4, we have δGu(zu) = δG(v) + δG(w) − 4 ≥ 3 and δG(x) = δGu(x) for
all x ∈ V − {u, v, w}. From Claim 2.1, since G ∈ MEG(n), Gu ∈ MEG(n − 2).
If Gu = F(n − 2) or Gu = C(n − 2) then Gu has two adjacent vertices x and y
with δGu(x) = δGu(y) = 2; since δGu(zu) ≥ 3, x, y 6= zu; then x and y are also
two adjacent 2-vertices in G: a contradiction. So Gu = H(n − 2) which has two
disjoint triangles abc and a′b′c′ verifying δGu(a) = δGu(a′) = 2 and δGu(b) = δGu(c) =
δGu(b′) = δGu(c′) = 3. Whatever zu we choose, one of these two triangles, say abc,
satisfies δG(a) = 2, δG(b) = δG(c) = 3: a contradiction.

Now, consider Ga obtained by contracting abc in a vertex t. We have δGa(t) =
δG(b)+δG(c)−4 = 2, Ga = H(n−2) and t is one of its two 2-vertices. By expanding
t in a triangle abc with δG(b) = δG(c) = 3, since NG(b) ∩NG(c) = {a} by Property
2.4, we get G = H(n). �
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Finally we deal with the case n ≥ 9 odd.

Proposition 2.4 For n ≥ 9, n odd, Exp(n) = n− 1 and MEG(n) = {Cn−2 +K2}.

Proof: Let G = (V,E) = Cn−2 + K2. It is easy to verify that for any pair of
vertices u, v with uv 6∈ E we have µ(G− u− v) = bn

2
c − 1. So Exp(n) ≤ n− 1.

Assume that G = (V,E) ∈MEG(n) with |E| ≤ n− 2.
First, G has no 0-vertex. Indeed, if x is a 0-vertex then G−x must be expandable.

G− x has an even number of vertices so from Proposition 2.2, we must have |E| ≥
3
2
(n− 1)− 1 > n− 2.

As a consequence in G there are at least four 1-vertices.
Two 1-vertices u and v cannot have a common neighbor w otherwise there exists

a vertex w′ such that ww′ 6∈ E so G is clearly not expandable. Now, let k ≥ 4 be
the number of 1-vertices. If u, v, w, z are 1-vertices with uv, wz ∈ E, considering
uw 6∈ E G is not expandable. In the case where u, v, w are 1-vertices, uv ∈ E,
let z be the neighbor of w: considering uz 6∈ E we see that G is not expandable.
Thus the 1-vertices are not adjacent and their k neighbors induce a clique else G
is not expandable. The remaining n − 2k vertices have a degree at least 2, so
|E| ≥ k + k(k−1)

2
+ (n− 2k) = 1

2
(k2 − 3k + 2n) > n− 2: a contradiction.

Now let G = (V,E) ∈MEG(n); we prove that G = Cn−2 +K2. Using the same
arguments as above G cannot have a 0-vertex and so it contains k ≥ 2 1-vertices
and |E| ≥ 1

2
(k2 − 3k + 2n). For k ≥ 3, 1

2
(k2 − 3k + 2n) > n− 1 = Exp(n), so G has

two 1-vertices and n− 2 2-vertices. So G consists of a Pq, q ≥ 2, and disjoint cycles.
None of the cycles can be even (if vi, vi+2 are at distance two in an even cycle then
µ(G− vi− vi+2) < bn

2
c− 1). If there are two odd cycles C1, C2 (and a Pq) by taking

u ∈ C1 and v a neighbor of an end vertex of Pq we have µ(G− u− v) < bn
2
c− 1. So

G consists of a Pq and an odd cycle Cn−q. If q ≥ 3, let u be an end vertex of Pq and
v a vertex at distance two of u then µ(G− u− v) < bn

2
c − 1. Thus G = Cn−2 +K2.

�

3 Minimal connected expandable graphs

In this section we will be interested in minimal expandable graphs which are con-
nected and we will denote by Cexp(n) the minimum number of edges of a connected
MEG of order n, CMEG(n) for short. We have Cexp(n) ≥ Exp(n) with equality
in the case where MEG(n) contains a connected element.

