
FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 1 
 

 

 

 

 

 

 

 

 

 

 

Filtering Structures for Microblogging Content  

Ryadh Dahimene and Cédric du Mouza 

 

CEDRIC Laboratory – CNAM 

firstname.lastname@cnam.fr 

2 rue Conté, F75141, Paris, France 



FILTERING STRUCTURES FOR MICROBLOGGING CONTENT 2 
 

Abstract 

In the last years, microblogging systems have encountered a large success. After 7 years of 
existence Twitter claims more than 271 million active accounts leading to 500 million tweets per 

day. Microblogging systems rely on the all-or-nothing paradigm: a user receives all the posts 
from an account s/he follows. A consequence for a user is the risk of flooding, i.e., the number of 
posts received from all the accounts s/he follows implies a time-consuming scan of her/his feed 

to find relevant updates that match his interests. To avoid user flooding and to significantly 
diminish the number of posts to be delivered by the system, we propose to introduce filtering on 

top of microblogging systems.  Driven by the shape of the data, we designed different filtering 
structures and compared them analytically as well as experimentally on a Twitter dataset which 
consists of more than 2.1 million users, 15.7 million tweets and 148.5 million publisher-follower 

relationships. 
 

 
Keywords: Microblogging, Filtering, Indexing, Scalability issue 
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Filtering Structures for Microblogging Content 

Microblogging systems have become a major trend as well as an important communication 
vector. In less than seven years, Twitter1 has grown in a spectacular manner to reach more than 

500 million users in August, 20132 from which 54% are active users3 (posting at least a tweet per 
month). Other similar systems like Sina Weibo 4, Identi.ca5 or Plurk6, to quote the largest, also 
exhibit dramatic growth. In such systems, the length of a published piece of news (called by post 

in the following) is limited to 140 characters which corresponds on average to 14.7 terms  
(Foster et al., 2011), so clearly greater than 4-5 terms  adverts as reported in (König, Church, & 

Markov, 2009) but smaller than RSS items (Hmedeh et al., 2011), blogs (Ma & Zhang, 2007) or 
Web pages which have a size of 450 to 500 terms excluding tags (Levering & Cutler, 2006).  The 
rationale for using such small messages is that these services were designed to be accessed with 

traditional cell phones through Short-Text Messaging protocol7.  
 

In microblogging, a user, represented by his account, follows other accounts to be notified 
whenever they publish some information. Conversely, s/he becomes a publisher for the accounts 
that follow her/him, which results in the existence of a large social graph. One of the main 

differences with other online social networks is that in microblogging, the graph linking the users 
can be seen as an interest graph, since users follow each other if they have interest in each other 

posts. Those networks work on an all-or-nothing fashion, i.e. if a user A follows a user B, A will 
receive all of B’s posts. 

 

Microblogging is also characterized by the heterogeneous nature of users. In Twitter for 
instance, there exist some high update frequency accounts (newspapers, tech-blogs and 

journalists) and others that publish less than one post a week. Moreover, there exist very popular 
accounts (e.g. news channel accounts like @FoxNews8 or famous accounts like 
@BarackObama9 with more than 45 million followers), and others with 0 or 1 follower. 

 
For various reasons (security, advertisement, control policy …) these systems rely on a 

centralized architecture10. Each post published is received by the central system that forwards it 
to all the followers of the publishing account11. The central system is also responsible of the 
search feature (Busch et al., 2012). Since the most active accounts are generally the ones with the 

highest number of followers, the system must face a tremendous amount of posts to forward. For 
instance Twitter, which claimed in 2011 more than 200 million tweets a day, had to deliver daily 

over 350 billion tweets12. This traffic overload (especially for high-followed accounts) represents 
from an architectural point of view a scalability bottleneck. 

 

On the follower's point of view, the amount of posts received from the accounts s/he 
follows, between 30 and 200 depending on the system considered (Kwak, Lee, Park, & Moon, 

2010) loses the reader in the middle of long feeds of posts. This results in poor data readability 
and potentially loss of valuable information.  
In a UK-based questionnaire over 587 participant, Bontcheva, Gorrell, & Wessels (2013) report 

that 33.9% of users perceive that they receive too many posts and 70.4% have found the task of 
locating the interesting/relevant posts amongst the others difficult. Also, 66.3% of the 

interviewed users have felt at some time that they can’t keep up with the amount of received 
tweets. A direct consequence of this phenomenon is the high dynamicity of the graph: to avoid 
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flooding, users who follow active accounts tend to unsubscribe because they can't manage the 
continuous flow of posts as studied in (Kwak, Chun, & Moon, 2011; Kivran-Swaine, Govindan, 

& Naaman, 2011). 
 

In order to improve the user experience and reduce the network load, we have chosen to 
introduce filtering in microblogging systems. The main underlying idea is that a user A follows 
another user B for some topics, and consequently s/he wants to receive only a subset of B's posts 

that matches his interest. Such a structure must efficiently retrieve for an incoming post all 
followers of a publishing account whose filter is satisfied by the post. While designing the 

filtering structures, we took a particular consideration about some specific aspects of 
microblogging systems which we can summarize as: 

 

 short messages: the size restriction (generally 140 characters)  means that we handle 
short documents, the average length of a tweet is 14.7 terms (Foster et al., 2011); 

 account heterogeneity: microblogging studies have revealed account heterogeneity in 
term of both update frequency and number of followers; 

 graph evolution: As observed in Twitter  (Kwak et al. 2011; Kivran-Swaine et al. 2011), 
users follow and unsubscribe often to other accounts.  The filtering structure must 

consequently handle the graph dynamicity in order to handle this phenomenon; 

 centralized system: The social graph is stored by the microblogging system. This system 

receives all posts and forwards them to followers according to the graph it stores. That 
means the whole task is supported by the centralized system. Therefore we must reduce 
the filtering process time by trying to manage the matching in central memory. 

