
Self-control Cloud Services
Efficient SLA Management

Tatiana Aubonnet,
1, 2

Noemie Simoni
1

1 - Télécom ParisTech, CNRS LTCI-UMR 514, 46, rue Barrault 75634 Paris
2 - CNAM, CEDRIC, 292, rue Saint Martin, 75003, Paris
{tatiana.aubonnet, noemie.simoni}@telecom-paristech.fr

Abstract—We introduce a self-control integrated service
component aiming at ensuring Service Level Agreement
management. Our approach based on quality of service has
two important points: the contract description (supply and
demand) and the contract management. The self-control in
service components allows us to react dynamically
(operational decision) and the autonomic loop enables us to
manage the services composition in a virtual session (tactical
and strategic decision). This approach is proposed in the
OpenCloudware project. We also provide an example of
self-control cloud services through the Springoo application.

Keywords-service component; self-control; SLA; service
composition

I. INTRODUCTION
Today, the provisioning of a wide range of services

depends on the orchestration of heterogeneous, distributed
software components, which can be owned by different
service providers and operate over diverse networks. In
such a context, designing and providing value-added
services, ensuring their nominal quality levels with service
deployment, provisioning, monitoring and management
becomes increasingly difficult. Provider resources must be
shared by all clients. In the cloud computing context, the
outsourcing introduces the need of SLA (Service Level
Agreement). How the mapping between the provider
supply and the user demand can be performed?

To answer this problem, we propose to express the
SLO (Service Level Objective) requirements and the
provided services by the same model. The main
advantages of our approach are the modeling and the
overall management of system behavior founded on a new
integrated service component that distinguishes itself
through a "self-control" property based on QoS (Quality of
Service).

Our contribution to this problem is the use of the same
modeling to which we add the following two models:
interaction behavior model which addresses the dynamic
reaction process and the co-ordination model further
which specifies the autonomous degree of the distributed
components and the overall management. According to the
autonomic system concept and mutualizable component
approach, we propose the management of the client
session VPSN (Virtual Private Service Network) based on
dynamic reaction in VSC (Virtual Service Community).

We present in this paper the feedback of our research
on the self-control cloud services for efficient SLA
management. This paper is organized as follows: the
related works for SLA management and autonomic
computing are described in Section II. Section III presents
the SLA expression used in the OpenCloudware project.
Section IV is devoted to our propositions for SLO, self-
control service component, and SLA management. Finally,
in Section V, we exhibit the advantages of our approach in
a Cloud computing environment.

II. RELATED WORKS
A Service Level Agreement (SLA) is an agreement

formally negotiated between two parties.
For aspects of description, we find the work of TMF

(TeleManagement Forum) [1]. The SLA serves as a means
of formally documenting the service(s), performance
expectations, responsibilities and limits between cloud
service providers and their users. It deals with managing
service quality through the customer experience life cycle.
This means managing service quality beyond the in-use
phase of the life cycle in order to include sales,
provisioning, in-use phase and service termination aspects.
Software defined SLA offer a new design pattern that
formalizes SLA and SLO as configurable parameters of
cloud software components [2].

The other challenge is the minimal human oversight of
the system. The work will be around the “loop of control”
MAPE (Monitoring, Analyse, Planning, and Execution).
For software systems, the external controller requires an
explicit model of the target system in order to react to the
observations and to configure and repair the system [4, 9].
Monitoring mechanisms extract and aggregate information
to update the model. An evaluation mechanism detects
problems in the target system as reflected in the model.
The occurrence of a problem triggers an adaptation
mechanism that uses the model to determine a series of
actions. The mechanism then propagates the necessary
changes to the target system in order to fix the problem.
An external control separates the aspects of system
functionality from those of adaptation behaviors [3]. But is
this external MAPE loop dynamic enough? In addition we
may have several causes of dysfunction not related to the
same SLA?

Our motivation is to obtain efficient SLA management
with the dynamic decision process and the customer virtual

2014 IEEE 13th International Symposium on Network Computing and Applications

978-1-4799-5393-6/14 $31.00 © 2014 IEEE

DOI 10.1109/NCA.2014.48

282

2014 IEEE 13th International Symposium on Network Computing and Applications

978-1-4799-5393-6/14 $31.00 © 2014 IEEE

DOI 10.1109/NCA.2014.48

282

session management. This is why we integrate a new
approach and present our proposals for the SLA contract
description (supply and demand) and the SLA contract
management.

