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Abstract

Cloud computing and Future Internet promise a new ecosystem where everything is "as a service", reachable and
connectable anywhere and anytime, everyone succeeding to get a service composition that meets his needs. But do
we have the structure and the appropriate properties to design the service components and do we have the means
to manage, at run-time, the personalised compositions corresponding to Service Level Agreement? In this article we
introduce an entity of service composition called Self-Controlled Component (SCC), including, since the design step,
functional and non-functional specifications. SCCs benefit both from the strong structure, explicit composition, and
autonomic management of component-oriented programming, from the highly dynamic composition, and from the
discovery capacities of service-oriented computing. Self-control mechanisms are then attached automatically to SCCs
to enable autonomic application management during execution. The objective of this new concept is to provide
strong Quality of Service (QoS) guarantees of composed applications. We illustrate the approach using an example
called Springoo, to how in the context of a legacy application the contributions and benefits of our solution. For the
management of the service composition we propose the concept of Virtual Private Service Network (VPSN) and Virtual
Service Community (VSC) that allows us to model the personalised Service Level Agreement (SLA) where user
requirements and provider offers converge on a QoS contract.
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1 Introduction
Cloud computing and Future Internet ecosystems are
attractive for several reasons. They allow designing your
own application from components offered in a catalog,
and connecting almost everything. This approach enables
the nearly automatic creation of solutions corresponding
to the user’s demand.
In addition, one of the slogans of cloud computing is “to

pay-as-you-go”. It means that the supplier is able to adapt
to the user’s needs. His ability to manage the elasticity,
the high availability, and the on-demand provisioning is a
part of his offer. The integration, from the design phase,
of automated management procedures is always desirable,
but it is even more crucial in the competitive context of
this new ecosystem.
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From the cloud provider point of view, the objective is to
meet the required properties based on customer require-
ments and needs. In practice, many cloud providers offer
the same services that differ in their quality of service lev-
els, price, and in the way they are created, deployed, and
managed.
As a consequence, the request and the offer must be

entirely and explicitly documented and guaranteed by the
Service Level Agreement (SLA).
The questions are: (i) how to adapt the component

models in order to ensure the convergence of supply and
demand? (ii) how to ensure both the autonomy of each
component and the end-to-end quality of the service? and
(iii) what to record into the SLA to ensure its practical
usability and its veracity?
(i) For converging supply and demand, one would have

to choose components "as a Service", the user must pick
the services corresponding to the behaviour and the qual-
ity of service he expects. Moreover, the service com-
position should facilitate their adaptation on demand,
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it should reduce the functional dependencies between
services, and have loose bindings between entities of
the composition as Service Oriented Architecture (SOA)
advocates. Indeed, without these loose ties the compo-
sition cannot be customized and the interconnection of
components cannot vary on demand.
(ii) Concerning guarantees, we need the right infor-

mation at the right place in order to take the desired
decisions. It is not enough for the service composition to
be agile at functional level, but it must also be agile and
dynamic at management level, i.e. at the non-functional
level. In more details, the management and the SLA
guarantees should be made hierarchical and distributed
among services; part of the adaptation decisions should
be taken locally, but other parts must be taken from a
global point of view. The structured composition and ser-
vice management we present in this paper allows for a
precise control of the place where decisions are taken
and enacted. This enables dynamic and precise adapta-
tion of service composition by providing the means to
react at different levels when the service does not fulfill its
contract.
(iii) Concerning the SLA definition, requirements,

resources provided and penalties for breach of contract
are to be recorded. It must be expressed in a vocabulary
understandable by different parties. While the service is
expressed when the service is made available, it is diffi-
cult to ensure the exactitude of the SLA, but our approach
allows us to monitor the service out of contract and
exclude them from the compositions.
This paper provides a composition framework that

transforms the user-defined choices (demand) into the
right services (offer) and that adapts automatically this
composition at run-time. The approach we advocate
allows a personalized and automated composition of ser-
vices with service level guarantees accordance with SLA.
Our main contributions are the following:

• We define service components that at the same time
provide the guarantee of a certain service level and
enable autonomic adaptation of the composition to
ensure that this service quality will be guaranteed
during the application execution.

• We provide an architecture for composing
services featuring service discovery and
SLA-based adaptation.

• We design generic Quality of Service (QoS)
components guaranteeing that the service
composition will provide the predefined functionality
and QoS. This is realised by the definition of a Virtual
Private Service Network (VPSN) defining the user’s
application and then, based on this description,
choosing and replacing at runtime the services
involved in the composition.

• Those contributions are provided in a programming
and execution environment that offers ease of
programming, location and distribution
transparency, and autonomic adaptation.

In this paper we analyse the related works in Section 2
and propose an approach to compose components “as
services” which can be self-controlled; such components
are called Self-Controlled service Component (SCC) and
presented in Section 3. Our work uses a design platform
with support for correct composition of components,
presented in Section 4; this platform provides tools to
instantiate components that have to be adapted to provide
controlled service components; this adaptation process is
described in Section 5. A solution for service composi-
tion and its adaptation is then proposed (Section 6) and a
use-case named Springoo (Section 7) provides an integra-
tion example. The Section 8 offers Service Level Objective
(SLO) and SLA based on SCC, and Section 9 presents
experimental results. Finally a conclusion (Section 10)
ends the paper.

2 Related work
Analysis of existing solutions to meet the needs of
distributed systems and cloud has led us to look at
the evolution leading from component models (Fractal,
Grid Component Model (GCM)) to service models SOA
(Section 2.1), to their management (Section 2.2) and thus
to position our work (Section 2.3).