 
Considering the main characteristics of such a system. The main contributions of our paper 

are: 
 

i. the presentation of four indexes, based on traditional inverted lists approaches, which 

support content filtering in microblogging systems; 
ii. analytical comparisons of the structures efficiency in term of memory requirements, 

matching  and update times of the three structures;  
iii. an experimental validation of the analytical costs for the structures on a dataset of 2.1 

million users, 15.7 million tweets and 148.5 million following relationships.  

 
The rest of the paper presents the detailed Related Work followed by the Data model where 

we define our system, including the definition of the filters as well as the notification process.  
Section indexing describes our filtering structures and their analytical study. Section 
Experiments presents our experimental setting and results followed the conclusion. 

 
Related Work 

Microblogging systems characterization 

The impressive growth of microblogging systems with their tremendous amount of user 
generated content has attracted the research community. Java, Song, Finin, & Tseng (2007) 

presented one of the first studies that looked inside Twitter and showed for instance that users 
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with similar intentions tend to connect with each other. Kwak et al. (2010) have also studied the 
following behavior and information diffusion patterns for a large snapshot of the entire 

Twittersphere. We relied on those studies in order to get insights about the user behavior on 
microblogging systems. 

 
Search and indexing 

Some recent works tackle the scalability issue when searching relevant posts by indexing 
the flow of tweets, like EarlyBird  (Busch et al., 2012) which describes the real-time indexing 

structure used by Twitter to implement the search function. It relies on an inverted index 
mapping keyword queries to append-only posting lists which contains tweets in the ascending 
order of their timestamps. This allows to retrieve effectively the newest tweets for a given query.  

 
In Tweet Index (Chen, Li, Ooi, & Wu, 2011), the authors propose to reduce the indexing 

time without decreasing the quality of the search result by indexing immediately tweets which 
have a high probability to belong to a query, and by delaying indexing of other tweets.  Tweet 
Index performs a classification task to rank tweets against the most popular previously 

encountered queries. This classification enables TI to select tweets to be indexed first by picking 
the tweets which matched the most popular queries. 

 
In LSII, Wu, Lin, Xiao, & Xu (2013) adopt a similar approach. It implements a growing 

size index cascade in order to insert tweets from the smaller index and later move tweets in batch 

mode. Oppositely to these approaches which aim at performing (partial) matching between a 
query composed by several terms, and a tweet, we consider single-term filtering which allows 

different factorizations of inverted index. 
 

Ranking and recommendation 

Avoiding user flooding can also be achieved by providing the relevant content through 

recommender systems. Sriram, Fuhry, Demir, Ferhatosmanoglu, & Demirbas (2010) have 
presented a classification of tweets based on user profiles. It relies on a trained classifier to route 
an upcoming tweet to a predefined class. Sankaranarayanan, Samet, Teitler, Lieberman, & 

Sperling (2009) describe a technique for concept extraction from noisy sources, and apply it to 
retrieve news from Twitter data. In (Bakshy, Hofman, Mason, & Watts, 2011; Weng, Lim, Jiang, 

& He, 2010; Zhang, Li, & Wang, 2013) the authors propose metrics to compute the user 
influence in Twitter and to rank tweets according to the user influence. Uysal & Croft (2011) 
present a filtering approach which takes advantage of the retweet behavior to bring important 

tweets forward. Liang, Xu, Tjondronegoro, & Christen (2012) proposes to provide topic 
recommendations by leveraging microblogs implicit links (relationships between users, topics 

and posts) as well as temporal information from the posts. Vosecky, Leung, & Ng (2012) also 
used the implicit microblogs information combined with content-based features in order to filter 
and rank posts according to their quality. Another approach consists of using domain knowledge 

to provide recommendations (Bouraga et al., 2014), This approach presents the advantage of 
avoiding the “cold-start” problem (i.e., not having enough historical data to infer 

recommendations). Finally, efficient community detection in social networks can be used to 
compute clusters in the users set and perform recommendations (Yin, Li, & Niu, 2014). 
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All these approaches aim at providing more quality content to users but do not diminish the 

number of delivered messages by the centralized system. Moreover, they require either large 
space or time overheads. Oppositely our approach proposes a structure that handles the filtering 

process on the server's side reducing drastically the number of posts delivered at cost of small 
overheads. 
 

Publish/subscribe systems 

In on-line publish/subscribe systems, different index structures have been proposed to 
handle the matching of incoming subscriptions. In Le Subscribe, Pereira et al. (2000) present a 
Count-based index which matches subscriptions by counting predicates that are satisfied. Broder 

et al. (2011) have introduced the evaluation of graph constraints in content-based 
publish/subscribe systems. The authors suppose that the publishers and subscribers are connected 

by a directed graph (like in microblogging systems) and they implement algorithms to efficiently 
evaluate constraints.  

Silberstein, Terrace, Cooper, & Ramakrishnan (2010) consider high frequency update 

feeds. The authors propose a method to selectively materialize user events over streams in order 
to improve the scalability of matching algorithms in such systems. Another filtering technique is 

presented by Haghani, Michel, & Aberer (2010) where the authors process top-k algorithms on 
top of Web 2.0 streams which allow to filter out posts based on the relevance and the freshness 
within a sliding window. (Hmedeh et al., 2012) proposes and compares indexing schemes for a 

pub/sub system that scales to high publication rates. Our context is quite different since we have 
shorter messages (posts) , short queries (single-term filters) and a number of users and queries 

much more important in heterogeneous social graph. Additionally, in publish/subscribe the 
producers and consumers of data are distinct actors while in social networks a single user can 
play both roles. 

