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Abstract. Using applications of linear regression, Market Research practitioners want to 

determine a ranking of predictors or a quantification of their respective importance for a 

desired outcome. As predictors are often correlated, regression coefficients can be 

difficult to use directly because they can be instable across samples and have negative 

values that are counterintuitive. To overcome these difficulties other methods have been 

proposed in the industry using squared semi partial correlation coefficients, squared zero 

order correlation coefficients or methods such as Shapley Value decomposition or 

decomposition via orthogonalisation in the space of predictors.  

 

The proximity between the results obtained by different Variance Decomposition 

methods has led some authors to conclude that they are a fully valid approach. This paper 

will highlight theoretical reasons why these methods present similarities, offer a simple 

alternative new way to decompose variance but will also show the flaws and risks of 

relaying on Variance Decomposition for quantification of importance of predictors and 

why a Game Theory approach like Shapley Value can lead to misinterpretations. It will 

also present additional methods developed to compute β coefficients using Variance 

Decomposition as an intermediate step and propose recommendations for driver analysis. 
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1 Introduction 
 

In the field of Market Research, practitioners want to help their clients identify 

how to act on some factors such as quality of service or design of a product to 

achieve a desirable outcome such as purchase intent or satisfaction and loyalty 

of the customers. This is done with the desire to identify what are the best 

drivers of improvement, and quantify their respective impact. This is achieved 

through statistical modeling and simulation like in other fields such as 

Psychology, Social Sciences or Economics. The classic reference method used 

to do this Ordinary Least Square regression (OLS), but while this approach is 

recommended in the business literature it has some limitations. Because of 

sample size and design of the questions in Market research surveys, there may 

occur instability of coefficients. And also as questions can relate to similar 

topics there may be multi-collinearity and negative coefficients that are counter-

intuitive. Causal assumptions and modeling options can lead to a variety of 



results when one wants to quantify or simulate the impact of a given action on a 

predictor on the desired response. In Market Research many techniques are 

used: Regressions, Path Models, Bayesian Belief Networks, Random Forest to 

name a few. This paper focusses on relative importance in the context of Linear 

Regression.  

 

2 The concept of relative importance 
 

Johnson [1] points out that the terminology of relative importance is confusing 

because of the many different definitions used, and introduced the term “relative 

weights” to define the proportion of explained variance by the linear model 

allocated to each individual predictor. We propose first to define relative 

importance in a general way. 

Let us consider p random variables as predictors and y a response. We can 

define a Relative Importance Function as a function that  associates to each 

predictor (defined by its index j in the set P={1,…p}) a value of importance: 

 

: PRI   

In practical applications, functions of relative importance are defined using 

matrix calculus and polynomial functions applied to the correlation matrix, 

explained variance of models and bivariate or multivariate correlation 

coefficients. These computations are applied using the estimates of these values. 

As a consequence we should like Grömping [2] clearly refer to estimators of 

relative importance. For instance we will see later that some relative importance 

functions are based on a full decomposition of the explained variance. As the 

estimator of explained variance in Linear Regression is biased, it is impossible 

that all estimators of relative importance for each predictor are unbiased as their 

sum is actually biased. This is why in all that follows we will only discuss the 

properties of estimators .The topic of relative importance has been discussed in 

many publications since at least 1936 and a history of the use of relative 

importance has been presented by Johnson and Lebreton [3]. This article will 

focus on relative importance evaluation based on allocation of shares of 

variance for linear regression. Grömping [2] gives an overview of Variance 

Decomposition methods. Some approaches allocate shares of Variance that can 

be negative and this has attracted criticism.  Others propose the usage of values 

of relative importance that are all positive but do not add up to the total of 

explained variance. Lastly some methods fully decompose the explained 

variance across predictors. We will designate in this paper the methods that 

assign relative importance values to each predictor so that the sum of these 

relative importance adds up to the estimated R² as Variance Decomposition as 

opposed to Variance Allocation when the sum of the relative importance 

estimates is different from the estimated R².  