Let n ≥ 5, the (k, 2)-pan is the graph with n = k + 2 vertices depicted as
on Figure 5. It consists of a cycle of k vertices and a pending path of length 2.
The (k, p)-pan are defined similarly with a pending path of length p. Note that
(k, 0)-pan= Ck.

By 2K+
3 we denote the graph that consists of two copies of K3 linked by one

edge.
The problem being trivial for n ≤ 3 we deal with the case n ≥ 4.

10



Figure 5: The (9, 2)-pan.

Proposition 3.1

• Cexp(n) = n− 1 and CMEG(n) = {K1,n−1}, 4 ≤ n ≤ 5;

• Cexp(6) = 7 and CMEG(6) = {2K+
3 };

• Cexp(n) = n and CMEG(n) = {Cn, (n− 2, 2)− pan}, n ≥ 7, n odd;

• Cexp(n) = Exp(n) and CMEG(n) = MEG(n) = {C(n),H(n),F(n)}, n ≥ 8,
n even.

Proof: For n = 4, since MEG(4) = {K1,3, K̄1,3} the proof is immediate.

Let n = 5. Since MEG(5) = {K3 + 2K1} we have Cexp(5) > Exp(5) = 3. One
can verify that K1,4 is expandable. Thus a connected graph in MEG is necessarily
a tree. One can easily verify that every tree of order 5 which is not K1,4 is not
expandable.

Let n = 6. SinceMEG(6) = {2K3} and 2K3 is not connected we have Cexp(6) >
Exp(6) = 6. Now since 2K3 is expandable, when connecting the two K3’s with an
edge, the resulting connected graph 2K+

3 is expandable. So Cexp(6) = 7. Suppose
that there exists G = (V,E) 6= 2K+

3 such that G ∈ CMEG(6). We have 1 ≤ δ(G) ≤
2. First we assume that δ(G) = 1. Let u be a 1-vertex in G, let v be its neighbor
and let vi, 1 ≤ i ≤ 4, the four other vertices of V . Necessarily vvi ∈ E, 1 ≤ i ≤ 4,
otherwise G is not expandable. There are exactly two edges of E in G[{v1, v2, v3, v4}].
W.l.o.g., these two edges are either v1v2, v3v4 or v1v2, v1v3. Now it is easy to verify
that in both cases G is not expandable.

So δ(G) = 2. Since |E| = 7, V contains a set V 2 = {v1, v2, v3, v4} of 2-vertices.

(a) For v ∈ V 2, if vw, vz ∈ E then wz ∈ E.

(b) No two edges in G[V 2] = (V 2, E2) can be adjacent: if vw, vz ∈ E2 then
wz ∈ E2, from (a) this violates the connectivity of G.
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It follows from (b) that |E2| ≤ 2.
If E2 = ∅, then vivj ∈ E for all vi ∈ V 2 and j = 5, 6 so |E| ≥ 8: a contradiction.
Now |E2| ≥ 1 and w.l.o.g. v1v2 ∈ E, v1v5, v2v5 ∈ E from (a).
If |E2| = 1 we have vivj ∈ E (i = 3, 4; j = 5, 6) but then v6 is a 2-vertex with

v6v3, v6v4 ∈ E and v3v4 6∈ E which violates (a).
Finally, if |E2| = 2, then v3v4 ∈ E2. Note that |E| = 7 implies v5v6 ∈ E. So for

j = 5 or j = 6, v3vj, v4vj ∈ E: for j = 5 we get δ(G) = 1 (v6 is a 1-vertex), and for
j = 6 it gives G = 2K+

3 . Contradiction.

