
FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 1

Filtering Structures for Microblogging Content

Ryadh Dahimene and Cédric du Mouza

CEDRIC Laboratory – CNAM

firstname.lastname@cnam.fr

2 rue Conté, F75141, Paris, France

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 2

Abstract

In the last years, microblogging systems have encountered a large success. After 7 years of
existence Twitter claims more than 271 million active accounts leading to 500 million tweets per

day. Microblogging systems rely on the all-or-nothing paradigm: a user receives all the posts
from an account s/he follows. A consequence for a user is the risk of flooding, i.e., the number of
posts received from all the accounts s/he follows implies a time-consuming scan of her/his feed

to find relevant updates that match his interests. To avoid user flooding and to significantly
diminish the number of posts to be delivered by the system, we propose to introduce filtering on

top of microblogging systems. Driven by the shape of the data, we designed different filtering
structures and compared them analytically as well as experimentally on a Twitter dataset which
consists of more than 2.1 million users, 15.7 million tweets and 148.5 million publisher-follower

relationships.

Keywords: Microblogging, Filtering, Indexing, Scalability issue

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 3

Filtering Structures for Microblogging Content

Microblogging systems have become a major trend as well as an important communication
vector. In less than seven years, Twitter1 has grown in a spectacular manner to reach more than

500 million users in August, 20132 from which 54% are active users3 (posting at least a tweet per
month). Other similar systems like Sina Weibo 4, Identi.ca5 or Plurk6, to quote the largest, also
exhibit dramatic growth. In such systems, the length of a published piece of news (called by post

in the following) is limited to 140 characters which corresponds on average to 14.7 terms
(Foster et al., 2011), so clearly greater than 4-5 terms adverts as reported in (König, Church, &

Markov, 2009) but smaller than RSS items (Hmedeh et al., 2011), blogs (Ma & Zhang, 2007) or
Web pages which have a size of 450 to 500 terms excluding tags (Levering & Cutler, 2006). The
rationale for using such small messages is that these services were designed to be accessed with

traditional cell phones through Short-Text Messaging protocol7.

In microblogging, a user, represented by his account, follows other accounts to be notified
whenever they publish some information. Conversely, s/he becomes a publisher for the accounts
that follow her/him, which results in the existence of a large social graph. One of the main

differences with other online social networks is that in microblogging, the graph linking the users
can be seen as an interest graph, since users follow each other if they have interest in each other

posts. Those networks work on an all-or-nothing fashion, i.e. if a user A follows a user B, A will
receive all of B’s posts.

Microblogging is also characterized by the heterogeneous nature of users. In Twitter for
instance, there exist some high update frequency accounts (newspapers, tech-blogs and

journalists) and others that publish less than one post a week. Moreover, there exist very popular
accounts (e.g. news channel accounts like @FoxNews8 or famous accounts like
@BarackObama9 with more than 45 million followers), and others with 0 or 1 follower.

For various reasons (security, advertisement, control policy …) these systems rely on a

centralized architecture10. Each post published is received by the central system that forwards it
to all the followers of the publishing account11. The central system is also responsible of the
search feature (Busch et al., 2012). Since the most active accounts are generally the ones with the

highest number of followers, the system must face a tremendous amount of posts to forward. For
instance Twitter, which claimed in 2011 more than 200 million tweets a day, had to deliver daily

over 350 billion tweets12. This traffic overload (especially for high-followed accounts) represents
from an architectural point of view a scalability bottleneck.

On the follower's point of view, the amount of posts received from the accounts s/he
follows, between 30 and 200 depending on the system considered (Kwak, Lee, Park, & Moon,

2010) loses the reader in the middle of long feeds of posts. This results in poor data readability
and potentially loss of valuable information.
In a UK-based questionnaire over 587 participant, Bontcheva, Gorrell, & Wessels (2013) report

that 33.9% of users perceive that they receive too many posts and 70.4% have found the task of
locating the interesting/relevant posts amongst the others difficult. Also, 66.3% of the

interviewed users have felt at some time that they can’t keep up with the amount of received
tweets. A direct consequence of this phenomenon is the high dynamicity of the graph: to avoid

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 4

flooding, users who follow active accounts tend to unsubscribe because they can't manage the
continuous flow of posts as studied in (Kwak, Chun, & Moon, 2011; Kivran-Swaine, Govindan,

& Naaman, 2011).

In order to improve the user experience and reduce the network load, we have chosen to
introduce filtering in microblogging systems. The main underlying idea is that a user A follows
another user B for some topics, and consequently s/he wants to receive only a subset of B's posts

that matches his interest. Such a structure must efficiently retrieve for an incoming post all
followers of a publishing account whose filter is satisfied by the post. While designing the

filtering structures, we took a particular consideration about some specific aspects of
microblogging systems which we can summarize as:

 short messages: the size restriction (generally 140 characters) means that we handle
short documents, the average length of a tweet is 14.7 terms (Foster et al., 2011);

 account heterogeneity: microblogging studies have revealed account heterogeneity in
term of both update frequency and number of followers;

 graph evolution: As observed in Twitter (Kwak et al. 2011; Kivran-Swaine et al. 2011),
users follow and unsubscribe often to other accounts. The filtering structure must

consequently handle the graph dynamicity in order to handle this phenomenon;

 centralized system: The social graph is stored by the microblogging system. This system

receives all posts and forwards them to followers according to the graph it stores. That
means the whole task is supported by the centralized system. Therefore we must reduce
the filtering process time by trying to manage the matching in central memory.

Considering the main characteristics of such a system. The main contributions of our paper

are:

i. the presentation of four indexes, based on traditional inverted lists approaches, which

support content filtering in microblogging systems;
ii. analytical comparisons of the structures efficiency in term of memory requirements,

matching and update times of the three structures;
iii. an experimental validation of the analytical costs for the structures on a dataset of 2.1

million users, 15.7 million tweets and 148.5 million following relationships.

The rest of the paper presents the detailed Related Work followed by the Data model where

we define our system, including the definition of the filters as well as the notification process.
Section indexing describes our filtering structures and their analytical study. Section
Experiments presents our experimental setting and results followed the conclusion.

Related Work

Microblogging systems characterization

The impressive growth of microblogging systems with their tremendous amount of user
generated content has attracted the research community. Java, Song, Finin, & Tseng (2007)

presented one of the first studies that looked inside Twitter and showed for instance that users

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 5

with similar intentions tend to connect with each other. Kwak et al. (2010) have also studied the
following behavior and information diffusion patterns for a large snapshot of the entire

Twittersphere. We relied on those studies in order to get insights about the user behavior on
microblogging systems.