 

Data model 

In this Section we introduce our micro-blogging model and our content filtering based on single-

keyword queries.  
Table 1 summaries notations that we will use through the rest of the paper. 

 

Microblogging system 

A micro-blogging system like Twitter can be represented as a directed graph G = (N, E) 

where the set of nodes N represents the users (accounts) of the system and the set of edges  

E⊆N×N represents the following relationships. More precisely a directed edge e=(u, v) exists 

from a node u to a node v if the user whose account is u is notified whenever the user whose 

account is v publishes a piece of news (u receives v 's updates). 
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Notation Description 

N total number of accounts   

Γ+(n) accounts followed by  n 

Γ-(n) accounts that follow n  

φ average number of followers for a user 

τ average number of filter terms for a (publisher, follower) pair 

|p| size (distinct terms) of a post p 

(k, β) Heaps' law coefficients for micro-blogging datasets  

γ Zipf's law constant for micro-blogging datasets 

VF, VP filter vocabulary, posts vocabulary 

θdir size of a directory entry 

θlist size of a posting list 

θentry size of an entry in a posting list  

 
Table 1. Notations 

 
In the following we blur the distinction between a user, an account and a node. For a node 

n, we define Γ+(n), the set of nodes followed by n, i.e., its successors in G as   
 

EnnnnNN ,,2:  

 
We define similarly Γ-(n) the set of nodes that follow n (predecessors). 

 
Each node produces a micro-blog piece of information, called post in the following. A post 

is defined as a sequence of terms p=<t0, t1, t2, … , tn>. We denote by P the set of posts and by VP 

the posts vocabulary. 
 

Filters 

To improve micro-blogging systems performance we propose keyword-based filters.  A 

filter F in our system is represented as a set of distinct terms n
tttF ,,

21 where each term ti 

belongs to the filter vocabulary denoted by VF The length of F, denoted by |F|, is the total 

number of (distinct) terms it contains. Like Yan & Garcia-Molina (1994), we make the common 

assumption that VF ⊆ VP. F denotes the set of filters, excluding the filter ⊥ that matches all posts, 
i.e., ⊥ = VP. A labeling function label associates a filter to each edge of the social graph G:  
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label: E → F ∪ ⊥ 

We name the social graph whose edges are labeled by filters the filtered social graph (FSG).  
 

Example. 

We present here an example of social graph that we will use throughout the paper to 
illustrate our different proposals.  

 

Michel decides to follow two very active accounts, namely CNN and AFP (Agence France 
Press). These breaking news accounts publish dozens of posts every day about various topics. 

Since AFP is known as a reliable source with early breaking news, CNN follows AFP and 
retrieves all its posts. Conversely, AFP has a poorer cover in the IT and movies areas and relies 
on the posts issued by CNN, only for these two domains, i.e., a small part of the posts published 

by CNN. To avoid flooding due to CNN and AFP, he would like to receive only posts concerning 
politics, IT and movies from CNN and only posts about politics from AFP. Cedric follows a very 

small number of accounts, including AFP from which he wants to receive sport news. Finally, 
Ryadh filters out the posts from Cedric to keep only those about IT. Figure 1 illustrates the FSG 
corresponding to this motivating example. 

Note that the filters are associated to the edges which allow a user to express different 
interests (i.e., filters) w.r.t. the source considered. For instance the user Michel wants to retrieve 

all posts from CNN concerning IT, politics and movies and only these ones, and from AFP only 
posts about politics. Thus we have label(Michel, CNN) = {IT,  politics, movies} and 
label(Michel, AFP) = {politics}. 

 

 

Figure 1. A filtered social graph 

 

While currently no micro-blogging systems allow to filter out the posts received according 
to topics of interests, we believe this solution is an answer to the post flooding observed.  We can 
envisage that these filters are explicitly expressed by the user or can be deduced from user 

interests. Regarding this second approach, we investigated several ways to automatically label 
the social graph edges with the corresponding filter.  

Microblogging systems like Twitter provide hashtags which are a usage convention that 
allow users to tag a tweet by adding a # symbol before the tag. However if hashtags are a good 
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way to classify tweets, they have a very volatile cycle of life and are very often related to 
peculiar events. Moreover, most hashtags are formed by concatenation of words, or written in 

SMS language, what complicates their use if we want to introduce more complex matching (e.g. 
semantics). Additionally there are less than 10% of the tweets in our corpus that contain a 

hashtag which led us to discard this approach.  
Teevan, Ramage, and Morris (2011) reported an average query size of 1.64 terms for the 

searches issued on the Twitter search engine. We assume an average filter size, extracted from 

the tweet content, similar to this average query size, motivated by (i) the filtering corresponds to 
a user preference regarding the publication of a given account and not general filters for all his 

interests on the collection of accounts he follows and (ii) we often meet in micro-blogging 
platforms users that are topical authorities (e.g., Pal & Counts, 2011), Twitter itself already 
recommends accounts to users for a given set of topics. With our system the users can specify 

filters to retrieve only the tweets related to the topic of authority of a user. Techniques such as 
topic modeling can also be used to infer relevant filters with an important extra-cost compared 

with our approach. In (Sommer et al., 2012), the authors describe a method which enables to 
label tweets with topics in order to provide sentiment analysis in an e-commerce context. We 
underline that our work aims at tackling scalability issues in such a context. For this purpose, we 

will not discuss the strategies (and their relevance) based on filter extraction from the tweet 
content like the one presented in Twitter’s reference paper describing the search index (Busch et 

al., 2012). Improving the quality of filtering while remaining scalable is part of our future work. 
 