2.1 From component models to service models
Component models provide a structured programming
paradigm, and ensure a very good re-usability of pro-
grams. In component applications, dependencies are
defined together with provided functionalities by the
means of provided/required ports; this improves the pro-
gram specification and thus its re-usability. We focus here
mostly on hierarchical component models because they
make the design of large-scale systems easier. A compo-
nent model is said to be hierarchical if the composition
of several components is also a component that can be
used at a higher composition level. We call primitive
components the leaves of the composition tree, i.e. the
components that contain the business code.
Fractal [1] is a general component model, which is

intended to implement, deploy and manage complex soft-
ware systems. It showed its effectiveness in the particular
setting of operating systems and middleware, through the
use of interfaces (usage, control and management). But
if the functional interconnections are explicit, those of
management are less obvious.
The Grid Component Model (GCM) [2], is an exten-

sion of Fractal targeting specifically distributed systems.
A strong point of GCM is the separation of concerns [3].
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In GCM, the membrane, i.e. the management part of the
component, can be defined precisely with all necessary
interconnections between management features and with
the rest of the component hierarchy. GCM/ProActive is
the reference implementation of the GCM component
model. It is based on the ProActive Java library [4].
SOA promotes a different composition pattern based

on loosely coupled services; which is a crucial property
for a personalized service session. Service Component
Architecture (SCA) [5] and WS (Web Services) are major
approaches supporting SOA.
SCA is a component model adapted to Service Oriented

Architectures. It enables modeling service composition
and creation of service components. Numerous platforms
implement the SCA model, like Tuscany, Newton, or
FraSCAti. The main SCA properties are: interconnec-
tion, autonomy, loose coupling, and reuse. However, the
SCA model is focused on static description of compo-
nents and does not standardise the runtime evolution of
applications.
WS [6] is the technology supporting the flexible com-

position [7], the “Mashup” [8, 9] and the methods
of integration services in Cloud Computing [10–12].
WS allows the implementation of SOA recommenda-
tions, it supports Web Services Description Language
(WSDL) as a description language, communication APIs
like Simple Object Access Protocol (SOAP) and Repre-
sentational State Transfer (REST), and coordination of
services through Business Process Execution Language
(BPEL) [13]. Though quite exhaustive, none of these tech-
nologies offers strong support for non-functional features
like non-functional management and quality of service.
Service coupling is also too tight to allow true dynamic
service evolution: WS offers no particular support for the
replacement of a service by another one at the middle of
the execution of the application.
Unfortunately, the loose coupling of WS come at some

price: there is no way to control efficiently service com-
position because there is no tool allowing an application
manager to introspect and modify service dependencies.
The explicit structure of components is more restrictive
but enables this control.

2.2 Autonomic management
In distributed systems and especially in the Cloud, the
ability to modify at run-time execution parameters but
also the architecture of the application paves the way for
the autonomic adaptation of applications. In distributed
systems in particular, dynamic adaptation is even more
important, as the structure of components can also be
used at run-time to discover services and use the most
efficient service available.
Some component models and their implementations

keep a trace at run-time of the component structure

and their dependencies. Knowing how components are
composed and being able to modify this composition at
run-time provides great adaptation capabilities: the appli-
cation can be adapted to evolutions in the execution
environment, by changing some of the components tak-
ing part in the composition or changing the dependencies
between the involved components. We call reconfigura-
tion the actions consisting in changing at run-time the
component structure, by adding or removing components
in the system or by changing the way components are
bound together. FraSCAti [14] is an implementation of the
SCA model built upon Fractal, somehow close to GCM.
It provides dynamic reconfiguration of SCA component
assemblies, a binding factory, a transaction service, and a
deployment engine of autonomous SCA architecture.
Additionally, if components are structured in a hierar-

chical manner, the adaptation can be realised in a modular
manner, where each (service) component is responsible
for its own adaptation and for its own quality of service;
while interacting with its sub-components, or its exter-
nal services for distributing the adaptation process. A
deeper study of the interplay between hierarchical com-
ponent models and their reconfiguration can be found
in [15] which illustrates the relation between reconfig-
uration and hierarchy in the context of the SOFA2.0
component model.
Autonomic adaptation rules are often expressed as

event condition action rules like in Automate [16] or
Safran [17]. More generally, the adaptation procedure
can be structured as aMonitor-Analyse-Planning-Execute
(MAPE) loop for autonomic computing [18, 19]. GCM
provides a framework for structuring the elements of the
MAPE loop (Monitoring, Analysis, Planning, Execution)
as components embedded with the management part of
the components.
However those approach relies on a tight coupling

between components, and components must exactly cor-
respond to one physical entity. In service oriented archi-
tectures that can be cross-organizational, and that rely
on service discovery and interchangeability, some addi-
tional effort has to be made to integrate the autonomy of
each service into autonomic loosely coupled applications.
In this paper we show how to address this challenge and
guarantee the QoS requested by the user when choosing
the service. This will be done by an approach that inte-
grates in a single entity the notion of component and the
notion of interchangeable services.

2.3 Positioning
On one side SLA and contracts for services already
exist [20–22] but they lack the compositional design
and management featured by components. On the other
side components are very compositional and expres-
sive, but the support for SLA, in the specific context
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of service-oriented components, is very weak. Our pro-
posal presented in this paper is to use GCM and its
strongly structured entities to provide a service oriented
component platform that eases the design and execu-
tion of self-controlled services with SLA guarantees. In
other words, our contribution is first to define service-
oriented GCM components, i.e. hierarchical components
restrained to service-oriented features. Relying on this
model, we design specific support for SLA and contracts
dedicated to these service-components. In the following
We will describe our notion of SCC components that is
components that can be integrated in a service-oriented
approach with dedicated management features. We retain
the GCM model for its membrane that comes with a
high-level framework for the development of manage-
ment capabilities [3]. For dynamic management, it will
be performed modularly, where each service (component)
is responsible for its own adaptation and its own quality
of service; while interacting with internal or external ser-
vices. A strong point of our proposal is to link the provider
and the consumer of the service through a SCC based
SLA.

3 Self-controlled service component
Cloud computing and the future Internet promise a new
ecosystemwhere everything would be as a service, accord-
ing to a custom composition and with dynamic man-
agement of resources at run-time. Each component has
the responsibility to render a service, and needs relevant
information to control the business code realising this ser-
vice. In this section, we first describe the properties [23]
characterising SCC, as identified in the OpenCloudware
project [24]. Next, we present the structure of the SCC
membrane that contains the non-functional components
(Section 3.2). Finally, Section 3.3 describes the interfaces
of SCC components.