Search and indexing

Some recent works tackle the scalability issue when searching relevant posts by indexing
the flow of tweets, like EarlyBird (Busch et al., 2012) which describes the real-time indexing

structure used by Twitter to implement the search function. It relies on an inverted index
mapping keyword queries to append-only posting lists which contains tweets in the ascending
order of their timestamps. This allows to retrieve effectively the newest tweets for a given query.

In Tweet Index (Chen, Li, Ooi, & Wu, 2011), the authors propose to reduce the indexing

time without decreasing the quality of the search result by indexing immediately tweets which
have a high probability to belong to a query, and by delaying indexing of other tweets. Tweet
Index performs a classification task to rank tweets against the most popular previously

encountered queries. This classification enables TI to select tweets to be indexed first by picking
the tweets which matched the most popular queries.

In LSII, Wu, Lin, Xiao, & Xu (2013) adopt a similar approach. It implements a growing

size index cascade in order to insert tweets from the smaller index and later move tweets in batch

mode. Oppositely to these approaches which aim at performing (partial) matching between a
query composed by several terms, and a tweet, we consider single-term filtering which allows

different factorizations of inverted index.

Ranking and recommendation

Avoiding user flooding can also be achieved by providing the relevant content through

recommender systems. Sriram, Fuhry, Demir, Ferhatosmanoglu, & Demirbas (2010) have
presented a classification of tweets based on user profiles. It relies on a trained classifier to route
an upcoming tweet to a predefined class. Sankaranarayanan, Samet, Teitler, Lieberman, &

Sperling (2009) describe a technique for concept extraction from noisy sources, and apply it to
retrieve news from Twitter data. In (Bakshy, Hofman, Mason, & Watts, 2011; Weng, Lim, Jiang,

& He, 2010; Zhang, Li, & Wang, 2013) the authors propose metrics to compute the user
influence in Twitter and to rank tweets according to the user influence. Uysal & Croft (2011)
present a filtering approach which takes advantage of the retweet behavior to bring important

tweets forward. Liang, Xu, Tjondronegoro, & Christen (2012) proposes to provide topic
recommendations by leveraging microblogs implicit links (relationships between users, topics

and posts) as well as temporal information from the posts. Vosecky, Leung, & Ng (2012) also
used the implicit microblogs information combined with content-based features in order to filter
and rank posts according to their quality. Another approach consists of using domain knowledge

to provide recommendations (Bouraga et al., 2014), This approach presents the advantage of
avoiding the “cold-start” problem (i.e., not having enough historical data to infer

recommendations). Finally, efficient community detection in social networks can be used to
compute clusters in the users set and perform recommendations (Yin, Li, & Niu, 2014).

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 6

All these approaches aim at providing more quality content to users but do not diminish the

number of delivered messages by the centralized system. Moreover, they require either large
space or time overheads. Oppositely our approach proposes a structure that handles the filtering

process on the server's side reducing drastically the number of posts delivered at cost of small
overheads.

Publish/subscribe systems

In on-line publish/subscribe systems, different index structures have been proposed to
handle the matching of incoming subscriptions. In Le Subscribe, Pereira et al. (2000) present a
Count-based index which matches subscriptions by counting predicates that are satisfied. Broder

et al. (2011) have introduced the evaluation of graph constraints in content-based
publish/subscribe systems. The authors suppose that the publishers and subscribers are connected

by a directed graph (like in microblogging systems) and they implement algorithms to efficiently
evaluate constraints.

Silberstein, Terrace, Cooper, & Ramakrishnan (2010) consider high frequency update

feeds. The authors propose a method to selectively materialize user events over streams in order
to improve the scalability of matching algorithms in such systems. Another filtering technique is

presented by Haghani, Michel, & Aberer (2010) where the authors process top-k algorithms on
top of Web 2.0 streams which allow to filter out posts based on the relevance and the freshness
within a sliding window. (Hmedeh et al., 2012) proposes and compares indexing schemes for a

pub/sub system that scales to high publication rates. Our context is quite different since we have
shorter messages (posts) , short queries (single-term filters) and a number of users and queries

much more important in heterogeneous social graph. Additionally, in publish/subscribe the
producers and consumers of data are distinct actors while in social networks a single user can
play both roles.

Data model

In this Section we introduce our micro-blogging model and our content filtering based on single-

keyword queries.
Table 1 summaries notations that we will use through the rest of the paper.

Microblogging system

A micro-blogging system like Twitter can be represented as a directed graph G = (N, E)

where the set of nodes N represents the users (accounts) of the system and the set of edges

E⊆N×N represents the following relationships. More precisely a directed edge e=(u, v) exists

from a node u to a node v if the user whose account is u is notified whenever the user whose

account is v publishes a piece of news (u receives v 's updates).

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 7

Notation Description

N total number of accounts

Γ+(n) accounts followed by n

Γ-(n) accounts that follow n

φ average number of followers for a user

τ average number of filter terms for a (publisher, follower) pair

|p| size (distinct terms) of a post p

(k, β) Heaps' law coefficients for micro-blogging datasets

γ Zipf's law constant for micro-blogging datasets

VF, VP filter vocabulary, posts vocabulary

θdir size of a directory entry

θlist size of a posting list

θentry size of an entry in a posting list

Table 1. Notations

In the following we blur the distinction between a user, an account and a node. For a node

n, we define Γ+(n), the set of nodes followed by n, i.e., its successors in G as

EnnnnNN ,,2:

We define similarly Γ-(n) the set of nodes that follow n (predecessors).

Each node produces a micro-blog piece of information, called post in the following. A post

is defined as a sequence of terms p=<t0, t1, t2, … , tn>. We denote by P the set of posts and by VP

the posts vocabulary.

Filters

To improve micro-blogging systems performance we propose keyword-based filters. A

filter F in our system is represented as a set of distinct terms n
tttF ,,

21 where each term ti

belongs to the filter vocabulary denoted by VF The length of F, denoted by |F|, is the total

number of (distinct) terms it contains. Like Yan & Garcia-Molina (1994), we make the common

assumption that VF ⊆ VP. F denotes the set of filters, excluding the filter ⊥ that matches all posts,
i.e., ⊥ = VP. A labeling function label associates a filter to each edge of the social graph G:

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 8

label: E → F ∪ ⊥

We name the social graph whose edges are labeled by filters the filtered social graph (FSG).