III. BACKGROUND: SLA EXPRESSION
We introduce our previous propositions concerning the

SLA Expression (demand and supply) provided in the
OpenCloudware project [11]. The SLA parties represent
the contracting entities of a SLA contract.

The SLA can be described in two parts:
• The users request their requirements, i.e. SLO and

obligation, corresponding to the demand.
• The offer by Cloud provider with the guarantees

provided (services offers QoS associated,
penalties) corresponding to the supply.

On the user side, a SLO is seen as a way to express the
user needs. For example: service is available 7/7 and
24/24, access time to the application < 1 s in 90% of cases,
a processing time < 2s if nb req/s < 1000 in 90% of cases.
The user has the obligation to check the correct
functioning of the service.

On the provider side, the services offered are two
types: usage and management. In accordance with our
model [5], every service component integrates the QoS
control. Four criteria are proposed [6] to describe the
behavior (QoS): availability, reliability, time, and capacity.

Availability represents accessibility rate of the service
component.

Reliability represents running without alteration of
information (for example: error rate).

Time represents time for request processing (for
example: response time).

Capacity: maximum load of the service component (for
example: processing capacity).

These four criteria are necessary and sufficient. For
each criterion the values are: design, current and threshold
values.

The originality of our approach is an SLA management
that is specific to each contract. It represents a
configuration related to each user.

We analyzed this SLA expression as an input of our
proposition, and in the following section we propose self-
control to build cloud services compatible with the next
generation services. We also present an approach for
efficient SLA management.

IV. PROPOSAL: SELF-CONTROL TO BUILD CLOUD
SERVICES AND SLA MANAGEMENT

In this section we present our propositions for a self-
control approach. We will give our propositions for:

• Define the demand: SLO (section A).
• Define the Offer: self-control service component

(section B).
• Efficient SLA management (section C).

A. Definition of the demand : SLO (Service Level
Objective)
SLO is generally specified in terms of an achievement

value or service level, a target measurement, a
measurement period, and where and how to measure. For
example, 90% of calls to the helpdesk should be answered
in less than 20 seconds measured over a period defined as
reported by the ACD system. Results should be reported
by the percent of time that the target answer time was
achieved compared to the desired service level (90%). The
agreement between the customer and the provider on the
SLO values is formalized in a SLA.

Table 1 gives an example of SLO requirements for the
above services in each customer relationship steps
according to the four criteria defined in our model:
availability, reliability, time, and capacity. Each criterion
should be expressed in SLO metrics (see four columns of
the QoS criteria).

We describe the SLO related to the charging/billing
service (see Table 1). The cell reference Y6-X1
(charging/billing-availability) gives the requirement
regarding the availability of any type of information about
cost whenever the customer requires it. SLO example: the
information about cost should be accessible by different
means 7 days a week and 24 hours a day.

TABLE I. MATRIX OF CUSTOMER'S SLO REQUIREMENTS

 QoS criteria

Customer relationship steps Detailed customer
relationship steps Availability Reliability Time Capacity

 Cell ref. X1 X2 X3 X4
1 – Sales Y1

Se
rv

ic
e

m
an

ag
em

en
t 2-Service provisioning Y2

3-Service update / Technical upgrade Y3
4-Service support Y4
5-Repair/Trouble-shooting Y5
6-Charging/Billing Y6 SLO Y6-X1 SLO Y6-X2 SLO Y6-X3 SLO Y6-X4
7-Cessation Y7

U
se

 o
f S

er
vi

ce

8- Security Y8

9-Service utilization

Access Y9.1
Bearer service Y9.2
Service usage Y9.3
User interface Y9.4

283283

The Cell reference Y6-X2 (charging/billing-reliability)
gives the requirement regarding the completeness and the
accuracy of any type of cost information in reflecting the
actual use of the service according to the conditions of the
contract, in particular every tariff parameter including day
time and day in the week. SLO example: the cost
information available should match 100% of the costs. The
Cell reference Y6-X3 (charging/billing-time) represents
the requirement regarding the time measured from the end
of a communication to the time when the cost information
is provided to the customer. SLO example: the cost
information should be supplied within less than one day
after the actual cost involved. The cell reference Y6-X4
(charging/billing-capacity) represents the requirement
regarding the number of customers expected to
simultaneously require access to the various types of cost
information. SLO example: the charging/billing service
capacity should meet all simultaneous user requests.