Indexing Schemes 

The indexing scheme used in widespread micro-blogging systems like Twitter allows to 

efficiently retrieve for a publishing user n the set n  of followers in a graph G without any 

filtering. These systems mainly rely on a hash-based index on the node id to determine the list of 
followers of this node. Our challenge when introducing filtering over more than 500 million 

users is how to efficiently determine the set n of followers based now on the FSG. This issue 

must be especially tackled for users with a large number of followers since the notification 

process time largely increases due to the containment relation to be checked, i.e. the length of the 
posting lists implies a time consuming scan to find users to notify. 

 

We propose and compare different index structures that can easily extend the existing 
graph structure storage of online social network in order to manage post filtering. To achieve 

notification at runtime, regarding the high incoming rate of posts (e.g., Twitter reports some 
peaks with more than 7,000 tweets a second in 201113 and more than 140,000 tweets per seconds 
in 201314), we consider structures that fit in memory. This discarded tree-based solutions. Our 

proposals are based on inverted lists which benefit from factorization and could be deployed on 
existing systems whose graph structure is already implemented as an inverted list. Note that 

using hash file implies that entries should have a collision resolution method such as classical 
separate chaining that uses pointers to an overflow space. Such a technique accommodates 
moderate growth, but to face the graph dynamicity we may need a dynamic hashing method such 

as linear hashing (Litwin, 1980).  
 

Our variants of inverted lists exploit different factorizations: follower's ids, publisher's ids 
or term's. Since we effectively store terms' ids and not the terms themselves (we use a mapping 
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table to retrieve the term associated to an id) we consider in the following that all entries, 
follower's ids, publisher's ids or term's ids, require the same space (a 8-byte integer in our 

implementation to fit Twitter's current ids). We denote by θdir, θlist and θentry the size of 
respectively a directory, list and entry (follower's, publisher's or term's ids).  

 
Depending on the access order of the fields, we compare three different factorizations for 

our index structure. The PFT-Index, the PTF-Index and the TPF-Index. Each one of the proposed 

approach will be described the next subsections. 
 

The PFT-index 

The PFT-index (as Publisher-Follower-Term index) is essentially a mapping whose key is 
an account n ∈ N, and the value is the corresponding posting list  Postings PFT (n), i.e., the set of 

followers along with their filters:  ,,,,,,,,)(
21

1

21

1 2211 nnnnPFT
ttnttnnPostings  , with 

nn i  and ),( nnlabelt
i

j

n i

. PFT-index corresponds to a factorization first on each 

publisher, and then for each publisher a second factorization on the followers ‘IDs. 

 
Example 

Figure 2 shows the PFT-index structure that corresponds to our Example.  
 

 

Figure 2. The PFT-index 

 

PFT-index memory requirement 

Let φ be the average number of followers for a user, and τ the average number of filter 

terms for a (publisher, follower) pair. The index consists in the key directory, and the posting 
lists that contain followers ‘IDs and terms. The expected memory requirement of PFT-index for 
a system represented by a graph FSG with |N| users is: 

 

)()_()( termstotalidftotaldirectorysizeFSG
PFT

memory  
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The size of the directory is the number of publishers, which we assume equals to N (every 
account have generally at least one follower). The number of followers ids total(f_id) present in 

the structure is N×φ, and the total number of terms total(terms) indexed is N×φ×τ. We deduce: 
 

entrylistdir

PFT

memory
NNNFSG )()(  ( 1 ) 

PFT-index matching time 

Consider a post p whose length is |p| published by the user n. The notification process 

accesses the posting list  )(nPostings
PFT

 and for each follower ni it checks if it exists a term tj in 

post p such that label(ni,,n) contains tj. Thus the expected average matching time is: 

 

)(, ppFSG
PFT

time
 ( 2 ) 

 

PFT-index insertion/deletion time 

To insert a new filter we scan the posting list )(nPostings
PFT

 until we find the id of the 

follower that add/delete a filter t. Adding a new filter consists in appending t to the 

corresponding term list. If the follower does not exist in )(nPostings
PFT

, a new entry for this 

follower is added. Deleting requires an additional scan of the list of terms. Potentially it leads to 

the deletion of a follower's entry. Consequently the expected costs are respectively: 
 

2/FSG
PFT

insert
 ( 3 ) 

2/2/FSG
PFT

delete
  

  

The PTF-index 

In the PTF-index, (as Publisher-Term-Follower index), a key is an account Nn , and the 

value is the corresponding posting list )(nPostings
PTF

. We factorize the posting list on the terms, 

so each term t is associated to a list of the followers of n that choose t as a filter for the posts of 

n. So  ,,,,,,,,)(
21

2

21

1 2211 ttttPTF
nntnntnPostings , with nn i  and 

),( nnlabelt
i

j

n i
. 