Example.

We present here an example of social graph that we will use throughout the paper to
illustrate our different proposals.

Michel decides to follow two very active accounts, namely CNN and AFP (Agence France
Press). These breaking news accounts publish dozens of posts every day about various topics.

Since AFP is known as a reliable source with early breaking news, CNN follows AFP and
retrieves all its posts. Conversely, AFP has a poorer cover in the IT and movies areas and relies
on the posts issued by CNN, only for these two domains, i.e., a small part of the posts published

by CNN. To avoid flooding due to CNN and AFP, he would like to receive only posts concerning
politics, IT and movies from CNN and only posts about politics from AFP. Cedric follows a very

small number of accounts, including AFP from which he wants to receive sport news. Finally,
Ryadh filters out the posts from Cedric to keep only those about IT. Figure 1 illustrates the FSG
corresponding to this motivating example.

Note that the filters are associated to the edges which allow a user to express different
interests (i.e., filters) w.r.t. the source considered. For instance the user Michel wants to retrieve

all posts from CNN concerning IT, politics and movies and only these ones, and from AFP only
posts about politics. Thus we have label(Michel, CNN) = {IT, politics, movies} and
label(Michel, AFP) = {politics}.

Figure 1. A filtered social graph

While currently no micro-blogging systems allow to filter out the posts received according
to topics of interests, we believe this solution is an answer to the post flooding observed. We can
envisage that these filters are explicitly expressed by the user or can be deduced from user

interests. Regarding this second approach, we investigated several ways to automatically label
the social graph edges with the corresponding filter.

Microblogging systems like Twitter provide hashtags which are a usage convention that
allow users to tag a tweet by adding a # symbol before the tag. However if hashtags are a good

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 9

way to classify tweets, they have a very volatile cycle of life and are very often related to
peculiar events. Moreover, most hashtags are formed by concatenation of words, or written in

SMS language, what complicates their use if we want to introduce more complex matching (e.g.
semantics). Additionally there are less than 10% of the tweets in our corpus that contain a

hashtag which led us to discard this approach.
Teevan, Ramage, and Morris (2011) reported an average query size of 1.64 terms for the

searches issued on the Twitter search engine. We assume an average filter size, extracted from

the tweet content, similar to this average query size, motivated by (i) the filtering corresponds to
a user preference regarding the publication of a given account and not general filters for all his

interests on the collection of accounts he follows and (ii) we often meet in micro-blogging
platforms users that are topical authorities (e.g., Pal & Counts, 2011), Twitter itself already
recommends accounts to users for a given set of topics. With our system the users can specify

filters to retrieve only the tweets related to the topic of authority of a user. Techniques such as
topic modeling can also be used to infer relevant filters with an important extra-cost compared

with our approach. In (Sommer et al., 2012), the authors describe a method which enables to
label tweets with topics in order to provide sentiment analysis in an e-commerce context. We
underline that our work aims at tackling scalability issues in such a context. For this purpose, we

will not discuss the strategies (and their relevance) based on filter extraction from the tweet
content like the one presented in Twitter’s reference paper describing the search index (Busch et

al., 2012). Improving the quality of filtering while remaining scalable is part of our future work.

Indexing Schemes

The indexing scheme used in widespread micro-blogging systems like Twitter allows to

efficiently retrieve for a publishing user n the set n of followers in a graph G without any

filtering. These systems mainly rely on a hash-based index on the node id to determine the list of
followers of this node. Our challenge when introducing filtering over more than 500 million

users is how to efficiently determine the set n of followers based now on the FSG. This issue

must be especially tackled for users with a large number of followers since the notification

process time largely increases due to the containment relation to be checked, i.e. the length of the
posting lists implies a time consuming scan to find users to notify.

We propose and compare different index structures that can easily extend the existing
graph structure storage of online social network in order to manage post filtering. To achieve

notification at runtime, regarding the high incoming rate of posts (e.g., Twitter reports some
peaks with more than 7,000 tweets a second in 201113 and more than 140,000 tweets per seconds
in 201314), we consider structures that fit in memory. This discarded tree-based solutions. Our

proposals are based on inverted lists which benefit from factorization and could be deployed on
existing systems whose graph structure is already implemented as an inverted list. Note that

using hash file implies that entries should have a collision resolution method such as classical
separate chaining that uses pointers to an overflow space. Such a technique accommodates
moderate growth, but to face the graph dynamicity we may need a dynamic hashing method such

as linear hashing (Litwin, 1980).

Our variants of inverted lists exploit different factorizations: follower's ids, publisher's ids
or term's. Since we effectively store terms' ids and not the terms themselves (we use a mapping

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 10

table to retrieve the term associated to an id) we consider in the following that all entries,
follower's ids, publisher's ids or term's ids, require the same space (a 8-byte integer in our

implementation to fit Twitter's current ids). We denote by θdir, θlist and θentry the size of
respectively a directory, list and entry (follower's, publisher's or term's ids).

Depending on the access order of the fields, we compare three different factorizations for

our index structure. The PFT-Index, the PTF-Index and the TPF-Index. Each one of the proposed

approach will be described the next subsections.

The PFT-index

The PFT-index (as Publisher-Follower-Term index) is essentially a mapping whose key is
an account n ∈ N, and the value is the corresponding posting list Postings PFT (n), i.e., the set of

followers along with their filters:  ,,,,,,,,)(
21

1

21

1 2211 nnnnPFT
ttnttnnPostings , with

nn i and),(nnlabelt
i

j

n i

. PFT-index corresponds to a factorization first on each

publisher, and then for each publisher a second factorization on the followers ‘IDs.

Example

Figure 2 shows the PFT-index structure that corresponds to our Example.