We have described the demand expressed in SLO. In
the next sub-section, we define the supply.

B. Definition of the sypply: Self-control Service
Component
In accordance with our concepts in OpenCloudware

project, we introduce a composite component based on
QoS, that we call “self-control service component”, see
Figure 1. The main properties of our composite
components are self-control, mutualization, flexibility, and
exposability. Self-control: the composite component
should have self-control and auto-survey behavior. The
QoS subcomponent is enabled to conduct the monitoring
of the quality of service criterion and to generate specific
notifications if the threshold values are exceeded.
Mutualization: the composite component is a multi-tenant
service component. Multiple users require appeal to it at
the same time. The composite component is “stateless” (it
remains in the same state) in order to offer the same
service to all applications. Flexibility: the OpenCloudware
project aims to offer a toolbox of QoS components,
allowing the developer (architect) to configure the desired
control levels, and their distribution in the application
architecture. Exposability: users can build their application
through a catalogue or a portal.

Figure 1. Self-control service component

The self-control service component contains:
• A functional content, which may be primitive or

composite (BusinessCpt).

• A non-functional interface (server) QoSC, whose
role is to receive configuration commands and a
non-functional interface (client) OutOfSLA (send
the violation indications of QoS contract).

• One or more non-functional QoS components in
the membrane (the component control part),
providing the capabilities of monitoring, reporting,
or QoS autonomic control.

The component non-functional aspects are handled by
the component membrane. The component QoS in the
membrane plays a role of interceptor. For all the
component services, incoming service requests are tested,
and then the functional content of the component
transmitted via the corresponding internal interfaces. The
structure of our self-control service component allows us
to specify precisely the non-functional information flow.
We can also adapt this structure more finely, depending on
the “active role” for the QoS component. The active role
means that the QoS component plays the role of QoS
controller, and regularly notifies the status of its QoS
component. It must respect its service contract or, if it is
out contract, it sends the notifications: “out contract”. This
case is illustrated in Figure 1.

Self-control service components based on GCM (Grid
Component Model) use an extension of the formalism
ADL (Architecture Description Language) to take into
account the presence of components in the membrane, and
the rules of good composition of the bindings between the
different types of interfaces. This extension is generic and
allows all non-functional interface management. The GCM
is a component model that was defined by the European
Network of Excellence Core-Grid. It is distributed and
formalized in the Grid Component Model with its
hierarchical structure, encapsulation, its dynamic
reconfiguration, and its non-functional controllers [7].
Figure 2 provides an example of the ADL language
corresponding to Figure 1. This code is automatically
generated by the Vercors tool, develop at INRIA (Sophia-
Antipolis, France). The Architecture Description is based
on an XML (Extensible Markup Language) format that
contains the structural definition of the system components
(subcomponents, interfaces and bindings) and some
deployment concerns.

In the following section we propose efficient SLA
management compatible with the objectives of self-
control, i.e., dynamic reaction by the ubiquitous service
components selected in Virtual Service Community; as
well as the management of virtual session by VPSN
(Virtual Private Network Service).

C. Efficient SLA management
The goal of this session is to present how to define an

efficient SLA management between a service provider and
a user. To answer this request, we present:

• Our approach (Section 1).
• Community VSC: dynamic reaction (Section 2).
• Virtual session: overall management (Section 3).

