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Abstract—Product Line Architecture (PLA) is the main tangible 
element shared by all products of a Software Product Line (SPL); 
it covers common functionality and the required variability of SPL 
products. Responding to industrial practice, this paper proposes a 
reactive refactoring bottom-up process to build a PLA from 
existing similar software product architectures of a domain, 
expressed by UML logical views. An architecture is represented 
by a connected graph or valid architectural configuration (P, R), 
where P and R represent components and connectors of the 
product. This process constructs a graph (RG) for each product, 
organized by levels, containing intermediate valid configurations 
or connected induced sub-graphs of (P, R). A candidate PLA is 
automatically constructed followed by an optimization process to 
obtain the PLA using the domain quality model. The refactoring 
process is applied to a case study in the robotics industry domain. 
Automatic parts of the process are tool supported. 
 
Keywords — Software product line, product line architecture, 
refactoring graph, automatic detection of variation points, quality 
model 

I. INTRODUCTION 
A Software Product Line (SPL) is a set of software-

intensive systems, sharing a common, managed set of 
features that satisfy the specific needs of a particular 
market segment and which are developed from a common 
set of core assets. These assets are reused in different 
products that form a family [1]. The key issue in SPL 
development is the construction of a common architecture 
from which new products can be derived. The SPL 
approach favours reusability and claims to decrease costs 
and time-to-market. Software Architecture is defined in [2] 
as “a collection of computational components - or simple 
components - together with a description of the interactions 
between these components, the connectors”. Product Line 
Architecture (PLA) is defined by [3], [4] as a core 
architecture that captures the high level design for all the 
products of the SPL family, including variation points and 
variants documented in the variability model. Two main 
axes for SPL engineering are followed: the proactive top-
down design which considers constructing PLA from 
domain knowledge and the reactive or extractive bottom-up 
design which develops the PLA from systematic refactoring 
of existing products [5]. In this paper the reactive design is 
followed because in practice, many industrial organizations 
do not have a PLA; they only dispose of products 

constructed over time and by different developer teams. A 
generic architecture according to the business domain is 
required to reduce costs, time-to-market, and increase 
products evolution. In this case, several similar products 
must be examined, using reverse engineering techniques to 
identify commonalities and variation points. The PLA 
design is a complex process that is in general poorly 
described in literature and left to incomplete case studies 
[6]; the details of methods and approaches are difficult to 
follow due to the lack of standards. Moreover, existing 
traditional architectural methods and evaluation techniques 
for single-systems are reengineered and not specifically 
designed for SPL [7], [8]. In the proactive approach, 
reengineering is used mostly to maintain and improve the 
PLA, and in the reactive approach it is required to recover 
architectural knowledge from existing products. 
Reengineering techniques are Reverse Engineering (the 
examination) that helps clarifying the structure by 
extracting information providing also high-level views on 
the subject system, and Refactoring (the alteration) that 
modifies software or software artefacts to improve some of 
its quality properties, such as reliability or maintainability. 

An important question that commonly appears in the 
literature is what needs to be done to ensure a suitable 
choice of architecture for the family of products of the SPL 
[9]. This paper contributes to provide an answer to this 
question, proposing a semiautomatic refactoring process to 
build the PLA as a main goal.  

The basic input required by this approach are 
architecture descriptions of similar existing products that 
will conform to the SPL family. In practice, a documented 
description of the architecture is often missing, and these 
descriptions are obtained by reverse engineering of the 
products, showing a logical view of the architecture. 
However, since the products have been already constructed 
considering the experience of a software architect and his 
knowledge of the system domain, the architecturally 
relevant non-functional information related to the 
architectural style, is already implicitly contained in the 
architecture of the existing product.  

On the other hand, in the reactive approach, domain 
architectural quality requirements are used mostly to 



reengineer an existing PLA. In our case, they will be used 
as input to optimize the candidate PLA, obtained by the 
functionality-based refactoring; the ISO/IEC 250101 
standard quality model will be used to specify these 
architectural quality requirements. The proposed 
refactoring process is a straightforward process that is easy 
to use and apply to a case study, since the construction of 
an initial or candidate PLA, with commonality and 
variation points, is tool-supported, and also from an 
academic point-of-view, it can be used didactically to show 
a complete construction process of a PLA. A prototype tool 
implementing the process algorithms supports the 
automatic construction of the candidate PLA. However as it 
is just a prototype, it will not be described here; we have 
only shown the graphics produced by the tool. This reactive 
bottom-up process is based on the identification of different 
connected architectural intermediate configurations, 
starting from existing similar product architectures that will 
be part of the SPL family. The inspiration for this paper 
came from [10] with a case study in the robotics industry 
domain, where a PLA is manually developed. The model 
supporting our process is a graph or Refactoring Graph, 
denoted by RG. The bottom-up process to construct RG, 
whose activity diagram is shown in Figure 2, follows a 
strategy based on situation planning proposed in Carlos 
Matus [13]. Algorithms for all process steps are provided 
and a prototype tool supports the automatic steps. 