Figure 2. The PFT-index

PFT-index memory requirement

Let φ be the average number of followers for a user, and τ the average number of filter

terms for a (publisher, follower) pair. The index consists in the key directory, and the posting
lists that contain followers ‘IDs and terms. The expected memory requirement of PFT-index for
a system represented by a graph FSG with |N| users is:

)()_()(termstotalidftotaldirectorysizeFSG
PFT

memory

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 11

The size of the directory is the number of publishers, which we assume equals to N (every
account have generally at least one follower). The number of followers ids total(f_id) present in

the structure is N×φ, and the total number of terms total(terms) indexed is N×φ×τ. We deduce:

entrylistdir

PFT

memory
NNNFSG)()((1)

PFT-index matching time

Consider a post p whose length is |p| published by the user n. The notification process

accesses the posting list)(nPostings
PFT

 and for each follower ni it checks if it exists a term tj in

post p such that label(ni,,n) contains tj. Thus the expected average matching time is:

)(, ppFSG
PFT

time
 (2)

PFT-index insertion/deletion time

To insert a new filter we scan the posting list)(nPostings
PFT

 until we find the id of the

follower that add/delete a filter t. Adding a new filter consists in appending t to the

corresponding term list. If the follower does not exist in)(nPostings
PFT

, a new entry for this

follower is added. Deleting requires an additional scan of the list of terms. Potentially it leads to

the deletion of a follower's entry. Consequently the expected costs are respectively:

2/FSG
PFT

insert
 (3)

2/2/FSG
PFT

delete

The PTF-index

In the PTF-index, (as Publisher-Term-Follower index), a key is an account Nn , and the

value is the corresponding posting list)(nPostings
PTF

. We factorize the posting list on the terms,

so each term t is associated to a list of the followers of n that choose t as a filter for the posts of

n. So  ,,,,,,,,)(
21

2

21

1 2211 ttttPTF
nntnntnPostings , with nn i and

),(nnlabelt
i

j

n i
.

Example

Figure 3 shows the PTF-index structure that corresponds to our Example.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 12

Figure 3. The PTF-index

PTF-index memory requirement

Our index consists of N posting lists, each posting must store the φ×τ filters associated to a

publisher, like in PFT-index, with a factorization on the different terms. If we assume that all

followers of a publisher use distinct filters, the size of)(nPostings
PTF

 is φ×τ . However we

observe that followers generally express similar interests when they decide to follow a given
publisher and consequently the number of distinct filters for a publisher is lower than this upper

bound. We assume like in many other text-based/keyword-based application that the total
number of terms in a posting list follows a Heaps' law (Baeza-Yates & Ribeiro-Neto, 1999;

Manning, Raghavan, & Schütze, 2008), i.e., TknPostings
PTF

)(, where k and β are

constants and T is the total number of terms in the posting. Heaps' coefficients k and β depend
strongly on the characteristics of the analyzed text corpora and their value in our microblogging

system has to be determined in future work. Note that β is between 0 and 1 (generally in [0.4,
0.6]), so the higher the number of followers is, the better factorization is achieved. This is
particularly expected in our filtering system where many users filter out on the same terms. Since

the number of terms in)(nPostings
PTF

 is N×(φ×τ) and the number of entries indexed is always

N×φ×τ , we deduce that:

entrylistdir

PTF

memory
NkNNFSG (4)

PTF-index matching time

Consider an incoming post p published by the user n. We access the posting list of the

publisher n)(nPostings
PTF

. Then for each entry
k

tti ii

nnt ,,,
1
 we check if p contains ti.

Whenever this happens we notify each
j

t i

n from the entry ti. Thus the expected average matching

time is:

kppFSG
PTF

time
, (5)

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 13

PTF-index insertion/deletion time

To insert a new filter t we scan the posting list)(nPostings
PTF

 until we find the entry that

corresponds to t. Adding a new filter consists in appending the id of the follower that formulates

this filter t to the corresponding list. If the term does not exist in)(nPostings
PTF

, a new entry for

this term is added. Deleting requires an additional scan of the list of followers, on average

)(/ nPostings
PTF

. Potentially it leads to the deletion of a term’s entry. Consequently the

expected costs are respectively:

2/kFSG
PTF

insert
 (6)

kkFSG
PTF

delete
/2/

The TPF-index

In the TPF-index, (as Term-Publisher-Follower index), the key is a term that appears in a
filter. Thus the directory table contains the whole filter vocabulary VF. The corresponding

posting list)(tPostings
TPF

 associated to a term t, is the set of publishers along with their

followers that want to filter out this publisher on t:

 ,,,,,,,,)(
21

2

21

1 2211 nnnntpf
nnnnnntPostings with

i

j

i
nn and),(

j

ii
nnlabelt .

TPF-index corresponds to a factorization first on the term from VF, and then for each term a

second factorization on the publishers ’ids.

Example

Figure 4 shows the TPF-index structure that corresponds to our Example.

Figure 4. The TPF-index

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 14

TPF-index memory requirement

The TPF-index consists of VF posting lists, one for each term of the filter vocabulary.
Since we have N accounts that follow on average φ other accounts with an average filter size of
τ, the total number of terms used for filtering is N×φ×τ. We still assume that the size of the filter

vocabulary follows a Heaps' law then the number of distinct terms is NkV
F

. We

make the common assumption that the distribution of terms in the set of filters follows the Zipf
law (Baeza-Yates & Ribeiro-Neto, 1999; Manning, Raghavan, & Schütze, 2008), and that the

number of publishers that are filtered out on a given term is proportional to the term frequency.

Consequently, the number of publishers associated to a term ti whose frequency rank is ri is i
r/ ,

where γ is a constant. Here again N×φ×τ entries are finally stored, corresponding to the
followers ’ids. Thus the expected memory requirement for the TPF-index is:

entrylist

V

i

dirF

TPF

memory
NiVFSG

F

1

/

Since 1
F

V , we approximate
FV

i

i

1

/ with
F

Vln . Consequently we have:

entrylist

dir

TPF

memory

NNk

NkFSG

ln

(7)

TPF-index matching time

Consider an incoming post p published by the user n. For each term pt we access the

posting list of t)(tPostings
TPF

. Then for each entry ,,,
21

ii nni
nnn we check if ni is the

publisher of p, i.e., if ni=n. If such an entry exists, we then notify each
j

n i

n and stop the posting

list scan for this term. Assuming the Zipf distribution of terms, the average posting list size is

2/ln
F

V , and we scan on average half of the posting to find the publisher. Thus the expected

average matching time is:

2/2/ln, NkppFSG
TPF

time
 (8)

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 15

TPF-index insertion/deletion time

To insert a new filter),,(tnn we scan the posting list)(tPostings
TPF

 whose size is on

average 2/ln
F

V until we find the entry that corresponds to n. Adding a new filter consists in

appending the id of the follower that formulates this filter t in the corresponding list. If the term

does not exist in)(tPostings
TPF

, a new entry is added. Deleting requires an additional scan of the

list of followers, on average
F

VN / . Potentially it leads to the deletion of a publisher's

entry. Consequently the expected costs are respectively:

2/2/ln NkFSG
TPF

insert
 (9)

F

TPF

delete
VNNkFSG /2/2/ln

Experiments

In this section, we describe the experiments designed and performed in order to analyze (i)
how our structures behave against real microblogging data from Twitter and (ii) the impact of

different parameters of microblogging systems. These experiments validate our analytical model
presented in the Indexing section.