284284

<definition name="QoSComponent">
 <interface signature="signature" name="S1" role="server"/>
 <interface signature="signature" name="C1" role="client"/>
 <interface signature="signature" name="QoSC" role="server"/>
 <interface signature="signature" name="OutOfSLA" role="client"/> <content>
 <component name="BusinessCpt"> <interface signature="signature" name="S1" role="server"/>
 <interface signature="signature" name="C1" role="client"/> <content class="BusinessCptClass" />
 <controller desc="primitive"/> </component> </content> <controller>
 <component name="QoSActif">
 <interface signature="signature" name="S1" role="server"/>
 <interface signature="signature" name="C1" role="client"/>
 <interface signature="signature" name="QoSC" role="server"/>
 <content class="QoS-Class" />
 <controller desc="primitive"/ </component>
 <component name="QoS"><binding client="this.S1" server="QoSActif.S1"/>
 <binding client="QoSActif.C1" server="this.S1"/>
 <binding client="this.QoSC" server="QoSActif.QoSC"/>
 <binding client="QoSActif.OutOfSLA" server="this.OutOfSLA"/> </controller>
 <binding client="BusinessCpt.C1" server="this.C1"/>
 <binding client="this.S1" server="BusinessCpt.S1"/>
</definition>

Figure 2. ADL description of self-control service component

1) Our approach
After having introduced our service component in the

previous section, it would be interesting to explore its
capabilities and contributions through the ITIL
(Information Technology Infrastructure Library) standard
[10]. We consider the following ITIL definition: (1) “To
manage” is to control. (2) “To control” is to measure. (3)
“To measure” is to define.

In our approach “to measure” represents the metrics of
QoS criteria, “to control” represents the QoS control
(“in/out contract”), “to manage” represents FCAPS (Fault,
Configuration, Accounting, Performance, Security) of ISO
(International Organization for Standardization) network
management model, and MAPE-K loop. Our approach
(Figure 3) allows decisions on three different levels:
strategic, tactical and operational. The operational
decision is based on the self-control integrated in each
service component: first, we replace each service
component by a dynamic reaction (i.e. by the equivalent
service component in the VSC). Next, we analyze the
metrics FCAPS which corresponds to “out contract”. The
tactical decision consists in the reporting of service usage
and service context. The strategic decision is related to the
strategies contained in the knowledge database.

Figure 3. Decisions based on self-control component reaction

To illustrate our approach, we describe in the following
section the first operational decision: the replacement of a
service component that is “out contract”.

2) Dynamic reaction: Virtual Service Community

The reaction model applies in every node and surveys
the behaviors of active components; the interaction
behavior model reflects different levels of autonomy. An
active component performs a given function and may also
encapsulate some resource and the operations for
accessing. It is the case whenever a self-control service
component can detect the problem (then it is “out
contract”) and finds a replacing solution, whenever an
event occurs without the manager's intervention, allowing
the replacement of the service component in VSC.

To allow the replacement of a service component, we
use the concept of ubiquitous service. “Ubiquitous service”
is a service component offering the same functionality as
in the replaced component and also the same QoS
described in our model, with the four criteria: availability,
reliability, time and capacity. The ubiquitous service
component will ensure the replacement of a degraded
service component by an equivalent service in order to
maintain the QoS contract. Thus, the "out contract" of
service component will result in the replacement of a
service element by an ubiquitous service component. This
replacement is performed without breaking the session
thanks to the concept of VSC.

3) Overall management: virtual session and the

MAPE-K loop.
The virtual session is represented by VPSN. The

Virtual Private Service Network represents the
composition of the services components and their
sequencing. The link represents the interactions between
services at the logical level. The entities of this level
provide an application service. The VPSN is created with
all the service components corresponding to the
commercial offer (usage, and management). In our
proposition, we use an event-based approach. The self
control component detects a QoS degradation and notifies

285285

the cloud management system. The Events Manager
receives the notification («out contract») and matches this
event to a specific action. We introduce an MAPE-K loop
for the overall management including in analysis phase a
FCAPS management (Figure 3) in order to adapt the
VPSN configuration.

The co-ordination model defines the decisions rules
(tactic and strategic) more precisely, we have a decision
table where for each event he indicates the service
component. It is invoked in VPSN.

The contributions of our approach are definition of
virtual session and the MAPE-K loop revealed suitable for
the clouds self-management.

V. SPRINGOO APPLICATION
Our paper shows the advantages of self control and the

SLA management through an application to
Appach/Jonas/MySQL (Springoo application). It is
interesting to propose an architecture that separates the two
functions: monitoring and control (see Figure 4).