In our approach, the initial or candidate PLA obtained 
automatically contains the most relevant functionalities of 
the domain, according to [15]; it must undergo a manual 
optimization process to construct the final PLA, which must 
respond also to the domain architectural requirements. In 
general, reengineering techniques and semi-automatic 
processes are used for the evolution or construction of PLA, 
however complete automation has not yet been achieved, 
because the expertise of the software architect is still 
considered in practice the key issue to select convenient 
architectural solutions [9]. In consequence, our PLA 
optimization step, which involves a refactoring of the 
candidate PLA to take into account architectural quality 
requirements, is still performed manually. In this context, 
the ISO/IEC 25010 standard quality model is a software 
asset capturing the domain knowledge on the quality 
requirements of the family of products [25]. It has been 
selected among other product quality standards, because it 
is the updated version of the ISO/IEC 9126-1, well known 
by the software community. It is used as a main standard 
quality-based scenario [30] to specify these quality 
requirements, unifying also software quality terminology. 
Architectural evaluation techniques in general offer limited 
and non-justified quality scenarios [9], [29]. The standard 
quality model provides a complete view of the domain 
quality requirements offering eight high-level quality 
characteristics, allowing their refinement until the quality 
                                                                    
1 ISO/IEC 25010. Systems and software engineering - (SQuaRE) -- System 

and software quality models,” ISO/IEC JTC1/SC7/WG6, 2011. 

attributes or measurable elements and their metrics are 
attained, to facilitate and document the justification of the 
selection of the convenient architectural solution. However, 
the ISO/IEC 25010 quality model is a framework that must 
be customized or adapted for a particular domain using the 
experience of a quality engineer or architect. 

This paper is structured as follows, besides this 
introduction: the second section proposes the graph model 
supporting the refactoring process and describes the case 
study of the robotics industry domain. The third section 
contains the detailed steps of the complete refactoring 
process activities, and each step is illustrated by the 
application to the case study. The fourth section discusses 
the related works. Finally, conclusions and perspectives are 
presented. 

II. CONSTRUCTION AND PROPERTIES OF RG – 
DESCRIPTION OF THE CASE STUDY 

Definitions, terminology and properties of the RG 
associated to each product are presented in what follows; 
the case study is described at the end of this section. 

A. Definitions, terminology and properties of RG  
Architectural configuration or configuration is a graph 

(P, R), where P is a set of components or software assets 
and R is the set of relations (connectors) between each pair 
of components. Notice that the P quality requirements are 
implicitly considered in these relations, because the 
architect took them into account when he constructed the 
product architecture. The cardinality of P is defined as the 
order of the configuration; to avoid trivial cases, order ≥ 2. 
Note that assets, which are configurations of order 1, 
constitute a trivial case. 

Given a configuration (P, R) and Q a subset of P, the 
sub-graph induced by Q, i.e., (Q, R’), where aR’b iff aRb, is 
defined as an intermediate configuration of (P, R). Q ⊆ P 
will denote the fact that (Q, R’) is an intermediate 
configuration of (P, R). Intermediate configurations that 
will be considered must to be valid configurations, i.e. 
representing an architecture that could make sense. We will 
consider that a configuration is valid when it does not 
contain isolated components or groups of components, i.e., 
it is a connected graph of components and connectors 
modelling the structure of the architecture [14]. 
A product is a software system that is represented by a 
connected or valid configuration. Let us note that a more 
restrictive definition of validity, considering some 
additional constraints, could be considered later on during 
the process. 

Given a product (P, R), its refactoring graph RG is 
defined as follows: the nodes are intermediate valid 
configurations of (P, R), distributed in levels. There are as 
many levels as components in the product. Intermediate 
valid configurations constructed with i components are 
placed in level i, Li. The bottom-up process to construct RG 



starts from the last level with only one node, corresponding 
to the complete product configuration. Each node or 
intermediate valid configuration of Li, i≥2, originates as 
many nodes in Li-1, as valid configurations exist from i 
possible combinations. There exists an arc between two 
nodes in consecutive levels, if one of them is obtained from 
the other by adding a new component. That is to say, all 
precedent nodes of Li are placed in Li-1. 