Let n ≥ 7 be odd. Since MEG(n) = {Cn−2 + K2} and Cn−2 + K2 is not con-
nected we have Cexp(n) > Exp(n) = n − 1. One can verify that both Cn and
(n− 2, 2)-pan are expandable. So we have Cexp(n) = n. Suppose that there exists
G ∈ CMEG(n) and G 6= Cn, G 6= (n − 2, 2)-pan. Since G is connected and has n
edges, it contains exactly one (induced) cycle C. Now since G 6= Cn it has at least
one 1-vertex. Let u, v be two 1-vertices and u′, v′ be their neighbors, respectively.
Since G is connected u′ 6= v, v′ 6= u. If u′ = v′ then G is not expandable: u′ must be
universal, so there are exactly two 2-vertices and n − 3 ≥ 4 1-vertices. So u′ 6= v′.
Since G is expandable, u′v′ is an edge of G, and the neighbors of the 1-vertices are
distinct and induce a clique. If G has at least four such vertices it follows that G
has more than one cycle: a contradiction. If it has three, the cycle is a triangle
and since n ≥ 7 there must be another 1-vertex: a contradiction. So assume G has
exactly two 1-vertices u, v: uu′, u′v′, v′v ∈ E. Assume u′v′ 6∈ C; clearly one of u′

and v′, say v′, has degree 2 (otherwise G has more than two 1-vertices). Then G is
not expandable. So u′v′ is in C and it can be seen easily that G is not expandable
(consider the non-edge u′w where NG(u′) ∩ NG(w) = {z}, z 6= v′). Thus G has
exactly one 1-vertex u, so G is a (n− k, k)-pan with k > 0. If k = 1 then G is not
expandable (consider a non-edge between u′ ∈ C the neighbor of u and w a vertex at
distance two of u′). Now, if k ≥ 3 then G is not expandable (consider the non-edge
between u′ the neighbor of u and the vertex at distance two of u′). It follows that
either k = 0 or k = 2: a contradiction.

For n ≥ 8 even, the result holds since each graph of MEG(n) is connected. �

4 Minimal completable graphs

In this section we consider the ‘opposite’ case of the previous one: instead of d = 1
in the general definition of Section 1 we will examine the case d = bn/2c − 1.

We say that G is completable if for any matching M̄ of Ḡ with |M̄ | = bn/2c − 1
there exists an edge uv ∈ G − V (M̄). By definition if Ḡ has no matching of size
bn/2c − 1 G is completable. The avoid this trivial situation we consider graphs G
with a matching M̄ of size |M̄ | = bn/2c − 1 in Ḡ.

As before, given n, we want to find a completable graph G = (V,E) with n
vertices and a minimum number |E| of edges denoted by Comp(n). Such a G will
be called a minimal completable graph and the set of minimal completable graphs
of order n is called MCG(n).
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The following statements are an immediate consequence of the definition of a
completable graph.

Proposition 4.1 If G=(V,E) is a graph with an even number of vertices then G is
completable if and only if Ḡ has no perfect matching.

Proposition 4.2 If G=(V,E) is a graph with an odd number of vertices then G is
completable if and only if Ḡ does not contain a matching M of size 1

2
(n− 1)− 1 and

a triangle disjoint from V (M).

Proposition 4.3 If G = (V,E), |V | ≥ 5, is completable and has a vertex v of degree
at most one then G− v is completable.

Proof: For n odd, assume G − v is not completable; from Proposition 4.1,
Ḡ− v has a perfect matching M̄ . There is an edge zw ∈ M̄ such that v, w, z induce
a triangle in Ḡ. Considering the matching M̄ ′ = M̄−zw it follows from Proposition
4.2 that G is not completable.

For n even, assume G − v is not completable; from Proposition 4.2, Ḡ − v has
a matching M̄ of size 1

2
(n − 2) − 1 plus a vertex disjoint triangle u,w, z. W.l.o.g.

vz ∈ Ḡ and then M̄ ∪ {uv, wz} is a perfect matching of Ḡ. From Proposition 4.1 G
is not completable. �

Proposition 4.4 For 4 ≤ n ≤ 7 we have:

• Comp(4) = Exp(4) = 3 and MCG(4) = MEG(4) = {K1,3, K̄1,3};

• Comp(5) = Exp(5) = 3 and MCG(5) = MEG(5) = {K3 + 2K1};

• Comp(6) = 5 and MCG(6) = {K1,5};

• Comp(7) = 6 and MCG(7) = {K1,6, K4 + 3K1}.