3.1 Properties
In this subsection we consider additional properties that
characterise Cloud service component. Those proper-
ties restrict the component specification to identify the
components that characterise services. For components
featuring the properties exposed below, composition and
adaptation are made easier, as well as the definition of the
QoS featured by the SCC.
The functional component of SCC is represented in

Fig. 1. This is a service that must ensure the following
properties (beyond properties of SCA/GCM/SOA):

• Stateless. A SCCmust not keep or handle information
about its state, and the computation status. If a
service maintains a state in the long-term, it will lose
its property of loose coupling, its availability for other
(concurrent) queries, as well as its potential to

Fig. 1 Structure of a self-controlled component

scalability. To be designed in a stateless way SCCs
may delegate state management to other entities. For
a service to be stateless, its operations need to be
designed to make stateless treatments, i.e. the
treatment of an operation should not rely on
information received during a previous invocation or
wait for the result of an external service invocation.

• Mutualisation. The component is a multi-tenant
service component. Multiple users may require the
service at the same time. This reinforces the need for
the “stateless” property required above.

• Ubiquity. Service components can be gathered into
communities of components that are equivalent in
functionality and QoS. Service components are
defined equivalent if they provide the same services
with the same QoS even if their algorithms are
different.

• Exposability. The functional and non-functional
description of service components is provided and
allows one to build an application through a catalog
or a portal.

These properties allow exposing components in a
library (catalog), sharing components for use in differ-
ent applications, and assembling them in a personalised
session.
A SCC component contains:

• A functional content (business) with the properties
defined above.

• External interfaces (client and server) used for
communicating with the environment.

• A membrane for non-functional aspects that we
describe in Section 3.2.

Ultimately, it is the responsability of the application
architect to decide which components should be moni-
tored, controlled, and subject to various levels of auto-
nomicity, and at which level(s) of the application hierarchy
the monitoring and control must be implemented. So
the architecture proposed in this paper is based on tem-
plates (SCC, Monitors, etc.) that will be instanciated and
specialized at design time.
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3.2 Membrane structure
Aswe have seen in Section 2, in GCMcomponents, auton-
omy is based on the use of a MAPE loop that we can
put in the membrane of each component. But we have
refined the functionality of the component to make it “as a
service”. Then, we have a simple and generic MAPE loop.
Indeed, we have a single server interface and identical

services for all users. In this case, checking whether a com-
ponent is compliant or not to a given QoS is much simpli-
fied as the component fulfills a single service provided by
a single interface.
That is why we propose a “self-controlled” service com-

ponent (Fig. 1 shows an instanciation of an SCC for a
Jonas component) based on the triad “input monitor, out-
put monitor, and QoS control” those different parts are
described below. This contract reflects behaviour defined
at design time and proposed in the offer.
We also add a property to the SCC component : “QoS

offered”. It will allow us to choose a service component on
the basis of its behaviour (functionality and QoS).

3.2.1 Monitoring component (MaaS)
SCC have the goal to control contract compliance. This
control should be based on measures taken at run-time.
We propose in this paper to define monitoring compo-
nents as “Monitoring as a Service” (MaaS). Monitoring
components should be hosted in the membrane of each
component.
MaaS components will introspect the component

behaviour by taking measures. The questions that are to
be answered forMaaS components are: where to measure,
when to measure, and what to measure.

Where to measure? MaaS components come in three
variants, depending on their position in the data flow of
the application. They are observing the external behaviour
(input and/or output) of the functional component inside
the SCC component (see Figs 1 and 4). They play the
role of interceptors: e.g. for an input MaaS, that we call
InMonitor, incoming service requests are intercepted, the
interceptor component stores the non-functional infor-
mation about the requests, which are then transmitted
(unchanged) to the functional component, via the corre-
sponding internal interfaces. Similarly, the OutMonitor
intercepts outgoing service requests. The last case is called
InOutMonitor, and is used in the case of SCC components
delivering a return value on their service interface.
The use of two monitors or of a two-way monitor, will

give us precise numeric values in input and output of the
service. Monitor components are not responsible for met-
ric analysis, and do not take decisions. It is the QoSCon-
trol component that will make the necessary calculations
to evaluate the behaviour of the service component.

When tomeasure? As a consequence of theMaaS place-
ment, we will be able to take measures upon each request
arrival and request emission.

What to measure? We basically propose a generic mon-
itor that measures the number of arriving requests, the
number of erroneous or rejected requests, as well as the
arrival and exit time. To obtain these values we need
“Counters” and “Timestamp” using the system time. More
advanced monitoring functionalities could be designed to
check for example the nature of the request.

3.2.2 Contract compliance component (QoSControl)
The QoSControl component is associated with the busi-
ness component. It ensures compliance with the service
contract.

QoS criteria To describe the behaviour of our compo-
nents and permit homogeneous QoS management, we
define a generic QoS model [25].
Four criteria are proposed to describe the QoS: avail-

ability, integrity, time, and capacity.

• Availability represents the accessibility rate of the
service component.

• Integrity represents the capacity to run without
alteration of information (for example: error rate).

• Time represents the time required for request
processing (for example: response time).

• Capacity represents the maximum load the service
component can handle (for example: processing
capacity).

This revealed to be useful and sufficient in all the prac-
tical cases we studied.
To support the self-management of resources, for each

QoS criterion, we define three values: the design value
has been determined during the design of the service, the
current value is the value monitored during the service
lifetime, the threshold value represents the limit the crite-
rion should not exceed for the component to ensures the
correct processing of requests.

The QoSControl process The QoSControl component
checks the current behaviour of the resource and its con-
formity with the contract. For this, it compares each
current value to the corresponding threshold value not to
exceed. It sends an OutContract notification if the current
value is less (or more) than the threshold value; in this case
the dynamic management consists in replacing the fail-
ing component by an ubiquitous service (see Section 6.2)
fulfilling the requirements. Otherwise, it sends an InCon-
tract notification. In practice, contracts may be a bit more
complicated that this, and combine checks on the val-
ues of several criteria. In Section 4.2 we show how we
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specify the behaviour of the management components
(monitors and controllers) and use these specifications for
verification purposes.

3.3 Interfaces
We have identified 3 types of interfaces necessary to per-
form the self-controlled function of our SCC component:
the functional, management, and control interfaces.

• Each SCC component has exactly two functional
interfaces (JeeRequest and JeeAnswer, in blue,
in Fig. 1). One server interface includes the
processing functions (service methods) that can be
performed by the service component. One client
interface performs invocation on the next service of
the chain, transmitting its current result for further
treatment or for exploitation of the final result. Note
that the functions of these interfaces have no return
value, according to the SCC specification.