 

In terms of notation we will use the following in reference to the Linear 

Regression Model and focus this article on allocation of shares of variance of 

the response y into proportions due to the  p predictors X’s  ( and errors) : 



i i
y X e X e                                 (1) 

We will work in the case of p predictors that are linearly independent, and in the 

case of n observations n greater than p and the n x p matrix of predictors score is 

of full rank p. The variance explained by the p predictors (P is the set of the p 

predictors) is: 
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with vi variance of Xi  and ij  coefficient of corrélation between  Xi et Xj. 

We can assume a regression model without intercept and w.l.o.g that all X’s are 

centered (i.e. have expectation 0). To simplify the notations in the rest of the 

article we will assume, unless specified, that y and the Xj’s are centered and 

standardized. 

We have identified 8 methods published and included in R packages. A detailed 

documentation on 6 of these methods is available on Pr. Grömping’s website [4] 

dedicated to resources on the relaimpo R package. Another method proposed by 

both Genizi [9] and Johnson [1] called here Relative Weights (RW’s) and 

finally Zuber and Strimmer [5] CAR scores (Correlation-Adjusted (marginal) 

correlation) are also available via R packages (relaimpo and yhat). We will first 

present 3 methods of allocation and then 5 methods of decomposition and then 

discuss some points of difference and convergence between these approaches. 

.   

3 Methods for Variance Allocation 
 

 

3. 1 Allocation “first”. 

 

The measures are the squared correlations of the predictors with the response: 

 

( ) cov( , )first j y Xj  

 

When the predictors are mutually de-correlated the sum of the measures “first” 

adds up to the overall R² of the model. When this is not the case, the sum of the 

first (j) over all p predictors is often higher that the overall R² of the model.cf. 

Grômping [4].   

 

3.2 Allocation “last”. 

 

This measure attributes as Relative Importance for a predictor j the increase in 

R² when predictor j is included last in the model compared to the R² with only 

the other p-1 predictors. This measure is identical to the squared semi-partial 



correlation sr²(j), which is sometimes presented as the amount by which the R² 

is reduced when this predictor is deleted from the regression equation. See for 

instance Tabachnick and Fidell [6]. 

 

3.3 Allocation “betasquared”. 

 

This relative importance measure consists in attributing as importance the 

square of the standardized regression coefficient. Like the measures 3.1 and 3.2 

these are variance allocations as the sum of these measures for all p predictors 

do not in general add up to the R². 

 

4 Methods of Variance Decomposition 

 
4.1 Decomposition Hoffman-Pratt 

 

This measure of relative importance noted pratt(j)  attributes to a predictor j the 

product of the standardized multiple regression coefficient by the marginal 

correlation between the predictor j and the response When the predictors are 

standardized : 

( ) j yjpratt j    

From the properties of the OLS regression we can easily confirm that this 

measure is leads to a decomposition of the R². 

 
2 cov( , )j j yjj j

R y Xj r                                 (3) 

 

4.2 Shapley Value or LMG or Average 

 

This method has been assigned several names. See for instance Grömping [2] 

for an historical overview. We will call this measure here lmg(j) or SV(j). This 

measure is computed by averaging on all possible ordering of the p predictors 

the increase of the R² when the predictor j is added to the model based on the 

other predictors entered before j in the model. These values have been proposed 

by Lindeman, Merenda and Gold (1980), hence the name lmg. If we consider a 

game theory perspective where we assimilate the p predictors as players and 

define the game function of a coalition of k players as the R² achieved by the 

model based on these k predictors, it turns out that the application of Shapley 

Value to the game described above generates exactly the same values as lmg,, 

hence the possible notation SV(j). 

 

Let us present below one notation and one of the ways to compute lmg. Let r be 

a permutation of P, this constitutes an ordering of the predictors. Each 

permutation r enables to define an order of entry of the predictors in the model. 