Figure 4. Springoo modelling

To illustrate the approach, the described use of
Springoo case has been extended. The additional wrappers
(http-wrp-QoS, jee-wrp-QoS), are defined to manage the
deployment of the application software components
according to the QoS self-control. The SQL-wrp is in
relation with the MySQL database server; it is an instance
of the database. The jonas-wrp, is defined for the JEE
JOnAS application server, the instance of the business
logic application and the JDBC connector. Finally, the
http-wrp manages the HTTP Apache front-end server. The
http-wrp-QoS represents the QoS manager component of
the Apache HTTP server. The jee-wrp-QoS represents the
QoS manager components of JOnAS application server. In
this modelling (Figure 4), the QoS wrapper (http-wpr-
QoS) QoS is a composite component of type “self-control
service component" containing the primitive component
http-wrp. The non-functional interface QoSC is used to
send information from the QoS as notifications (“in/out
contract”) or monitoring queries to database (SQL - wrp).

The language ADL generated in this example will be
integrated in the OVF ++ (Open Virtualization Format)
description of the Springoo application [8].

VI. CONCLUSION
In this article, we have presented an approach for a

more efficient SLA management. We considered two
important points to reflect the complexity introduced by

the SLA/QoS management: the contract description
(supply and demand) and the contract management for
which we proposed a QoS model. Thus we can express the
demand (SLO) across the four criteria of this model. The
supplier's offer is also presented through this model.

The self-control service component allows us to react
dynamically and the autonomic MAPE-K loop enables us
to manage the services composition. We have proposed the
management associated to self-control: first, the
operational decision amongst the ubiquitous services in
VSC and next, the dynamic composition of the user virtual
session in VPSN. Our approach ensures that cloud users
have self-control on cloud services in a dynamic way.

ACKNOWLEDGMENT
This work is supported by the OpenCloudware project

funded by the French FSN (Fond national pour la Société
Numérique), and is supported by Pôles Minalogic,
Systematic and SCS.

We would like to thank for their help and contribution
in this article: (1) OpenCloudware partners, especially Eric
Madelaine and Fabienne Boyer. (2) ETSI (European
Telecommunications Standards Institute) User Group
especially Pierre-Yves Hébert. (3) The AIRS (Architecture
et Ingénierie des Réseaux et Services) Research Group of
Télécom ParisTech, particularly Ines Ayadi.

REFERENCES
[1] TeleManagement Forum GB917, "SLA Management Handbook,"

Release 3.0, January 2011.
[2] J. Lango "Toward Software-Defined SLAs" Published in Magazine

ACM New York, NY, USA, Volume 11, pp. 54-60, November
2013.

[3] M. Amoretti, A.L. Lafuente, and S. Sebastio, "A Cooperative
Approach for Distributed Task Execution in Autonomic
Clouds", Parallel, Distributed and Network-Based Processing,
(PDP 2013), Belfast, pp. 274 – 281, February 2013.

[4] J. Famaey, S. Latrea, J. Strassner, and F. De Turck, “A
Hierarchical Approach to Autonomic Network Management,”
IEEE/IFIP Network Operations and Management Symposium
Workshops, Osaka, pp. 225-232, April 2010.

[5] I. Ayadi, N.Simoni, and T.Aubonnet. “SLA approach for Cloud as
a Service”. In Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, Santa Clara, CA, USA pages
966-967, July, 2013.

[6] T. Aubonnet, N. Simoni "Service Creation and Self-Management
Mechanisms for Mobile Cloud Computing", The 11th International
Conference on Wired/Wireless Internet Communications, Springer,
pp.43-55, Saint Petersburg, June 2013.

[7] R. Boulifa, L. Henrio, and E. Madelaine. "Behavioural models for
group communications", International Workshop on Component
and Service Interoperability, number 37 in EPTCS, pages 42–56,
2010.

[8] Open Virtualization Format Specification, Distributed
Management Task Force DMTF Standard, OVF 2.0, 2014.

[9] M. K. Denko, L. T. Yang, and Y. Zhang, "Autonomic Computing
and Networking", book, Springer-Verlag New York Inc,
November 2010.

[10] V. Lloyd "ITIL Continual Service Improvement", The Stationery
Office (TSO), book ISBN: 9780113313143, August 2011.

[11] Opencloudware project, http://www.opencloudware.org/, January
2011- December 2014.

286286