 
Example 

Figure 3 shows the PTF-index structure that corresponds to our Example.  
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Figure 3. The PTF-index 

 

PTF-index memory requirement 

Our index consists of N posting lists, each posting must store the φ×τ filters associated to a 

publisher, like in PFT-index, with a factorization on the different terms. If we assume that all 

followers of a publisher use distinct filters, the size of )(nPostings
PTF

 is φ×τ . However we 

observe that followers generally express similar interests when they decide to follow a given 
publisher and consequently the number of distinct filters for a publisher is lower than this upper 

bound. We assume like in many other text-based/keyword-based application that the total 
number of terms in a posting list follows a Heaps' law (Baeza-Yates & Ribeiro-Neto, 1999; 

Manning, Raghavan, & Schütze, 2008), i.e., TknPostings
PTF

)( , where k and β are 

constants and T is the total number of terms in the posting. Heaps' coefficients k and β depend 
strongly on the characteristics of the analyzed text corpora and their value in our microblogging 

system has to be determined in future work. Note that β is between 0 and 1 (generally in [0.4, 
0.6]), so the higher the number of followers is, the better factorization is achieved. This is 
particularly expected in our filtering system where many users filter out on the same terms. Since 

the number of terms in )(nPostings
PTF

 is N×(φ×τ)  and the number of entries indexed is always 

N×φ×τ , we deduce that: 
 

entrylistdir

PTF

memory
NkNNFSG  ( 4 ) 

 

PTF-index matching time 

Consider an incoming post p published by the user n. We access the posting list of the 

publisher n )(nPostings
PTF

. Then for each entry 
k

tti ii

nnt ,,,
1
  we check if p contains ti. 

Whenever this happens we notify each 
j

t i

n  from the entry ti. Thus the expected average matching 

time is: 
 

kppFSG
PTF

time
,  ( 5 ) 
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PTF-index insertion/deletion time 

To insert a new filter t we scan the posting list )(nPostings
PTF

 until we find the entry that 

corresponds to t. Adding a new filter consists in appending the id of the follower that formulates 

this filter t to the corresponding list. If the term does not exist in )(nPostings
PTF

, a new entry for 

this term is added. Deleting requires an additional scan of the list of followers, on average

)(/ nPostings
PTF

. Potentially it leads to the deletion of a term’s entry. Consequently the 

expected costs are respectively: 
 

2/kFSG
PTF

insert
 ( 6 ) 

kkFSG
PTF

delete
/2/   

The TPF-index 

In the TPF-index, (as Term-Publisher-Follower index), the key is a term that appears in a 
filter. Thus the directory table contains the whole filter vocabulary VF. The corresponding 

posting list )( tPostings
TPF

 associated to a term t, is the set of publishers along with their 

followers that want to filter out this publisher on t:  

 ,,,,,,,,)(
21

2

21

1 2211 nnnntpf
nnnnnntPostings  with 

i

j

i
nn  and ),(

j

ii
nnlabelt . 

TPF-index corresponds to a factorization first on the term from VF, and then for each term a 

second factorization on the publishers ’ids. 
 

Example 

Figure 4 shows the TPF-index structure that corresponds to our Example. 

 
 
 

 

Figure 4. The TPF-index 
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TPF-index memory requirement 

The TPF-index consists of VF posting lists, one for each term of the filter vocabulary.  
Since we have N accounts that follow on average φ other accounts with an average filter size of  
τ, the total number of terms used for filtering is N×φ×τ. We still assume that the size of the filter 

vocabulary follows a Heaps' law then the number of distinct terms is NkV
F

. We 

make the common assumption that the distribution of terms in the set of filters follows the Zipf 
law (Baeza-Yates & Ribeiro-Neto, 1999; Manning, Raghavan, & Schütze, 2008), and that the 

number of publishers that are filtered out on a given term is proportional to the term frequency. 

Consequently, the number of publishers associated to a term ti whose frequency rank is ri is i
r/ , 

where γ is a constant. Here again N×φ×τ  entries are finally stored, corresponding to the 
followers ’ids. Thus the expected memory requirement for the TPF-index is: 

 

entrylist

V

i

dirF

TPF

memory
NiVFSG

F

1

/  

Since 1
F

V , we approximate 
FV

i

i

1

/  with 
F

Vln . Consequently we have: 

 
 

entrylist

dir

TPF

memory

NNk

NkFSG

ln

 
( 7 ) 

 

 
TPF-index matching time 

Consider an incoming post p published by the user n. For each term pt  we access the 

posting list of t )( tPostings
TPF

. Then for each entry ,,,
21

ii nni
nnn  we check if ni is the 

publisher of p, i.e., if ni=n. If such an entry exists, we then notify each 
j

n i

n  and stop the posting 

list scan for this term. Assuming the Zipf distribution of terms, the average posting list size is

2/ln
F

V , and we scan on average half of the posting to find the publisher. Thus the expected 

average matching time is: 
 

 

2/2/ln, NkppFSG
TPF

time
 ( 8 ) 
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TPF-index insertion/deletion time 

To insert a new filter ),,( tnn  we scan the posting list )( tPostings
TPF

 whose size is on 

average 2/ln
F

V  until we find the entry that corresponds to n. Adding a new filter consists in 

appending the id of the follower that formulates this filter t in the corresponding list. If the term 

does not exist in )( tPostings
TPF

, a new entry is added. Deleting requires an additional scan of the 

list of followers, on average
F

VN /  . Potentially it leads to the deletion of a publisher's 

entry. Consequently the expected costs are respectively: 

 
 

2/2/ln NkFSG
TPF

insert
 ( 9 ) 

F

TPF

delete
VNNkFSG /2/2/ln   

 
Experiments 

In this section, we describe the experiments designed and performed in order to analyze (i) 
how our structures behave against real microblogging data from Twitter and (ii) the impact of 

different parameters of microblogging systems. These experiments validate our analytical model 
presented in the Indexing section. 