Proof: Let 4 ≤ n ≤ 5; one observes that for these values a graph is completable
if and only if it is expandable. The results follow from Proposition 2.1.

Let n = 6; clearly K1,5 is completable. Thus Comp(6) ≤ 5. Let c be the number
of vertices in a largest connected component C of G. If c ≤ 3 then µ(Ḡ) = 3 so G
is not completable from Proposition 4.1. If c = 4 and C = K4 then |E| > 5; if c = 4
and C 6= K4 then µ(Ḡ) = 3. If c = 5: let u /∈ C, so δ(u) = 0; if µ(Ḡ− u) = 2 then
µ(Ḡ) = 3; if µ(Ḡ− u) ≤ 1 then |E| ≥ 6. If c = 6 then G is connected; since |E| ≤ 5
there is a 1-vertex v; its neighbor w must be universal, so G = K1,5.

Let n = 7. One can verify that K1,6 and K4 + 3K1 are completable. Suppose
that G = (V,E) ∈ MCG(7) with |E| ≤ 6. If there is u ∈ V with NG(u) = {v}
then from Proposition 4.3 G − u must be completable. Since G − u has 6 vertices
and at most 5 edges, from the above result we have G− u = K1,5. Let w ∈ V with
δG−u(w) = 5: if v 6= w then µ(Ḡ) = 3 and G is not completable; if v = w, then
G = K1,6 and |E| = 6.

Assume now that G has no 1-vertex. Since Comp(7) = |E| ≤ 6 there exists a
0-vertex u. Let c be the number of vertices in a largest connected component C of
G. If c ≤ 3 or c = 6 then µ(Ḡ − u) = 3 and since δ(u) = 0 we have a matching
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of size two and a triangle in Ḡ; so from Proposition 4.2 G is not completable. If
c = 4 since δ(u) = 0 and there is no 1-vertex, G consists of C and three 0-vertices.
If C 6= K4 then µ(Ḡ − u) = 3 and G is not completable. So G = K4 + 3K1 and
|E| = 6. Now let c = 5: since δ(u) = 0 and there is no 1-vertex, G consists of C
and two 0-vertices u and v. If µ(Ḡ−u− v) = 2 then, from Proposition 4.2, G is not
completable. Now assume µ(Ḡ − u − v) ≤ 1; since |E| ≤ 6 there are at least four
edges in Ḡ− u− v which are adjacent to the same vertex so C is not connected: a
contradiction. It follows that Comp(7) = 6 and MCG(7) = {K1,6, K4 + 3K1}. �

Proposition 4.5 For n ≥ 8, Comp(n) = n− 1 and MCG(n) = {K1,n−1}.

Proof: Clearly, K1,n−1 is completable and Comp(n) ≤ n− 1. The proof will be by
induction on n and will need the following claim.

Claim 4.1 For n ≥ 8, if G = (V,E) is completable with |E| ≤ n− 1 then G has no
0-vertex.

Proof: We will need the following result (see [3], chapter 7, page 120):

Theorem 4.6 (Erdős, Gallai, 1959)
Let G=(V,E) be a graph with m edges and let q be an integer. Then:

1. For 1
5
(2n+ 1) ≤ q < n

2
, if m > q(2q + 1) then µ(G) > q;

2. For 0 ≤ q < 1
5
(2n+ 1), if m > 1

2
q(q − 1) + q(n− q) then µ(G) > q.