 

Let Sj(r) be the set of predictors entered before j in the permutation r. We can 

compute: 



2 ( ( ))jR S r   as the R² of the model including the predictors in Sj(r) 

2 ( ( ))j jR S r
as the R² of the model including the predictors in Sj(r) U{j} 

And define 2 2( ) ( ( )) ( ( ))j j j jr R S r R S r     

 

( )j r  is the increase in R² when the predictor j is added to the predictors 

entered before j in the model  with order resulting from the permutation r. 
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                                               (4) 

averaged on all 2 p
 permutations of the p predictors. This formula can be 

rewritten in different forms, combining the permutations that have the same sets 

Sj(r). 

 

4.3 PMVD (Proportional Marginal Variance Decomposition). 

 

This measure is also a variance decomposition and is computed similarly as for 

lmg but with weights attached to each single permutation: 

 

1
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r

pmvd j p r r
p

                                      (5) 

For more details about PMVD see Feldman [7] and also Grömping [2]. 

 

4.4 Relative Weights 

 

Fabbris [8] has proposed a way to decompose the explained variance using the 

Singular Value Decomposition of the matrix X. Later Genizi [9] and Johnson 

[1] used this approach in a different way. This decomposition is a particular case 

of a more general approach consisting of using a set of mutually uncorrelated 

variable to decompose the explained variance. We will formalize the orthogonal 

decomposition in general and then present the Relative Weights computation. 

 

Let , 1, ...
i

z i p  as set of p orthogonal standardized predictors: 

Let us note cov( , )
ji j iz X   and cov( , )

i i
y z    

We compute the Orthogonal Decomposition RW with the zi’s as follows  

2 2

1

( )
i p

ji i

i

RW j  




                                         (6) 

The Relative Weights generate a full variance decomposition because: 



2 2 2 2
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cov( , )
lm l m

z x  , and the 
iz  being a set of standardized orthogonal vectors 

and as the jx are also standardized finally:  

1
(i) ( ) 1

i p
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RW V y




                                   (8) 

So the Relative Weights computed with any set of iz  enables the computation 

of a full decomposition of the 2R   using the
j

RW . The decomposition proposed 

by Genizi and Johnson consists in computing the Relative Weights using a 

specific set of orthogonal predictors that minimize the sum of the squares 

between each jX  and jz . 

So in terms of variables minimizing: [( ) '(z )]E z X X      

In the case of a specific dataset with n observations and p predictors this leads to 

consider a specific matrix Z of the zj is as follows: 

Let X be the n x p matrix of standardized centered observations. Let 'X P Q   

the singular value decomposition of X. The set of zi minimizing the 

abovementioned sum of squares is 'Z PQ .The orthogonal decomposition 

using this specific set of orthogonal vectors are the Relative Weights. We will 

use the notation RW(j) from now on for this specific decomposition and Vo(j) in 

case we use another set of zi’s.   

4.5 CAR scores 

The CAR scores are the squared correlations between the response and the 

vectors Z as defined in 4.4.So: CAR(j)=λj² 

This is a recent Variance Decomposition proposed by Zuber and Strimmer [10]. 

They use the term CAR standing for Correlation-Adjusted (marginal) 

coRelation.   

 

We have limited the presentations of these methods to the strict minimum detail, 

but the documents in reference offer additional perspective on the Game Theory 

approach and axiomatic definitions of desirable properties in variance 

decomposition.   



 

5 Results on Variance Decomposition 

  
There are important difference between the usage of the Linear Model and the 

interpretation of Variance Decomposition values. In the case of lmg for 

instance, it is important not to use in a simplistic way the variance 

decomposition as if they were equivalent to the coefficients generated by Linear 

Regression Model. First because they are terms of variance that are actually 

homogeneous to squared values of the β’s. If we consider an ideal case with 

mutually decorrelated predictors the lmg value would be distorted compared to 

the relative values generated by the Linear Model. 
Also another way to write lmg in the case of two predictors is as follows:. 

22

 1 1 2 2 1212 2 2 1 1 )) )*(1-)*(1- ( ) ²*v ²*v( ) ²*v ²*v
lmg(1) lmg(2)

2 2

( -( - V yV y     
 

If we consider a case with two predictors a sufficiently high correlation and a 

third predictor uncorrelated with the first two the reallocation of importance 

between the two lmg values can lead ultimately to different rankings between 

the importance measures if we apply the beta squared versus lmg. 