The dataset

In collaboration with Forth Institute (Heraklion, Crete)15 we gathered data on Twitter over
a four month-period using the Twitter streaming API16. We generated a complete Twitter graph
+ tweets dataset by merging this data with the Twitter graph structure from Kwak, Lee, Park, &

Moon (2010). As a result, we obtained a dataset with 2.9 million users, 169 million graph arcs
and more than 33.9 million tweets. Finally, we performed a linguistic analysis for these tweets
and kept only the English ones (and their associated accounts). Our resulting dataset is

summarized in Table 2.

As explained earlier, we make the assumption that the average filter size (number of

distinct terms that labeled an edge in the filtered social graph) corresponds to the average number

of terms used on twitter querying API (Teevan, Ramage, & Morris, 2011). We decide for our
experiments to generate filter terms for a follower through a draw among the most frequent and

significant terms (we discarded urls, terms from the common language, Web shortcuts …) in the
posts of the publisher s/he follows. Our rationale is that we usually follow a publisher because
s/he provides some tweets that match one of our interests. Unless otherwise precised, this filter

setting is used for our experiments. Remember that we do not intend in the current paper to
validate the filter generation but to study scalability issues of such systems.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 16

Element #

Users 2,170,784

Tweets 15,717,449

Graph arcs 148,508,857

Table 2. Dataset description

User Follower Queries

12 36255503 bigday twitter

12 36255965 conference deadline
download

12 36256156 DB conference

12 36256607 software twitter

Table 3. Filtered social graph dataset sample

Table 3 shows a sample of the filter social graph obtained using our label generation process.

Experiments run on an Intel Core i5 CPU with a frequency of 3.60 GHz and 16 GB of RAM.
The structures are implemented in JAVA.

Memory requirement

All structures have different factorization criteria which lead to different memory
requirements. Table 4 compares the space occupancy of the three structures for our dataset. TPF-
index appears as the structure with the lower memory requirements. Many filters are shared by a

significant number of users which allows a better factorization, on the terms first. Moreover, we
observe that many followers of a publisher filter out on the same terms. Consequently, for a

term's entry in the TPF-index, there exists also an important factorization on publisher's id,
especially for account with an important number of followers. Oppositely the PFT-index benefits
from a poor factorization since all publishers have an entry in the directory and for each of them

we have a list element for each of his followers, each of them with few filter terms.

Structure Index size (MB)

PFT 9021

PTF 3777

TPF 1869

Table 4. Index sizes for the realistic dataset

To measure the impact of the different parameters of our microblogging system and to

validate our analytical model, we generate synthetic datasets with a constant number of filters (τ)
for each graph edge. We report results in Figure 5. The memory occupancy grows linearly with τ
for PFT and PTF indexes. Indeed, increasing τ does not impact the directory size that depends

only on the number of publishers, i.e., N. Moreover, for PFT-index, the number of elements in
the posting list remains constant and equal to the number of followers. But the number of entries

follows linearly τ. For PTF-index the number of elements depends on the number of distinct term
used as filter for a publisher. When comparing with PFT-index we observe the same gradient.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 17

This reveals that τ has a low impact on the number of elements for a posting list in PTF-index.
The Heaps' law we propose in our model explains this result, since it assumes that the sub-

vocabulary of filter terms for a given publisher increases slightly. Thus for PTF-index, like for
PFT-index, the increase of τ does not impact the structure but only the number of entries. Finally,

we note the low impact of τ on the TPF-index. The rationale is (i) the directory size remains
constant and equal to VF, (ii) since filters are generated w.r.t. the publisher's post areas, a new
filter term has a high probability to be already present for the same publisher in the structure, so

the number of posting elements remains low and slowly increases.

Figure 5. Occupied memory w.r.t. τ

Figure 6. Occupied memory w.r.t. N

Figure 6 illustrates the impact of N on the different structures. All structures exhibit a
linear growth. For PFT and PTF index, adding a new user results in adding a new directory
entry, new posting list elements and new posting entries for his followers along with their filters.

However the factorization on terms’ id in a posting list is more efficient than the one on
follower's id which explains the best gradient for PTF. For TPF after a short initialization step

that corresponds to the creation of the different entries of the directory and the different elements
of the posting list, increasing N leads only to add new posting entries. This explains a linear
growth with a lower gradient. Both Figures validate our analytical model.

Indexing times

We compare in Table 5 the time needed to build the different structures in central memory
for different datasets. Uniform (1), (2) and (3) correspond to scenarii where each publisher-

follower edge is labeled by respectively 1, 2 or 3 filter terms. As expected, the smaller index size
is, the lower building time we have. Indeed for TPF-index we have smaller posting lists, so we
need less time to find the list element where the new filter must be inserted. Oppositely in PFT-

index, a time-consuming scan of large posting list is required.

We also note that the building time is not proportional to the value of τ. It turns out that
posting lists elements are quickly created and their number slowly evolves. After this step,
increasing the number of filter terms for a follower corresponds mainly to add new entries in

existing elements which corresponds to a (almost) constant time, explaining the linear behavior.
These results are in accordance with our analytical model.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 18

Structure realistic uniform(1) uniform(2) uniform(3)

PFT 753 736 741 1081

PTF 512 357 444 558

TPF 231 198 236 289

Table 5. Indexing times (in s)

Matching times

To evaluate matching time we process as follows: first, the post is decomposed into a bag
of terms, then we use the index to determine for each term of the post the set of followers to be

notified. Observe that since we are working in a disjunctive logic, when the first positive match
occurs we can directly notify the corresponding user. Table 6 depicts average matching times for
an upcoming flow of 100,000 tweets over the different filter indexes.