• Themanagement interfaces are non-functional server
interfaces (ConfigInM, ConfigOutM, and
ActivateQoS in green in Fig. 1). They contain the
necessary mechanisms to manage the configuration
of non-functional components in the membrane.

• The control interface is a client non-functional
interface (OutOfQoS, in green, in Fig. 1). It contains
mechanisms for conveying the self-control
information to the Manager in charge of processing
QoS violation events. It outputs InContract
notifications as long as the behaviour conforms to the
contract, otherwise it triggers OutContract. Absence
of InContract events can be used by the manager to
detect severe failures from the SCC component.

The structuring logic of the membrane allows the
reusability and genericity of our components. The triad
(InMonitor, OutMonitor, QoSControl) associated with
each component service introduces a homogeneous ser-
vice component management.

4 Modelling/design platform
In this section we introduce the VerCors platform that
we use for the modelling and behaviour analysis of
our self-controlled components. Having a tool-supported
methodology is first important for the design phase, when
the designer builds his/her application, using legacy func-
tional components as basic bricks, and assembling them
following our SCC generic components. The toolsuite is
also very useful for generating executable code contain-
ing the whole architecture description and the skeleton
of the final application. We present the VerCors plat-
form in Section 4.1, then discuss how to use this tool-set
for formal verification of the application behaviours in
Section 4.2.

4.1 The VerCors modelling tool-set
VerCors [26] is a platform for the specification, analysis,
verification, and validation of GCM-based applications.
The principle of the tool is illustrated in Fig. 2. First, a
user specifies the architecture of a GCM-based applica-
tion, the signature of its interfaces, and the behaviour
of the primitive components using VerCors Component
Editor (VCE). Here a first validation is performed, con-
cerning all structural coherency aspects of the application
model. This check guarantees static validity of the model,
and ensures also that the code generation will termi-
nate correctly, and that the generated code will not fail
during deployment of the application components. Then,
from these descriptions the behavioural model of an appli-
cation is generated (ADL2N) in a form of a dedicated
behavioural semantic model: a parameterised networks of
synchronised automata (pNets). This semantic model is
transformed by abstraction functions (ABS*), until reach-
ing a finite model suitable for model-checking. Finally, the
Model Checker, in our case the CADP tool [27], verifies
the correctness of the model with respect to a set of tem-
poral logic properties (user requirements) and in the case
errors are detected it provides their description.
Once the requirements have been proven correct on

the VCE specification, the user can generate the set of
files allowing the deployment of the application (Archi-
tecture Description Language (ADL) for the Architec-
ture Description, IDL for the Interface definition in the
form of Java interfaces). Then naturally, the user has to
provide java classes implementing the service methods
of the primitive components. These files are processed
by the GCM component factory to build an executable
application that is executed within the GCM/ProActive
execution environment.

4.2 Behaviour specification and verification
In order to generate a behavioural model in the VerCors
platform, and ultimately ensure by model-checking that
the overall component assembly behaves as expected
(e.g. does not deadlock), the application architect should
provide: 1) an architectural description, in terms of a

Fig. 2 Principles of the VerCors platform
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composition of components, with their interfaces and
bindings; and 2) for each service method of a primitive
components, an abstract specification of its behaviour, e.g.
in the form of a Unified Modeling Language (UML) state-
machine, encoding the data- and control-flow of the com-
ponent assembly. The transitions of the state-machines
represent the communication events between compo-
nents, including whatever data that is significant for the
modelling. There is no need at this step in the design
of the application to have too much detail on the real
implementation; in particular any information that is only
relevant to the functional code of the components should
be abstracted away. The point here is that formal verifi-
cation (model-checking) is performed by essence on an
abstract model, not on the real executed code. Indeed, too
much details would make model-checking difficult, if not
impossible. The heart of the approach (but this is far from
the topic of this article) is to include in the abstract model,
and here in our state-machines, only what is needed to
represent the behaviour of the application, including asyn-
chronous communication, but also internal workflow of
the service methods. The corresponding part of the code
will be generated, and should not be modified by the
developper, when adding the functional part of the code.
In Fig. 3, we give an example of the (simplified)

behaviour specification of our QoSControl component.
On activation, the QoSControl component has received
its contract as a parameter, that we represent here
as "thr", the threshold values of the set of crite-
ria. On a periodic basis, it will query the In and Out
monitors for their respective criteria values, using the
getCritValuesmethod of the respective InMonitor
and OutMonitor interfaces, and compare them with the
thresholds (using the IsInContract predicate). The
resulting diagnostic (InContract or OutContract) is sent
on the non-functional interface OutOfQoS.
The composition of all the behaviours, together with

the standard controllers of GCM, will allow the verifica-
tion engine to build the full state-space of the application,
and check its behavioural requirements. This construc-
tion makes use of the behavioural semantics of GCM,
described in [28].

Fig. 3 Behaviour of a QoSControl component

5 Application design with autonomic control
In this section we discuss the different possibilities that
our methodology offers to the application designer, when
assembling components from (Cloud) services to build
an autonomic application obeying SLA constraints. This
means chosing which components should be SCC or not,
how to organize and compose SCCs in the hierarchy,
where to place the autonomic intelligence, and how to
relate the monitored and controlled components with the
autonomic management.

5.1 Composing SCC components
In Section 3, we have defined a GCM architecture for
a standard SCC component, in which monitors observe
activity on the server and client interfaces of the compo-
nent. The SCC structure hasmany advantages for building
flexible cloud service-based applications, in which ser-
vices are stateless, thus easily mutualizable, replicable and
exchangeable.
Most of the elements in an application will be SCC com-

ponents, composed hierarchicaly using the usual GCM
structure. Not all components in the hierarchy need to
be monitored and controlled; both primitive components
(encapsulating one single primitive service) and compos-
ite components can be controlled, and imbricated com-
ponents can also be controlled simultaneously at several
level of the hierarchy. In case of QoS violation, the con-
trol loop of the application will decide at which level(s) the
problem should be corrected. It is the responsability of the
application designer to decide which components should
be controlled, and designed using the SCC template.