So all in all lmg produces distortion and can potentially change the ranking 

between the importance of predictors versus the results derived from the Linear 

Model. This is why we need to be careful not to consider them as a full 

alternative to standard models. Conklin and Lipovetsky [11] have considered 

adjusting regression coefficients using Shapley Value as an intermediate step of 

calculation and computing coefficients in resolving a quadratic equation 

equalizing the Hoffman values and lmg for each predictor. Grömping and 

Landau [12] have criticized this approach. 

Regarding similarities, Johnson and Lebreton [3] have observed the proximity 

between the results of relative weights and lmg and  state :« Despite being based 

on entirely different mathematical models, Johnson’s epsilon and Budescu’s 

dominance measures ( Note : Budescu’s dominance  is one of the denomination 

of Shapley Value /lmg ) provide nearly identical results when applied to the 

same data these two mathematically different approaches suggests that 

substantial progress has been made toward furnishing meaningful estimates of 

relative importance among correlated predictors. The convergence between 

these two mathematically different approaches suggests that substantial 

progress has been made toward furnishing meaningful estimates of relative 

importance among correlated predictors”. 

We will first analyze and formulate results in the case of two predictors.  

Starting with two uncorrelated standardized variables E1 and E2, we will 

construct X1, X2, and y: 



1 1 2 2 1 2

1 2

cos( ) sin( ) cos( ) sin( )

cos( ) sin( )

X E E X E E

y E E

   

 

   

 
 

From this we can actually compute: 
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
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


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2
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cos( )

cos( )

cos(2 )

y

y

r

r

 

 

 

 
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

 

2 2

2 2

last(1) sin ( );first(1) cos ( )

last(2) sin ( );first(2) cos ( )

   

   

   

   

 

(1 sin(2 )sin(2 ))
SV(1)

2

(1 sin(2 )sin(2 ))
SV(2)

2

 

 







 

It is also possible to compute the result of orthogonal decomposition using any 

orthogonal base of the considered plane let us consider z1 and z2 such as: 

1 1 2

2 1 2

cos( ) sin( )

sin( ) cos( )

z E E

z E E

 

 

 

  
 

The results of an orthogonal decomposition process using the zi defined by the 

choice of a specific value of ω are Vo(1) and Vo(2) as computed below : 

2 2 2 2

2 2 2 2

(1) cos ( )cos ( ) sin ( )cos ( )

(2) cos ( )sin ( ) sin ( )sin ( )

Vo

Vo

       

       

     

     

 

It is easy to demonstrate (w.l.o.g with φ≤π/2),that the specific iz  considered 

earlier to implement the Relative Weights of the variance decomposition 

proposed by Johnson and Genizi, corresponds to the case when ω=-π/4. Taking 

ω=-π/4 in the computations of Vo(1) and Vo(2) and simplifying we get: 

(1 sin(2 )sin(2 )) (1 sin(2 )sin(2 ))
RW(1) ;RW(2)

2 2

    
   

We recognize here the formula for (1)SV  and (2)SV . So we have 

demonstrated through a trigonometric approach that in the case of two 

predictors the relative weights and the lmg (or Shapley Values) are identical (cf. 

also Thomas and al. [14]). This result is just the application of simple 

trigonometric equivalences and should not in our view lead to conclude that 



because the two methods converge this is in itself a justification of their validity. 

The demonstration proposed here enables easy visualization of the impact of the 

choice of orthogonalisation if we let ω vary. In the case of two predictors it also 

enables to demonstrate that the CAR scores may remain constant even when the 

correlation between predictors vary. We can also notice some other links 

between orthogonalisation procedures and lmg if we use some particular sets of 

orthogonal vectors in the space generated by the Xj’s. As Relative Weights is a 

particular case of decomposition by orthogonalisation , these links help 

understand the proximity between lmg which is an averaging of last values over 

submodels and relative weights , which is a decomposition by orthogonalisation. 