We observe that the TPF-index exhibits poor matching performances: for our realistic

dataset, with around 2.5 ms a post, it can handle less than 400 posts a second, so far from being
scalable (remember that in Twitter for instance there exist peaks with 8,000 posts a second). For
each term of the post we retrieve a large posting list with potentially as many elements as

existing publishers N. Oppositely PTF-index quickly retrieves the followers to be notified: it
handles a post in 15µs, so is able to manage peaks up to 66K posts a second. Here we directly

access the posting list corresponding to the publisher. Then we scan all its elements that
correspond to all followers of this account, and check for each of them if any filter term matches
the post. Observe that the number of filter terms is low (between 1 and 3) for a follower, and that

we check all terms of the post in a single scan. Of course this is an average value and the
matching time is higher for publisher with numerous followers and faster for those with few

ones.

Structure PFT PTF TPF

matching time (µs) 808 15 2564

Table 6. Matching time for realistic dataset

Figure 7 illustrates the impact of τ on matching time. Like in Table 6, PTF-index
outperforms other proposals with 2 orders of magnitude. We observe that the matching time for

PFT-index linearly increases with τ while TPF-index follows a sub-linear growth. For the former,
matching implies a direct access to the posting list of a publisher and then to scan all elements in

turn for this list to check if associated entries match the post terms. Increasing τ does not change
neither the number of entries of the directory, nor the number of elements. So only the last step,
the matching attempt against term entries requires more time. Since the number of entries is

proportional to τ, this explains this linear growth.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 19

For the TPF-index, we observe the Zipf's law behavior in the term frequency distribution,
so when increasing τ we generally add entries in the posting of the most frequent terms. As a

consequence the more numerous filters are indexed, the higher probability we have to add an
entry in an existing posting list element. Since posting lists' size has a sub-linear increase and

since we scan as many lists as number of terms in the post, this justifies that the matching time
increases sub-linearly w.r.t. τ.

Figure 7. Matching time w.r.t. τ

Figure 8. Matching time w.r.t. N

We report also in Figure 8 the evolution of matching time w.r.t. N. We notice that both
PFT and PTF-index have a constant matching time. Indeed, increasing N only impact the

directory by adding new directory entries, but the posting lists keep a constant number of
elements and for each element a constant number of entries. Since for an incoming post we scan

a single posting list corresponding to the publisher, the matching time is constant with N. TPF-
index exhibits better performance than PFT-index for N lower than 900k. The matching time
with TPF-index increases sub-linearly w.r.t. N for the same reasons as with τ. These results also

confirm our analytical model.

Filtering efficiency

To evaluate how filtering reduces the number of posts delivered, we compare the number

of posts that are sent from the microblog server to the users with and without filtering. As
expected the number of posts delivered dramatically drops since we measure a gain of almost

98% for all our datasets (see Table 7). Our disjunctive hypothesis for filters justifies that the
more numerous filter terms we have, the more numerous posts have to be delivered. However
observe that we do not have a linear increase in the number of delivered posts. Indeed, there is a

higher probability for a post to match several filter terms of a follower when followers have large
filters.

Filtering Realistic uniform(1) uniform(2) uniform(3) uniform(4)

Enabled 211,651 161,196 212,364 244,578 267,164

Disabled 11,035,437

Table 7. Number of delivered posts

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 20

Graph evolution

Users in microblogging systems have a dynamic following behavior (Kwak et al. 2011;
Kivran-Swaine et al. 2011). The underlying social graph in Twitter-like networks is in a constant

evolution. Relationships are subject to move because they depend on various fluctuating factors
like temporal interest for an event and accounts related to this event, publisher's content creation
rates, etc. To illustrate how the PFT, PTF, TPF and Hybrid (presented below) structures handle

the graph dynamicity we reported average insertion/deletion times in Table 8.

Since the TPF-index do not reflect the graph structure, a time consuming scan of the lists
have to be performed for popular filters in the case of insertion as well as for popular accounts
entries in the case of deletion. Also, as expected from the analytical study, the PFT-index is the

most dynamic structure and requires 30% less time for inserting and 67% less time for deleting
compared to the PTF. The explanation lies in the structure of the PFT whose factorization, first

on the publisher, then on the follower, corresponds to an edge factorization. Thus adding or
removing an edge is performed fast. The factorization by term in the PTF-index broke the natural
graph storing leading to worst update times.

Structure Avg. Insertion time Avg. Deletion time

PFT-index 2274 566

PTF-index 3247 1731

TPF-index 3023 1057

Hybrid-index (threshold = 400) 2498 818

Table 8. Avg. insertion/deletion times (in Nano-Seconds)

The hybrid structure

Like many other social networks, microblogging systems are characterized by the

heterogeneity of the accounts. Figure 9 and Figure 10 illustrate this heterogeneity in our dataset.
We see in Figure 9 that we can distinguish 5 classes of users based on their number of followers.
We observe in Figure 9 that more than half of the users (55.78%) are followed by less than ten

users. At the same time we have in the system a minority of very popular accounts that are
followed by a large number of accounts (0.78% are followed by more than 1,000 users).

Regarding the publication activity, we observe in Figure 10, that the classes with the

highest number of followers have also the highest publication rates. This is a common

topological phenomenon in social networks also described by Kwak, Lee, Park, & Moon (2010)
and Ahn, Han, Kwak, Moon, & Jeong (2007).

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 21

Figure 9. Users by their number of
followers

Figure 10. Users classes by their average number of

tweets

Given this specificity, we investigated an hybrid structure that combines both PFT and the

PTF index structures. Basically this structure stores the accounts that have a number of followers
lower a certain threshold similarly to the PFT structure and other accounts using a PTF

factorization. The main motivation behind this choice is that PTF index handles better the
popular publishers than the PFT one (see Section “Matching times”).

Hybrid structure memory requirements

The key parameter in the hybrid structure is the value chosen for the threshold, which
represents the minimal number of followers we may have to be considered as a popular account.

We denote this threshold as the popularity threshold in the following. According to this value we
decide whether we store an account as a PFT (not popular) or as a PTF (popular) index entry.

Our results for the memory requirement regarding the popularity threshold value are

presented in Figure 11. We see that handling larger accounts (in terms of number of followers)

as PTF have a direct impact on the index sizes. The smaller the popularity threshold is set, the
smaller is the size of the structure. The size of the hybrid structure lies consequently between the
PFT and the PTF. For instance a value of 5 for the popularity threshold lead to a memory

requirement similar to PTF while a popularity threshold of 400 leads to an increase of 30% of the
memory requirements.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 22

Figure 11. Occupied memory w.r.t. N and hybrid threshold value

Hybrid structure matching times

We report the matching times obtained with the hybrid structure in Figure 12. We observe
that the matching time remains constant when varying the popularity threshold from 5 to 25.