 

The dataset 

In collaboration with Forth Institute (Heraklion, Crete)15 we gathered data on Twitter over 
a four month-period using the Twitter streaming API16. We generated a complete Twitter graph 
+ tweets dataset by merging this data with the Twitter graph structure from Kwak, Lee, Park, & 

Moon (2010). As a result, we obtained a dataset with 2.9 million users, 169 million graph arcs 
and more than 33.9 million tweets. Finally, we performed a linguistic analysis for these tweets 
and kept only the English ones (and their associated accounts). Our resulting dataset is 

summarized in Table 2. 
 

 
As explained earlier, we make the assumption that the average filter size (number of 

distinct terms that labeled an edge in the filtered social graph) corresponds to the average number 

of terms used on twitter querying API (Teevan, Ramage, & Morris, 2011). We decide for our 
experiments to generate filter terms for a follower through a draw among the most frequent and 

significant terms (we discarded urls, terms from the common language, Web shortcuts …) in the 
posts of the publisher s/he follows. Our rationale is that we usually follow a publisher because 
s/he provides some tweets that match one of our interests. Unless otherwise precised, this filter 

setting is used for our experiments. Remember that we do not intend in the current paper to 
validate the filter generation but to study scalability issues of such systems.  
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Element # 

Users 2,170,784 

Tweets 15,717,449 

Graph arcs 148,508,857 

 

Table 2. Dataset description 

User Follower Queries 

12 36255503 bigday twitter 

12 36255965 conference deadline 
download 

12 36256156 DB conference 

12 36256607 software twitter 

 

Table 3. Filtered social graph dataset sample 

Table 3 shows a sample of the filter social graph obtained using our label generation process. 

Experiments run on an Intel Core i5 CPU with a frequency of 3.60 GHz and 16 GB of RAM. 
The structures are implemented in JAVA. 
 

Memory requirement 

All structures have different factorization criteria which lead to different memory 
requirements. Table 4 compares the space occupancy of the three structures for our dataset. TPF-
index appears as the structure with the lower memory requirements. Many filters are shared by a 

significant number of users which allows a better factorization, on the terms first. Moreover, we 
observe that many followers of a publisher filter out on the same terms. Consequently, for a 

term's entry in the TPF-index, there exists also an important factorization on publisher's id, 
especially for account with an important number of followers. Oppositely the PFT-index benefits 
from a poor factorization since all publishers have an entry in the directory and for each of them 

we have a list element for each of his followers, each of them with few filter terms. 
 

Structure Index size (MB) 

PFT 9021 

PTF 3777 

TPF 1869 

 
Table 4. Index sizes for the realistic dataset 

To measure the impact of the different parameters of our microblogging system and to 

validate our analytical model, we generate synthetic datasets with a constant number of filters (τ) 
for each graph edge. We report results in Figure 5. The memory occupancy grows linearly with τ 
for PFT and PTF indexes. Indeed, increasing τ does not impact the directory size that depends 

only on the number of publishers, i.e., N. Moreover, for PFT-index, the number of elements in 
the posting list remains constant and equal to the number of followers. But the number of entries 

follows linearly τ. For PTF-index the number of elements depends on the number of distinct term 
used as filter for a publisher. When comparing with PFT-index we observe the same gradient. 
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This reveals that τ has a low impact on the number of elements for a posting list in PTF-index. 
The Heaps' law we propose in our model explains this result, since it assumes that the sub-

vocabulary of filter terms for a given publisher increases slightly. Thus for PTF-index, like for 
PFT-index, the increase of τ does not impact the structure but only the number of entries. Finally, 

we note the low impact of τ on the TPF-index. The rationale is (i) the directory size remains 
constant and equal to VF, (ii) since filters are generated w.r.t. the publisher's post areas, a new 
filter term has a high probability to be already present for the same publisher in the structure, so 

the number of posting elements remains low and slowly increases.  
 

 

Figure 5. Occupied memory w.r.t. τ 

 

 

Figure 6. Occupied memory w.r.t. N 

Figure 6 illustrates the impact of N on the different structures. All structures exhibit a 
linear growth. For PFT and PTF index, adding a new user results in adding a new directory 
entry, new posting list elements and new posting entries for his followers along with their filters. 

However the factorization on terms’ id in a posting list is more efficient than the one on 
follower's id which explains the best gradient for PTF. For TPF after a short initialization step 

that corresponds to the creation of the different entries of the directory and the different elements 
of the posting list, increasing N leads only to add new posting entries. This explains a linear 
growth with a lower gradient. Both Figures validate our analytical model. 

 
Indexing times 

We compare in Table 5 the time needed to build the different structures in central memory 
for different datasets. Uniform (1), (2) and (3) correspond to scenarii where each publisher-

follower edge is labeled by respectively 1, 2 or 3 filter terms. As expected, the smaller index size 
is, the lower building time we have. Indeed for TPF-index we have smaller posting lists, so we 
need less time to find the list element where the new filter must be inserted.  Oppositely in PFT-

index, a time-consuming scan of large posting list is required.  
 

We also note that the building time is not proportional to the value of τ. It turns out that 
posting lists elements are quickly created and their number slowly evolves.  After this step, 
increasing the number of filter terms for a follower corresponds mainly to add new entries in 

existing elements which corresponds to a (almost) constant time, explaining the linear behavior. 
These results are in accordance with our analytical model. 
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Structure realistic uniform(1) uniform(2) uniform(3) 

PFT 753 736 741 1081 

PTF 512 357 444 558 

TPF 231 198 236 289 

 

Table 5. Indexing times (in s) 

 
Matching times 

To evaluate matching time we process as follows: first, the post is decomposed into a bag 
of terms, then we use the index to determine for each term of the post the set of followers to be 

notified.  Observe that since we are working in a disjunctive logic, when the first positive match 
occurs we can directly notify the corresponding user. Table 6 depicts average matching times for 
an upcoming flow of 100,000 tweets over the different filter indexes.  