5.2 Using non-SCC components
There are cases where a component cannot use the basic
SCC definition from Section 3. This is the case typically
when this component is waiting for the result of some
remote computation, before being able to finish its own
task. For this kind of service, the structure of the basic
SCC is not suitable: the monitoring of the service must
be done between the arrival of the client request on the
server interface, and the return of the result to the client,
back through the same interface, when the computation is
achieved. For these cases, we have a specific template with
a single InOutMonitor inserted at the server interface,
and a QoSControl component slightly different, tak-
ing all its information on one single client non-functional
(NF) interface bound to the InOutMonitor, and con-
trolling the requested QoS. An example is shown in Fig. 4.
Remark that such services with returned values should

also be mutualisable, so they have to memorise the ids of
the client requests, and use them later to return the result
at the corresponding address. So they are stateful in some
sense, and specific care will have to be taken if they need
to be replaced. As a consequence, to build applications as
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Fig. 4Monitored component: version for services with returned
values

much "as a service" as possible, meaning stateless, mutu-
alisable and ubiquitous, the architect should be careful to
separate the return value management part as much as
possible, and to stick to the basic SCC model for all other
components.
Last, we have to decide where the intelligence of the

autonomic control will be. In principle, there is no prob-
lem having autonomic control distributed at several places
and at several levels in an application: this may even be
more efficient, for very large and distributed systems.
However, in many cases, it will be sufficient to have
one single component, at the toplevel of the application,
gathering all of the QoS information, and providing the
autonomic management. This mechanism is detailed in
the following section.

5.3 Global autonomic control: the MAPE loop
One of the most common ways to provide autonomic
behaviour is to rely on a feedback control loop that fol-
lows four canonical activities: collect, analyse, decide, and
act. This loop defines four phases:Monitor, Analyse, Plan,
and Execute and it is usually referred to as the MAPE
autonomic control loop. In GCM, we propose a compo-
nent architecture that can be embedded in the component
membrane and ease the programming of autonomic adap-
tation procedures. TheseMAPE loops can either act at the
top level of the composition, but also interact through the
hierarchical nature of GCM applications.
We will see in the next section that SCCs are composed

into compound services at a certain level, called the VPSN.
It is at this level that the autonomic adaptation will be per-
formed through the use of QoS management components
in the membrane; it is at this level that the SLA will be
defined and guaranteed. However, interaction with lower-
level services part of the composition is still necessary, at
least to monitor the services and determine the service
that should be changed in order to guarantee the agreed
quality of service. For this reason each service encap-
sulated into a component is equipped with monitoring
interfaces and reports its status to the compound service.

The intelligence of the adaptation is placed in the analyser
of the compound service, that, based on global monitor-
ing of its performance, on monitoring information of the
sub-services, and on global additional requirements, will
decide the instances of the sub-services that must be part
of the composition, possibly changing the set of involved
sub-services to adapt to execution settings and to contract
requirements.

6 Service compositionmanagement
The service composition includes different service com-
ponents invoked during the user session. In a context
where these components are SCCs, and in order to use
service components adapted to the user demand (func-
tionality and QoS), we propose to preselect them at the
session initialisation. The pre-selection (pre-provisioning)
is made according to the user required QoS mapped to
the service offered QoS. This service composition con-
stitutes the VPSN (Section 6.1). Once the VPSN is built,
during exploitation phase, we need to manage the com-
posed service.We are defining three kinds of management
reactions according to the decision level: operational deci-
sions (Section 6.2), tactical decisions (Section 6.3), and
strategic decisions (Section 6.4).

6.1 Service composition: the VPSN
Based on SCC service components, upon establishment
of the user’s session, a private service composition (the
VPSN) is constructed by plugging together SCC compo-
nents according to the functionality and the QoS required
by the user (Fig. 5). For each VPSN, a table is created in the
knowledge base; it contains the VPSN-ID, SCC-ID, their
addresses and their offered QoS [29].
Because SCCs have the recommended properties (State-

less, Ubiquity, and Mutualisation), they can take part
in multiple VPSNs simultaneously (shared by different
users). For example in Fig. 6, SCC3.3 component is
attached to VPSN-A, VPSN-B, and VPSN-C.

Fig. 5 VPSN Table
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Fig. 6 Service Mutualisation and VPSN

In the next subsection, we will focus on themanagement
based on information reported by the various monitors.

6.2 Operational decisions : VSCs and SCCs on the VPSN
The QoS control integrated to each SCC service com-
ponent allows us to manage contract violations (Out-
Contract) when they occur: it takes the appropriate
operational decisions. We advocate a substitution with
an SCC ubiquitous service component. The component
replacement is managed by using Virtual Service Com-
munities (VSCs). A VSC is a community of components
containing several equivalent SCC components (having
the same functionality and the same QoS).
The community of interest concept (VSC) allows us to

react dynamically to any contract violation, to compute
the adequate changes to be undertaken, and then to apply
the changes in the VPSN. First, we describe the VSC cre-
ation (Section 6.2.1), and then we explain the dynamic
reaction of SCCs on the VPSN (Section 6.2.2).

6.2.1 VSC creation
VSCs are created during service components deployment.
When a service component is deployed, the informa-
tion related to this service is saved in a Service Table.
This information contains the SCC-ID, Functionality and
QoS criteria. According to this created Service Table,
the SCC is attached to the VSC corresponding to it in
terms of QoS and functionality. Adding the SCC-ID in
the VSC Table and adding the VSC-ID in the Service
Table makes this attachment (Fig. 7). In the case where no
VSC corresponding to this SCC, it creates a new VSC to
the deployed service; which correspond to a VSC Table
with following information VSC-ID, QoS criteria, Func-
tionality, SCCs-IDs and SCC address. The VSCs can be
grouped per strategic location, per operators or per plat-
forms in order to fulfill user’s requests. After explaining

Fig. 7 Service and VSC tables

the creation phase of VSCs, we move to the management
phase.