Case 1: Let us consider y* as the projection of y on the space of the predictors 

and let us choose one given predictor and an orthogonal set of zi’s with the 

condition that: 

*

*

y
zj

y
  

We have  

, . 0 *. 1i j y zi and y zj     

Let us now use the RW calculation formula: 

1
Vo(j) ² ji* ² i

i p

i
 




  as: 

cov(zj, )ji Xi    cov(y,zi)i    0; 1j j    

we have :  

2Vo(j) cov (y, xj) first(j)   

This means that for any j there is always at least one choice of orthogonal 

decomposition that will allocate first (j) to that predictor. 

 

 

 Case 2: This time we will consider an orthogonal set so that: 

uj
zj

uj


 

ju  being the residual of the regression of jX  on the other variables. 



2 2 2cov(zj, ) 0, cov (z , ) 1 R jif i j ji Xi and jj j Xj        

2 2cov (y,zj) Vo(j) ( ),jA js last   

These examples show that orthogonalisation methods do enable with specific 

sets of orthogonal vectors to allocate either first(j) or last(j) for one given 

predictor. As Johnson is a particular case of orthogonalisation and lmg (j) is an 

average of last (j) across submodels, it confirms why there can be a proximity 

between variance decomposition via orthogonalisation and lmg in the case of 

more than 2 predictors. Both lmg and Relative Weights are computer intensive 

methods. We introduce an alternative variance decomposition method that is 

much more computationally efficient and offers very similar results to lmg and 

relative weights. The method will allocate to each predictor j a share of variance 

that is a weighted average between first(j) and last (j) , hence the name weifila 

for weighted first last.  

Here are the computation steps: let L and F be the sum of first and last for all 

predictors: 

( ) first( )
j j

L last j F j    

We will consider two cases in the usual situation where L F    

2 2
2 W( ) ( ) ( )

F R R L
If L R F j last j first j

F L F L

    
      

    

              (9) 

2 2
2 W( ) ( ) ( )

R F L R
If F R L j last j first j

L F L F

    
      

    

         (10) 

The case where R² would be outside of the interval between F and L is not 

encountered in practice. By construction in both cases above: 
2

( )w j R  

We will note also that in the case of two predictors the weifila values equate to 

the lmg and relative weights values as shown below: 

(1) (2) 1 cos(2 )cos(2 )F first first       

(1) (2) 1 cos(2 )cos(2 )L last last     

(j) last(j)
2cos(2 )cos(2 ) ( )

2

first
F L w j 


     



So we recognize the formula above for lmg and this confirms that: 

       w j lmg j SV j RW j                          (11) 

Weifila is a way to select an intermediate point w(j)  inside the interval between 

first(j) and last(j) for each j. We have compared these 3 measures on two 

different datasets. The results are presented below: 

                                                             

           

Fig 1: 1499 obsevations.14 predictors        Fig 2: 499 observations 9 predictors 

The weighted first last average “weifila” is much simpler to compute and 

delivers very similar results at least in the typical size of datasets and number of 

drivers used in practical applications for marketing and social research.   

6 Conclusions  

 
Among several methods to allocate variance among predictors, the proximity 

between lmg and Relative Weights has been noted (Johnson and Lebreton [3]), 

and seen as a justification of their validity. This proximity is actually a complete 

equality in the case of a model with two predictors and results from simple 

geometric properties. Also there exists variance decomposition via 

orthogonalisation that allocate exactly last(j) or first(j) for any of the predictors. 

So this proximity should not be seen in itself as a justification of validity.  

The new method of variance decomposition proposed in this paper via a 

weighted average between first(j) and last(j) for each predictor provides very 

consistent  results with lmg and Relative Weights but is simpler and less 

computer intensive. This method has been successfully tested with datasets 

typical of situations encountered in marketing research applications.  

As underlined by Johnson [1] and Grömping [2], variance decomposition should 

not be seen as a substitute for linear regression models or path analytical models 

and models based on theory driven explanations can be more relevant than using 

directly variance decomposition. However when a model based on theory is not 

available variance decomposition can help identify important variables. Lastly 

the usage of modern machine learning techniques can also be considered. 
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