 
We observe that the TPF-index exhibits poor matching performances: for our realistic 

dataset, with around 2.5 ms a post, it can handle less than 400 posts a second, so far from being 
scalable (remember that in Twitter for instance there exist peaks with 8,000 posts a second). For 
each term of the post we retrieve a large posting list with potentially as many elements as 

existing publishers N. Oppositely PTF-index quickly retrieves the followers to be notified: it 
handles a post in 15µs, so is able to manage peaks up to 66K posts a second. Here we directly 

access the posting list corresponding to the publisher. Then we scan all its elements that 
correspond to all followers of this account, and check for each of them if any filter term matches 
the post. Observe that the number of filter terms is low (between 1 and 3) for a follower, and that 

we check all terms of the post in a single scan. Of course this is an average value and the 
matching time is higher for publisher with numerous followers and faster for those with few 

ones.  
 

Structure PFT PTF TPF 

matching time (µs) 808 15 2564 

Table 6. Matching time for realistic dataset 

Figure 7 illustrates the impact of τ on matching time. Like in Table 6, PTF-index 
outperforms other proposals with 2 orders of magnitude. We observe that the matching time for 

PFT-index linearly increases with τ while TPF-index follows a sub-linear growth. For the former, 
matching implies a direct access to the posting list of a publisher and then to scan all elements in 

turn for this list to check if associated entries match the post terms. Increasing τ does not change 
neither the number of entries of the directory, nor the number of elements. So only the last step, 
the matching attempt against term entries requires more time. Since the number of entries is 

proportional to τ, this explains this linear growth. 
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For the TPF-index, we observe the Zipf's law behavior in the term frequency distribution, 
so when increasing τ we generally add entries in the posting of the most frequent terms. As a 

consequence the more numerous filters are indexed, the higher probability we have to add an 
entry in an existing posting list element. Since posting lists' size has a sub-linear increase and 

since we scan as many lists as number of terms in the post, this justifies that the matching time 
increases sub-linearly w.r.t. τ.  

 

 

Figure 7. Matching time w.r.t. τ 

 

Figure 8. Matching time w.r.t. N 

We report also in Figure 8 the evolution of matching time w.r.t. N. We notice that both 
PFT and PTF-index have a constant matching time. Indeed, increasing N only impact the 

directory by adding new directory entries, but the posting lists keep a constant number of 
elements and for each element a constant number of entries. Since for an incoming post we scan 

a single posting list corresponding to the publisher, the matching time is constant with N. TPF-
index exhibits better performance than PFT-index for N lower than 900k. The matching time 
with TPF-index increases sub-linearly w.r.t. N for the same reasons as with τ. These results also 

confirm our analytical model. 
 

Filtering efficiency 

To evaluate how filtering reduces the number of posts delivered, we compare the number 

of posts that are sent from the microblog server to the users with and without filtering. As 
expected the number of posts delivered dramatically drops since we measure a gain of almost 

98% for all our datasets (see Table 7). Our disjunctive hypothesis for filters justifies that the 
more numerous filter terms we have, the more numerous posts have to be delivered. However 
observe that we do not have a linear increase in the number of delivered posts. Indeed, there is a 

higher probability for a post to match several filter terms of a follower when followers have large 
filters. 

 

Filtering Realistic uniform(1) uniform(2) uniform(3) uniform(4) 

Enabled 211,651 161,196 212,364 244,578 267,164 

Disabled 11,035,437 

 
Table 7. Number of delivered posts 
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Graph evolution 

Users in microblogging systems have a dynamic following behavior (Kwak et al. 2011; 
Kivran-Swaine et al. 2011). The underlying social graph in Twitter-like networks is in a constant 

evolution. Relationships are subject to move because they depend on various fluctuating factors 
like temporal interest for an event and accounts related to this event, publisher's content creation 
rates, etc. To illustrate how the PFT, PTF, TPF and Hybrid (presented below) structures handle 

the graph dynamicity we reported average insertion/deletion times in Table 8. 
 

Since the TPF-index do not reflect the graph structure, a time consuming scan of the lists 
have to be performed for popular filters in the case of insertion as well as for popular accounts 
entries in the case of deletion. Also, as expected from the analytical study, the PFT-index is the 

most dynamic structure and requires 30% less time for inserting and 67% less time for deleting 
compared to the PTF. The explanation lies in the structure of the PFT whose factorization, first 

on the publisher, then on the follower, corresponds to an edge factorization. Thus adding or 
removing an edge is performed fast. The factorization by term in the PTF-index broke the natural 
graph storing leading to worst update times. 

 

Structure Avg. Insertion time Avg. Deletion time 

PFT-index 2274 566 

PTF-index 3247 1731 

TPF-index 3023 1057 

Hybrid-index (threshold = 400) 2498 818 

 
Table 8. Avg. insertion/deletion times (in Nano-Seconds) 

 
The hybrid structure 

Like many other social networks, microblogging systems are characterized by the 

heterogeneity of the accounts. Figure 9 and Figure 10 illustrate this heterogeneity in our dataset. 
We see in Figure 9 that we can distinguish 5 classes of users based on their number of followers. 
We observe in Figure 9 that more than half of the users (55.78%) are followed by less than ten 

users. At the same time we have in the system a minority of very popular accounts that are 
followed by a large number of accounts (0.78% are followed by more than 1,000 users).  