6.2.2 Dynamic reaction of SCCs on the VPSN
Each platform will have its VPSN Management. The
VPSN Management has three main actions: Replace, Add
or Remove Component. These actions will be solicited
according to the decision rules set by the platform of the
provider.
During service exploitation, when an SCC component

has a change in one or more of its four QoS criterion (Reli-
ability, Availability, Capacity and Time) it sends an Out-
Contract. The VPSN Management receives and reacts to
this notification according to the changed QoS criterion.
For example, if the OutContract results from an error

rate exceeding the threshold or if the component is
unavailable, then the VPSN Management replaces the
component in all VPSNs to which it is attached. In our
example SCC2.1 is replaced by SCC2.2 in the VPSN-A
(see Fig. 8). The SCC2.1 component is also part of VPSN-
B (see Fig. 6), so it will be replaced by an ubiquitous one
(SCC2.2). If the OutContract is the result of a low capac-
ity compared to the demand then the VPSNManagement

Fig. 8 SCC and VSC dynamic reaction on the VPSN
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will add an ubiquitous component to cover the demand.
In case where the load of traffic is decreased, the VPSN
Management will remove the added component in the
concerned VPSN. If the OutContract results from a higher
response time than the demand, then we will have the
option to add a component or to replace it by another with
better response time in the concerned VPSN.

6.3 Tactical decision: MAPE loop
At the top of the composition, the management decisions
are taken by the MAPE loop. These decisions are not
at the operational level and as they depend on available
resources, they rather are at tactical level.
Indeed, Cloud computing technology now allows cus-

tomers to use cloud services according to a pay-as-you-go
style. Answering a user request, together with its asso-
ciated QoS, the cloud provider infrastructure proceeds
to the corresponding allocation of non-shareable com-
ponents adding or reducing the number of components
in the service session (VPSN) according to the required
capacity. These decision are in general depending on the
business rules which are defined in the knowledge base;
this is why, we consider them at tactical level.
This may be implemented using a software architec-

ture with a multiple level autonomic management, in
which the MAPE loops of all service compositions will
interact with some shared controllers managed by the
service providers. The VPSN management is obtained
by the combination of the local actions of the MAPE
loop components, with the external resource Manage-
ments. When some corrective action is required within
a self-controlled application, the Analysis component of
its MAPE loop receives the notification (OutContract)
from some QoSControl components, and sends the diag-
nostic to the Planning component. This one will request
either a replacement SCC component, or some addi-
tional resources, to the external management environ-
ment (through the VPSN- management interface). When
receiving back the requested resources, it will build a
reconguration script, and pass it to Execute. In Section 7,
we will show an example of such an addition.

6.4 Strategic decision
Beyond these actions that can be automated, we have
all the other actions of the FCAPS (Fault, Configuration,
Accounting, Performance, Security) model that handle
the overall management, for example, the configuration
and activation actions of the QoS components, which
generally are initialized by the architect according to
SLA. FCAPS are standards of Telecommunications Man-
agement Network and framework for network manage-
ment [30]. Finally, the rules that govern the whole are
called high level and are of strategic nature. Fig. 9 shows
the complementarity of automated management actions:

Fig. 9 Composition management

operational, tactical, and strategic. Operational decision
corresponds to dynamic reaction VSC. Tactical decision is
realised in the MAPE loop based on application of usage
and context. Strategic decision corresponds to high level
management decisions.

7 The Springoo use-case
In this section we apply the previously defined model to a
use case: a Springoo application. Springoo is a web appli-
cation that conforms to the three-tier Java Enterprise Edi-
tion (J2EE) platform architecture, to provide typical online
merchant applications using Apache/Jonas/MySQL com-
ponents. Originally based on the container framework
Spring [31] it was developed as an internal test-bed for
innovative technologies by Orange R&D. This application
is one of the end-to-end case-studies of the OpenCloud-
ware project for Cloud development and management
infrastructures. We use it in this paper to show the advan-
tages of self control and SLA management.
Our new proposal for the architecture of (a subset of )

Springoo is shown in Fig. 10; note that to improve the
readability of this diagram, we have hidden many labels
(in particular interface names), and most of the UML
interface specifications. To implement this application,
our partners proposed a PaaS which can be described as
an open platform for cloud software engineering, acces-
sible to cloud architects and developers, deployed on
multi-IaaS through a self-service portal.
Our work has allowed us to define Springoo using

mostly SCC components, with their In- and Out- moni-
tors and their QoSControl component. We have defined
the architecture described below.
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Fig. 10 Architecture of the Springoo application

First, all the main components of Springoo (Composi-
tion, Apache-SCC and Jonas-SCC) are generically defined.
They are all of the self-control and stateless type, as
described in Section 3.2. To keep the example simple
enough, we do not describe here the details of the Jonas
component. Recall that an SCC component includes an
input monitor, an output monitor and a service quality
control component (QoSControl). Springoo is therefore
composed of a set of primitive and composite compo-
nents, all of SCC type.
The only exception is the frontal component, that

receives the client requests, transmits them to Apache,
and waits for a return value from Jonas. The frontal awaits
for answers, either from Apache if the Http components
detect an error (typically when the query syntax is incor-
rect - code 400 - not shown in the figure for lack of
space), or from Jonas when the request is fully processed.
In both cases, the frontal returns the request answer
(error or response value) to the client, through the InOut-
Monitor of the Springoo component. As a consequence,
the ClientRequest service method, on the external
Springoo service interface, but also on the Frontal service
interface, has a significant ReturnType. But all the other
service methods (HttpRequest, JeeRequest, HttpReturn)
have a Void return type.
The Apache service has been designed as a pure

SCC component named Apache-SCC, with a Http sub-
component (in the real world, it would also have an Https
subcomponent, and these would be used to process the

client requests depending on the protocol used (http or
https). The Apache-SCC server interface HttpRequest,
and the Http component server interface have a single
service method, that receives the http request as an argu-
ment, and do not return any value. After successful decod-
ing of the http request, they send a JeeRequest (through
their OutMonitor components, abbreviated OutM in
Fig. 10) to the Jonas-SCC component.
The Http and Jonas components are monitored and

controlled at their own level, but also at composition level
if this is necessary according to SLA. If an OutContract
event is raised on the non-functional interface of Com-
position and Apache-SCC and Jonas-SCC are InContract,
this would mean that their link is faulty. In the case where
the three notifications are OutContract, the manager will
have the choice to manage the problem by replacing the
sub-components in fault, or the whole composition.
Next, a full MAPE loop has been integrated in the

membrane of the Springoo component. Five internal com-
ponents define this loop:

• An input/output monitor, and the associated
“QoSControl” component, as described in Section 5,
analyze the client requests and responses
(“InOutMonitor”).