With this users partitioning parameter, the hybrid structure performs a matching in 15µs so
similar to the PTF (see Section “Matching times”). Table 9 shows the number of users (on the
2.17M in our graph) indexed as PTF for various popularity thresholds. We see that starting from

the popularity threshold 25, which means that almost 25% of the users are considered as popular
account, the matching time quickly increases. However we observe that with a popularity

threshold of 400, only 2.5% of the accounts are considered as popular and are indexed as a PTF
entry, but the gain compared to the full PFT indexing is 25.2 (32µs versus 808µs). This confirms
our motivation to distinguish the (rare) popular accounts, and the others when indexing.

Figure 12. Matching times for the hybrid structure w.r.t popularity threshold

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 23

Popularity threshold Number of users

5 1,349,490

10 959,976

25 547,001

50 337,393

100 199,033

200 209,844

400 54,024

1000 16,961

5000 2,118

10000 896

Table 9. Number of users for various popularity thresholds

Regarding the dynamicity of the structures, the hybrid structure handles update of the
social graph and/or filter more efficiently than PTF, and almost as fast as the PFT (see Table 8):

an insertion is performed in 2498 ns and a deletion in 818 ns, versus respectively 2274 ns and
566 ns for PFT for a popularity threshold set to 400. Consequently we conclude that handling
larger accounts (in number of followers) with a specific factorization can improve the overall

efficiency of the system. The hybrid structure achieves an interesting compromise between PTF
and PFT. For instance with a popularity threshold of 400, we need 30% more space than PTF but

50% less than PFT. The matching time is twice the one of PTF, but 25 times less than PFT.

However, oppositely, the hybrid structure exhibits better performances than PFT regarding

the management of dynamicity of the graph with a gain of 23% for insertion time and 53% for
deletion time.

Conclusion and future work

In the present paper we compare inverted lists-based structures that index filters to decrease
the number of messages delivered in microblogging systems. We propose an analytical model for

all these structures and validate them with real and synthetic datasets. PTF-index appears to
achieve the best scalability since, despite the fact that it require more memory and insertion time
than the TPF-index, it outperformed with two orders of magnitude other proposals for matching

time. We have also shown that exploiting the heterogeneity of the accounts (e.g. 5% of accounts
with more than 100,000 followers) as we did with the hybrid structure, allows to achieve better

overall performance especially when considering the graph evolution and dynamicity.

We intend in future work to consider other optimizations like clustering or summarization

which group different filters inside a posting list to achieve better performance. Adding

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 24

conjunction and negation in filter expressions as well as more complex matching schemes is
another future challenge.

 Finally, we are currently working on real-time content recommendation for micro-

blogging systems. The idea is to rely on our time and memory efficient indexing structures
combined with semantic distances to provide user recommendations on top of the FSG.

Acknowledgement

This work has started in collaboration with Michel Scholl who passed away the 15 th of
November 2011, too early. The authors would like to thank Michel Scholl for his devotion to the
database research.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 25

References

Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. B., & Jeong, H. (2007). Analysis of topological
characteristics of huge online social networking services. In Proc. Intl. World Wide Web

Conference (WWW) (pp. 835–844).

Baeza-Yates, R. A., & Ribeiro-Neto, B. A. (1999). Modern Information Retrieval. ACM

Press / Addison-Wesley.

Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Everyone’s an
Influencer: Quantifying Influence on Twitter. In Proc. Intl. Conf. on Web Search and Web Data
Mining (WSDM) (pp. 65–74).

Bontcheva, K., Gorrell, G., & Wessels, B. (2013). Social Media and Information Overload:

Survey Results. arXiv:1306.0813 [cs.SI]. Retrieved from http://arxiv.org/abs/1306.0813

Bouraga, S., Jureta, I., Faulkner, S., & Herssens, C. (2014). Knowledge-Based

Recommendation Systems: A Survey. In International Journal of Intelligent Information
Technologies (IJIIT), 10(2), 1–19.

Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., & Lin, J. (2012). Earlybird: Real-

Time Search at Twitter. In 2013 IEEE 29th International Conference on Data Engineering

(ICDE) (Vol. 0, pp. 1360–1369).

Broder, A. Z., Das, S., Fontoura, M., Ghosh, B., Josifovski, V., Shanmugasundaram, J., &
Vassilvitskii, S. (2011). Efficiently Evaluating Graph Constraints in Content-Based
Publish/Subscribe. In Proc. Intl. World Wide Web Conference (WWW) (pp. 497–506).

Chen, C., Li, F., Ooi, B. C., & Wu, S. (2011). TI: An Efficient Indexing Mechanism for

Real-time Search on Tweets. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data (pp. 649–660).

Foster, J., Çetinoğlu, Ö., Wagner, J., Roux, J. L., Hogan, S., Nivre, J., … Genabith, J. van.
(2011). #hardtoparse: POS Tagging and Parsing the Twitterverse. In Proc. Intl. Work. on

Analyzing Microtext (AMW).

Haghani, P., Michel, S., & Aberer, K. (2010). The Gist of Everything New: Personalized

Top-k Processing over Web 2.0 Streams. In Proc. Intl. Conf. on Information and Knowledge
Management (CIKM) (pp. 489–498).

Hmedeh, Z., Kourdounakis, H., Christophides, V., Mouza, C. du, Scholl, M., & Travers, N.

(2012). Subscription Indexes for Web Syndication Systems. In Proc. Intl. Conf. on Extending

Database Technology (EDBT) (pp. 1–12).

http://arxiv.org/abs/1306.0813

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 26

Hmedeh, Z., Vouzoukidou, N., Travers, N., Christophides, V., Mouza, C. du, & Scholl, M.
(2011). Characterizing Web Syndication Behavior and Content. In Proc. Intl. Conf. onWeb

Information Systems Engineering (WISE) (pp. 1–12).

Java, A., Song, X., Finin, T., & Tseng, B. L. (2007). Why We Twitter: An Analysis of a
Microblogging Community. In Proc. Intl. Work. on Advances in Web Mining and Web Usage
Analysis (SNA-KDD) (pp. 118–138).

Kivran-Swaine, F., Govindan, P., & Naaman, M. (2011). The Impact of Network Structure

on Breaking Ties in Online Social Networks: Unfollowing on Twitter. In Proc. Intl. Conf. on
Human Factors in Computing Systems (CHI) (pp. 1101–1104).