 
Regarding the publication activity, we observe in Figure 10, that the classes with the 

highest number of followers have also the highest publication rates. This is a common 

topological phenomenon in social networks also described by Kwak, Lee, Park, & Moon (2010) 
and Ahn, Han, Kwak, Moon, & Jeong (2007). 
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Figure 9. Users by their number of 
followers 

 

Figure 10. Users classes by their average number of 

tweets 

 
 
Given this specificity, we investigated an hybrid structure that combines both PFT and the 

PTF index structures. Basically this structure stores the accounts that have a number of followers 
lower a certain threshold similarly to the PFT structure and other accounts using a PTF 

factorization. The main motivation behind this choice is that PTF index handles better the 
popular publishers than the PFT one (see Section “Matching times”).  

 

 
Hybrid structure memory requirements 

The key parameter in the hybrid structure is the value chosen for the threshold, which 
represents the minimal number of followers we may have to be considered as a popular account. 

We denote this threshold as the popularity threshold in the following. According to this value we 
decide whether we store an account as a PFT (not popular) or as a PTF (popular) index entry.  

 
Our results for the memory requirement regarding the popularity threshold value are 

presented in Figure 11. We see that handling larger accounts (in terms of number of followers) 

as PTF have a direct impact on the index sizes. The smaller the popularity threshold is set, the 
smaller is the size of the structure. The size of the hybrid structure lies consequently between the 
PFT and the PTF. For instance a value of 5 for the popularity threshold lead to a memory 

requirement similar to PTF while a popularity threshold of 400 leads to an increase of 30% of the 
memory requirements. 
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Figure 11. Occupied memory w.r.t. N and hybrid threshold value 

 
Hybrid structure matching times 

We report the matching times obtained with the hybrid structure in Figure 12. We observe 
that the matching time remains constant when varying the popularity threshold from 5 to 25. 

With this users partitioning parameter, the hybrid structure performs a matching in 15µs so 
similar to the PTF (see Section “Matching times”).  Table 9 shows the number of users (on the 
2.17M in our graph) indexed as PTF for various popularity thresholds. We see that starting from 

the popularity threshold 25, which means that almost 25% of the users are considered as popular 
account, the matching time quickly increases. However we observe that with a popularity 

threshold of 400, only 2.5% of the accounts are considered as popular and are indexed as a PTF 
entry, but the gain compared to the full PFT indexing is 25.2 (32µs versus 808µs). This confirms 
our motivation to distinguish the (rare) popular accounts, and the others when indexing. 

 
 

 

Figure 12. Matching times for the hybrid structure w.r.t popularity threshold 
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Popularity threshold Number of users 

5 1,349,490 

10 959,976 

25 547,001 

50 337,393 

100 199,033 

200 209,844 

400 54,024 

1000 16,961 

5000 2,118 

10000 896 

 

Table 9. Number of users for various popularity thresholds 

 

Regarding the dynamicity of the structures, the hybrid structure handles update of the 
social graph and/or filter more efficiently than PTF, and almost as fast as the PFT (see Table 8): 

an insertion is performed in 2498 ns and a deletion in 818 ns, versus respectively 2274 ns and 
566 ns for PFT for a popularity threshold set to 400. Consequently we conclude that handling 
larger accounts (in number of followers) with a specific factorization can improve the overall 

efficiency of the system. The hybrid structure achieves an interesting compromise between PTF 
and PFT. For instance with a popularity threshold of 400, we need 30% more space than PTF but 

50% less than PFT. The matching time is twice the one of PTF, but 25 times less than PFT.  
 
However, oppositely, the hybrid structure exhibits better performances than PFT regarding 

the management of dynamicity of the graph with a gain of 23% for insertion time and 53% for 
deletion time. 

 
Conclusion and future work 

In the present paper we compare inverted lists-based structures that index filters to decrease 
the number of messages delivered in microblogging systems. We propose an analytical model for 

all these structures and validate them with real and synthetic datasets. PTF-index appears to 
achieve the best scalability since, despite the fact that it require more memory and insertion time 
than the TPF-index, it outperformed with two orders of magnitude other proposals for matching 

time. We have also shown that exploiting the heterogeneity of the accounts (e.g. 5% of accounts 
with more than 100,000 followers) as we did with the hybrid structure, allows to achieve better 

overall performance especially when considering the graph evolution and dynamicity. 
 
We intend in future work to consider other optimizations like clustering or summarization 

which group different filters inside a posting list to achieve better performance. Adding 
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conjunction and negation in filter expressions as well as more complex matching schemes is 
another future challenge. 

 
 Finally, we are currently working on real-time content recommendation for micro-

blogging systems. The idea is to rely on our time and memory efficient indexing structures 
combined with semantic distances to provide user recommendations on top of the FSG. 
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Figure Captions 

Figure 1. A filtered social graph 
Figure 2. The PFT-index 

Figure 3. The PTF-index 
Figure 4. The TPF-index 
Figure 5. Occupied memory w.r.t. τ 

Figure 6. Occupied memory w.r.t. N 
Figure 7. Matching time w.r.t. τ 

Figure 8. Matching time w.r.t. N 
Figure 9. Users by their number of followers 
Figure 10. Users classes by their average number of tweets 

Figure 11. Occupied memory w.r.t. N and hybrid threshold value 
Figure 12. Matching times for the hybrid structure w.r.t popularity threshold 
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