• An “Analyse” component receives all the indications
of violation of QoS contracts for sub-components.
Depending on the situation, it may take 2 corrective
decisions: either a replacement of a component by a
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similar one matching the contract; or an increase in
the resources allocated to the failing service.

• A “Planning” component receives the diagnostic from
the Analyse, and plans the actions to be performed.
Depending the type of correction, it will either request
a replacement SCC component, or some additional
resources, to the external management environment
(through the VPSN-management interface). When
receiving back the requested resources, it will build a
reconfiguration script, and pass it to Execute.

• An “Execute” component is responsible for executing
the required reconfiguration. When receiving the
new SCC components from the environment, it will
transmit them to the adequate place in the
distributed hierarchy, and launch the execution of the
reconfiguration scripts.

Additionally, we have an “Activate”, component, respon-
sible for enabling or disabling the service quality control
of all QoSControl components in the hierarchy.
Finally, 3 interfaces have been defined to communicate

with the outside:
1. ClientReq: An input/output bidirectional use

interface responsible for processing the client
requests and responses.

2. ReplaceCpt: A client interface informing the external
Manager components that a sub-component needs
to be replaced or added.

3. Activate: A server interface which allow all
QoSControl components to be enabled or disabled.

Elasticity and Load balancing Adding the standard
notion of elasticity in our architecture is not very dif-
ficult: when the MAPE loop has identified the need to
augment the computing capacity by adding a component
(and the corresponding resources) to share the work-
load, it has signaled this request to the external Manager
through the VPSN-management interface. As an answer,
the Manager will select an adequate component (from the
corresponding VPSN), and return it to Springoo.We illus-
trate this in Fig. 11, in which we want to manage elasticity
for the Jonas service, using a set of Jonas instances, and
an autonomous management of this set using a MAPE
loop and the VPSNmanagement mechanisms. To process
the dynamic reconfigurations, we have replaced the single
Jonas Qos-aware component by a Qos-aware composite
component, containing a LoadBalancer component,
and the Jonas instances. The LoadBalancer has a mul-
ticast client interface M1 that scatters the Jee requests
on the Jonas replicas. The Springoo toplevel MAPE loop
receives information from the composite Jonas monitors,
and decides whether it needs to adapt (add or remove)
the set of replicas. Suppose for example the planning
component decides to augment the capacity, it sends
an AddCpt request on the VPSN-management interface,
gets back the id of a new Jonas replica, and generates
a GCM script that will be executed at the level of the
LoadBalancer.
A similar mechanism can of course be used for any

component of the application (Http, Https, and Jonas
sub-components), at the Springoo toplevel, or even

Fig. 11 Load balancer
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combined at several of the hierarchy, if the architect
wants it.
This structure has been specified, and validated by

the VCE Editor. Here “validated” means structural valid-
ity, staticaly checked by VCE, including correctness of
the architecture, interfaces, and namings (full defini-
tions in [32]). This guarantees that the generated ADL
will be valid, and the application will be built without
runtime error by the component factory. The gener-
ated ADL code gives the description of the whole
Springoo Application. It encompasses functional and non-
functional components, associated classes, interfaces, and
bindings.

8 From SCC component to SLA
This section complements our contributions to the non-
functional aspects through a QoS model. It presents the
generic SLA (Service Level Agreement) model that we
have proposed in the OpenCloudware project and as
an ETSI standard [33]. The specificity of this model is
the following: it explicits on the one hand the SLO user
requirements, and on the other hand the provider offers
(service and QoS) associated to the same QoSmodel (four
generic criteria). To meet the SLO requested by the user,
the provider offer will rely the composition of several SCC
components.
First, in this section, we begin with the descrip-

tion of our SLA approach (Section 8.1). Next, we
present (Section 8.2) the SLO expression in ade-
quacy with the management actions provided by SCC
components. Finally, in Section 8.3, its SLA generic
model.

8.1 Approach
Our approach is to propose a SLA model that explic-
its and aligns user requirements (SLO and Obligation)
and provider offers (services) through the model and the
QoS expression [34]. As we have seen in Section 3, a ser-
vice (SCC component) is defined by its function and its
behaviour, described according to four QoS criteria with
information on QoSCriteriaName (Availability, Integrity,
Time, Capacity) and QoSCriteriaValue (design, threshold
and current value). The user will express his/her SLO
through the four criteria. The provider selects in his/her
catalog the SCC component to best meet the SLO request.
The personalised service delivery is performed accord-

ing to QoS of VPSN user session. The VPSN guaran-
tee is taken into account in SLA. For each VPSN we
introduces a set of services necessary to control and
manage the end-to-end QoS. Thanks to the MAPE loop
of the SCC components, the service level management
is automatised. The service delivery takes into account
the user profile, the context, and SLO expressed by
the user.

8.2 Service level objective
The Service Level Objective (Fig. 12, bullet 3.1) is the
means for the user to express his needs. The objectives
expressed by the user may be linked to the end-to-end
QoS. The end-to-end (E2E) objectives define the final ser-
vice QoS level (compound service) provided to the user.
Indeed, if the customer requires a service composition, he
may then precise the conditions linked to their operation
such as response time, availability rate and scalability.
For Springoo example, the user requires that the pro-

cessing time of his service is less than 2s in 90% of the
cases, if the number of requests processed is less than
1000 req/s. On the other hand, if the number of requests
is between 1000 req/s and 2000 req/s, he may still require
a processing time less than 2s but with a rate of failure less
stringent (for example 80% instead of 90% of the cases).
The SLO linked to this user needs are then the

followings:

• SLO1: E2E processing time < 2s if the request
number is <1000 req/s in 90% of the cases.

• SLO2: E2E processing time < 2s if the request
number is >1000 and <2000 req/s in 80% of the cases.

8.3 Service level agreement
The SLA is a document, a contract, that defines the spe-
cific and personalised deal, accord required between a
service provider and a client [35]. After having introduced
the SLA content, the Fig. 12 formalises the SLA template
generic model based on UML. The SLA template generic
model is composed by:

1. Parties (Signatory Party and Third Parties).
2. High level constraints
3. User part, corresponding to the demand: Service

Level Objective and coverage.
4. Provider part, corresponding to the offer: Services

offered as well as the associated QoS. Each service is
a SCC component.