König, A. C., Church, K. W., & Markov, M. (2009). A Data Structure for Sponsored
Search. In Proc. Intl. Conf. on Data Engineering (ICDE) (pp. 90–101).

Kwak, H., Chun, H., & Moon, S. B. (2011). Fragile Online Relationship: A First Look at

Unfollow Dynamics in Twitter. In Proc. Intl. Conf. on Human Factors in Computing Systems

(CHI) (pp. 1091–1100).

Kwak, H., Lee, C., Park, H., & Moon, S. B. (2010). What Is Twitter, a Social Network or a
News Media? In Proc. Intl. World Wide Web Conference (WWW) (pp. 591–600).

Levering, R., & Cutler, M. (2006). The portrait of a common HTML web page. In ACM
Symp. on Document Engineering (pp. 198–204).

Liang, H., Xu, Y., Tjondronegoro, D., & Christen, P. (2012). Time-aware topic

recommendation based on micro-blogs. In Proc. Intl. Conf. on Information and Knowledge

Management (CIKM) (pp. 1657–1661).

Litwin, W. (1980). Linear Hashing: A New Tool for File and Table Addressing. In Proc.
Intl. Conf. on Very Large Data Bases (VLDB) (pp. 212–223).

Ma, S., & Zhang, Q. (2007). A Study on Content and Management Style of Corporate
Blogs. In HCI (15) (pp. 116–123).

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press.

Pal, A., & Counts, S. (2011). Identifying Topical Authorities in Microblogs. In Proc. Intl.

Conf. on Web Search and Web Data Mining (WSDM) (pp. 45–54).

Pereira, J., Fabret, F., Llirbat, F., Preotiuc-Pietro, R., Ross, K. A., & Shasha, D. (2000).

Publish/Subscribe on the Web at Extreme Speed. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB) (pp. 627–630).

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 27

Sankaranarayanan, J., Samet, H., Teitler, B. E., Lieberman, M. D., & Sperling, J. (2009).
TwitterStand: News in Tweets. In Proc. Intl. Symp. on Geographic Information Systems (ACM-

GIS) (pp. 42–51).

Silberstein, A., Terrace, J., Cooper, B. F., & Ramakrishnan, R. (2010). Feeding Frenzy:
Selectively Materializing Users’ Event Feeds. In Proc. Intl. Conf. on Management of Data
(SIGMOD) (pp. 831–842).

Sommer, S., Schieber, A., Heinrich, K., & Hilbert, A. (2012). What is the Conversation

About?: A Topic-Model-Based Approach for Analyzing Customer Sentiments in Twitter. In
International Journal of Intelligent Information Technologies (IJIIT), 8(1), 10–25.

Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., & Demirbas, M. (2010). Short Text
Classification in Twitter to Improve Information Filtering. In Proc. Intl. Conf. on Research and

Development in Information Retrieval (SIGIR) (pp. 841–842).

Teevan, J., Ramage, D., & Morris, M. R. (2011). #TwitterSearch: a Comparison of

Microblog Search and Web Search. In Proc. Intl. Conf. on Web Search and Web Data Mining
(WSDM) (pp. 35–44).

Uysal, I., & Croft, W. B. (2011). User Oriented Tweet Ranking: A Filtering Approach to

Microblogs. In Proc. Intl. Conf. on Information and Knowledge Management (CIKM) (pp. 2261–

2264).

Vosecky, J., Leung, K. W.-T., & Ng, W. (2012). Searching for Quality Microblog Posts:
Filtering and Ranking Based on Content Analysis and Implicit Links. In Proc. Intl. Conf. on
Database Systems for Advanced Applications (DASFAA) (pp. 397–413).

Weng, J., Lim, E.-P., Jiang, J., & He, Q. (2010). TwitterRank: Finding Topic-sensitive

Influential Twitterers. In Proc. Intl. Conf. on Web Search and Web Data Mining (WSDM) (pp.
261–270).

Wu, L., Lin, W., Xiao, X., & Xu, Y. (2013). LSII: An indexing structure for exact real-time
search on microblogs. In 2013 IEEE 29th International Conference on Data Engineering (ICDE)

(Vol. 0, pp. 482–493).

Yan, T. W., & Garcia-Molina, H. (1994). Index Structures for Selective Dissemination of

Information Under the Boolean Model. ACM Transactions on Database Systems (TODS), 19(2),
332–364.

Yin, H., Li, J., & Niu, Y. (2014). Detecting Local Communities within a Large Scale Social

Network Using Mapreduce. In International Journal of Intelligent Information Technologies

(IJIIT), 10(1), 57–76.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 28

Zhang, Y., Li, X., & Wang, T.-W. (2013). Identifying Influencers in Online Social
Networks: The Role of Tie Strength. In International Journal of Intelligent Information

Technologies (IJIIT, 9(1), 1–20.

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 29

Figure Captions

Figure 1. A filtered social graph
Figure 2. The PFT-index

Figure 3. The PTF-index
Figure 4. The TPF-index
Figure 5. Occupied memory w.r.t. τ

Figure 6. Occupied memory w.r.t. N
Figure 7. Matching time w.r.t. τ

Figure 8. Matching time w.r.t. N
Figure 9. Users by their number of followers
Figure 10. Users classes by their average number of tweets

Figure 11. Occupied memory w.r.t. N and hybrid threshold value
Figure 12. Matching times for the hybrid structure w.r.t popularity threshold

FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 30

Footnotes

1
 http://www.twitter.com

2
 http://www.telegraph.co.uk/technology/9837525/Half-a-billion-people-sign-up-for-Twitter.html

3
 https://about.twitter.com/company

4
 http://www.weibo.com

5
 http://www.identi.ca

6
 http://www.plurk.com

7
 http://latimesblogs.latimes.com/technology/2009/02/twitter-creator.html

8
 https://twitter.com/FoxNews

9
 https://twitter.com/BarackObama

10
 http://fr.slideshare.net/adityabheemarao/twitter-architecture-and-scalability-lessons

11
 http://www.infoq.com/presentations/Twitter-Timeline-Scalability

12
 http://latimesblogs.latimes.com/technology/2011/07/twitter-delivers-350-billion-tweets-a-day.html

13
 http://yearinreview.twitter.com/en/tps.html

14
 https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

15
 We thank Vassilis Christophides for his support and helpful comments

16
 http://dev.twitter.com/