Let n be even. Assume there is a 0-vertex u. From Theorem 4.6 it exists M̄ =
{aibi : 1 ≤ i ≤ n/2−1} a matching of Ḡ with n/2−1 edges. Let G−V (M̄) = {v, w}.
Since G is completable vw ∈ E and u 6= v, w. We have mG({v, w}, {ai, bi}) ≥ 2
for all aibi ∈ M̄ , otherwise µ(Ḡ) = n/2. Thus |E| ≥ n − 1, so |E| = n − 1 and
then mG({v, w}, {ai, bi}) = 2 for all aibi ∈ M̄ and there is no edge between the four
vertices ai, bi, aj, bj. W.l.o.g. let u = a1. Since δ(u) = 0 then vb1, wb1 ∈ E. Since
mG({v, w}, {a2, b2}) = 2, we can assume va2 /∈ E. M̄ − a1b1− a2b2 ∪ {va2, uw, b1b2}
is a perfect matching of Ḡ and G is not completable.

Let n be odd. Assume u is a 0-vertex. From Proposition 4.3, G − u is com-
pletable, and from Proposition 4.1 µ(Ḡ − u) < (n − 1)/2. From Theorem 4.6 it
exists M̄ = {aibi : 1 ≤ i ≤ (n − 3)/2} a matching of Ḡ − u with (n − 3)/2 edges.
Let G − u − V (M̄) = {v, w}. Since G − u is completable vw ∈ E. We have
mG−u({v, w}, {ai, bi}) ≥ 2 for all aibi ∈ M̄ , otherwise µ(Ḡ − u) = (n − 1)/2. Thus
|E| ≥ n− 2 and there are at most three edges of E between vw and a1b1. W.l.o.g.
va1 /∈ E. There must be a set {a1, b1, ai, bi} with i 6= 1 and without edges inside,
else |E| ≥ n. Then M̄ − a1b1 − aibi ∪ {uw, va1} and ai, b1, bi form a matching and a
vertex disjoint triangle spanning V and it follows that |E| ≥ n. �

Let G ∈MCG(n) and n ≥ 8.

From Claim 4.1, since Comp(n) ≤ n − 1, there is a 1-vertex u in G. From
Proposition 4.3, the graph G− u is completable.
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For n = 8, we have Comp(8) ≤ 7. Since G − u is completable and has at most
6 edges, from Proposition 4.4, G− u has 6 edges and is either K4 + 3K1 or K1,6. In
the first case, G would have a 0-vertex contradicting the Claim 4.1. In the second
case, let w be the center of K1,6: if u is not linked to w then G is not completable
thus uw ∈ E and so we get MCG(8) = {K1,7}.

For n > 8, we assume that MCG(n− 1) = {K1,n−2}. G− u is completable and
has at most n−2 edges, so from our assumption G−u has n−2 edges and is K1,n−2

To show the result, we notice that, as above, u is linked to the center of K1,n−2 and
we get MCG(n) = {K1,n−1} and Comp(n) = n− 1. �

If we are interested in minimal completable graphs which are connected the only
non trivial case to consider is for n = 5 (for other values of n there are minimal
connected expandable graphs). For n = 5 there is only one minimal connected
expandable graph K1,4.

5 Conclusion

For d = 1 and d = bn/2c − 1 we have determined a minimal graph G such that to
any matching M̄ of d edges of Ḡ one can associate a matching of bn/2c − d edges
in G− V (M̄). It would be interesting to consider other values of d.

A generalization of this problem would be to introduce weights on the edges.
The goal would be to find minimal or maximal weighted graphs in MEG(n) or
MCG(n). A straightforward corollary of Proposition 2.4 is that the problem with
weights is NP-hard (since MEG(n) = {Cn−2 + P2} for n odd, a direct reduction
from Traveling Salesman Problem [6] gives the result).

In connection with matching extensions, the class of (p, q, r)-graphs has been
studied in [2, 7, 8]: these are graphs such that when deleting any set of p vertices
the remaining graph G′ = (V ′, E ′) has matchings of size q and any such matching
can be extended to a matching of size (|V ′|− r)/2. In our paper we have considered
that in a complete graph Kn = (V,E) on n vertices we had to find a smallest
possible subset F ⊆ E such that any matching M̄ of size d in Ḡ = (V,E−F ) can be
extended to a (almost)-perfect matching by adding edges of G = (V, F ). A natural
generalization would be to consider an arbitrary graph instead of Kn; this would
amount to forbidding the use of some edges in the matchings.
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