5. The SLA contract conditions.

To clarify our SLA generic model, we take the use case
Springoo presented in Chapter 7.
The Parties represent the contracting entities of a SLA

contract (Fig. 12, bullet 1). We classify these entities
as “Signatory parties” and “Third Parties”. The first set
represents the contractual parties that can include the
provider, the end-user, the developer (Springoo resource
requester), etc. The second set represents the trusted
third parties involved in the SLA contract including the
network provider, the monitoring provider, etc. Not appli-
cable to the Springoo.
The proposed SLA model includes the conditions

imposed by the provider and/or the consumer high level
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Fig. 12 SLA generic model

constraints (Fig. 12, bullet 2). We propose the following
classification of constraints: strategic, financial, juridi-
cal, and technical. Strategic constraints represent either
the strategies requested by the user or those applied
by the provider. Financial constraints are the conditions
related to the payment and usage patterns. Juridical con-
straints define legal constraints such as licensing rules,
editing rights, etc. Technical constraints represent the
requirements determined by the provider to execute the
requested service. For example, the provider may require
the user to have a specific browser for Springoo.
The user part (Fig. 12, bullet 3) should be composed of

SLO, geographical features and coverage.
The offer of the provider represents the catalog of

components available on the PaaS. The providers offer
SCC components that are differentiated by their QoS lev-
els, their prices and how they are built, deployed and
managed. In a specific SLA (Fig. 12, bullet 4) we find the
result of the choice of SCC components corresponding to
the SLO of the user and constitute its VPSN (SCC com-
position). In our Springoo example, the selected SCCs are
an Apache-SCC and a Jonas-SCC component whose com-
position meets the requested SLO (number of requests
per second, response time and integrity 8.2). The classes
(Fig. 12, bullet 5) represent the terms of contracts. We

have the supplier guarantees namely SLO1 and SLO2 of
the user of Springoo (Fig. 12, bullet 5.1). To do this, we
find the "SLA Management Actions" (Fig. 12, bullet 5.2),
which define the list of actions to do, more those provided
at the SCC components level (6), ie at the VPSN level,
for the end-to-end service delivery. We find the actions
that are induced by SLO and those for SLA violation. For
example, to ensure SLO2 of the user, which represents
resources elasticity case, according to requirements, we
need to add a Jonas and therefore a Load Balancer compo-
nent to share the load. These shares will be automatically
activated when an OutContract of QoS component at the
composition level will be sent. Another case would be
that of SLA violations (Fig. 12, bullet 5.3), for example, if
the response time of the VPSN no longer meets the SLO.
The specific actions will depend on the business rules
and diagnosis. If a violation response time comes from
the location of the added Jonas, it must be replaced with
an ubiquitous Jonas with a more appropriate location.
These management actions are conducted by the dynamic
reconfiguration of the VPSN.
The penalties (Fig. 12, bullet 5.4) define the benefits to

the user, in case of SLA violation. The SLA costs (Fig. 12,
bullet 5.5) cover all costs associated with the signed SLA
and those of management actions taken.
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9 Experiments
We have partially implemented1 the architecture from
Fig. 10 using the GCM/ProActive middleware to pro-
vide the Monitors, QoSControl, and MAPE components.
GCM/ProActive comes with all the software infrastruc-
ture necessary to simply define interceptor components
and easily integrate monitoring components in the com-
position. The implementation provides a MAPE loop that
monitors the response time of both Apache and Jonas
components and is able to trigger QoS decisions on them.
Two criteria are implemented: (1) enable/disable prop-
erties like caching on Apache components, which can
improve the response time, butmay bemore costly in stor-
age; (2) whenever the average response time of the Jonas
component increases over T secs, the QoSControl com-
ponent notifies it through the OutOfContract interface;
then, the MAPE triggers an AddCpt action through the
ExecScript interface, to add a Jonas worker inside the
Jonas component. Jonas uses a LoadBalancer compo-
nent as the one shown in Fig. 11, to distribute the load
through the workers, as described in Section 7.
Figure 13 shows three stages of the service. In the first

stage there is only one Jonas component serving requests,
and an SLO specifies that the average response time of
Springoo must be less than 4 secs. After the first 20
requests, an OutContract notification is sent fromApache
and the MAPE loop decides to enable caching on the
HTTPS component, which is slower than HTTP; this
results in a decrease in response time. During the sec-
ond stage, an SLO in the Jonas component specifies that
the average response time must be less than T = 1.8
secs. When the OutContract is sent by Jonas, the MAPE
loop decides to add a new Jonas component to share the
load of the application server. After 40 requests it can
be seen that the SCC Springoo component has been able
to decrease its response time guided by the SLOs and
autonomic actions.

Fig. 13 Request response time

10 Conclusion
The main contribution of this paper is to unify the con-
cepts of components and services in the context of cloud
applications, so that the various promises of the new
service ecosystem become a reality.
We clarified the concept of service through properties

so that the component “as a service” becomes an entity of
service composition. The aim is to choose and to assemble
application services into a network of services that can be
loosely coupled to create flexible and dynamic processes
(VPSN). This new composition paradigm allows the per-
sonalised design of complex applications that automati-
cally adapt to a required service level agreement, possibly
by changing the services involved in the composition.
We show in this paper with an “Apache as a Service” use-

case named Springoo, how the adoption of self-controlled
components helps the service composition to provide a
guarantee of quality of service.
The approach we advocate covers the whole spectrum

from architectural modelling, to service implementation,
and run-time support including autonomic contract man-
agement (SLA).
Our proposal is backed-up by a design and verification

platform, used to build early models of the applications,
check their properties, and generate code supported by
an execution environment: GCM/proactive. These envi-
ronments were used in the implementation of a Springoo
scenario that shows the feasibility of our proposals.

Endnote
1This implementation is available at: https://github.

com/scale-proactive/mape-component-controllers/tree/
qosaware. It contains only a small part of our QoS-aware
model of Springoo, tailored to demonstrate the QoS
autonomic management features.
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