Given two nodes ci-1, ci, belonging to levels Li-1 and Li 
respectively; the arc represents the transformation to obtain 
ci from ci-1, by adding a new component to ci-1. A triplet 
indicating the starting node, the added component and its 
associated weight, labels each arc. The weight associated to 
each component of the product is used to select main 
functionalities or archetypes. According to the J. Bosch’s 
architectural design method [15], archetypes constitute an 
initial architecture based on functionality. The scale of 
weights ranking the relevance of the component with 
respect to the architecture is set to: high = 3, medium = 2, 
and low = 1 (see Table I).  

A path between two nodes ci in Li and cj in Lj with i<j, is 
a sequence of transformations and intermediate 
configurations to obtain cj from ci, and can be considered a 
construction strategy, as it describes how an architecture is 
constructed from another by composition of 
transformations. Another way to denote a path between two 
nodes is to give the sequence of nodes forming the path; in 
this case the transformation is implicitly defined. Notice 
that there is a path between two nodes Q and Q’ iff Q ⊆ Q’; 
therefore, the configuration node representing the product 
can be obtained from any node following a path between 
them. The weight of the construction strategy can be 
defined as a function of the weights of the arcs forming the 
path. 

The following properties of RG hold because (P, R) is a 
connected graph:  

• All levels in RG are non empty sets.  
• Levels Li, i≥2 are sets constituted by intermediate valid 

configurations of (P, R) with i components, i.e., they 
are induced connected sub-graphs of product (P, R). 

• Each level Li is constituted by all intermediate 
configurations of (P, R) of order i, i≥2.  

• Each RG describes the different ways to build a 
product P from given software assets, by adding 
components one by one, such that each addition 
produces a valid configuration of immediate increasing 
order. 

Given RGs associated to products Pk, a variation point 
VP, is defined as equal configuration nodes on the same 
level Lq, q ≥ 2, in each RG of Pk, with the maximum 
number of components. Notice that if more than one VP is 
present, by definition, they are on the same level Lq.  

B. Case Study in the Robotics Industry Domain 
An interesting work of Koziolek, Weiss and 

Doppelhamer [10] describes a reengineering approach to 
build the PLA to develop PC software for a robotics 
industry, based on the refactoring of three existing 
products. However, it lacks the description of a systematic 
process, being limited to expertise considerations; the PLA 
that is produced satisfies established architectural quality 
goals for the domain. Considering this case study [10], we 
propose in this work a systematic and repeatable derivation 
process, based on a refactoring approach and the use of the 
graph model described in section II.A, to construct a PLA. 
The bottom-up derivation of the PLA from the individual 
products is performed analysing automatically the RG 
associated to each product, and using a heuristic proposed 
by I. Bosch [15], on the choice of the main common 
functionality. Figure 1 shows three similar products of the 
robotics industry domain specified in UML [11], 
corresponding to the case study described in section II.B, 
adapted from [10]. Notice that UML 2.0 is used here as an 
ADL (Architecture Description Language); however, only 
static design aspects, a logical view of the architecture, are 
discussed in this work [12].  

 
Fig. 1. Architecture logical view of 3 products of a Robotics Industry [10]. 

In Figure 1, aRb means that component a is connected to 
component b by some type of connector R, and for example 
for the first product: P1 = {a, b, c, d}; sub-components are 
denoted by a list, b (b1, b2, b3).  In fact, a component b 
containing other components b1, b2, b3 can be considered 
also as a set of 4 components {b, b1, b2, b3} and relations 
b R b1, b R b2 and b R b3; however, we have not 
considered this composition relation here. The “functional 
relevance” of each component with respect to the 
architectural configuration of each product is expressed by 

Product P1: 
{a, b(b1,b2, b3), 
c,} 
aRc; aRb; cRd; 
bRc 

               Product P2:  
         {a, b1, b2, c ,e , f} 
          aRb2; aRc; cRe; b1Rf; b1Rc;  
          b2Rc 

Product P3: 
 {a, c, g(b1), h} 
  aRc; aRg; cRh; 
  gRc 



their weights, provided by the architect, as shown in Table 
I, according to [15].  

TABLE I. COMPONENT WEIGHTS FOR EACH PRODUCT 

Pi\w a b b1 b2 b3 c d e f g h 

P1 3 3 2 2 2 3 1     
P2 3  3 3  3  1 1   
P3 3  2   3    3 1 

 
However, other architectural metrics could have been 
chosen [30], such as for example the SPL compound 
metrics of [31] or the SPL structural metrics of Rahman 
[32] based on the reusability and modularity offered by the 
component. In our case, the components shared by the 3 
initial architectures seemed to be the most functionally 
relevant and therefore have a weight equal to 3. The weight 
2 is when they appear in 2 architectures and otherwise, 
their weight is 1. Product architectures shown in Figure 1 
had been recovered in [10] using reverse engineering 
techniques, which are not discussed here. However, 
component names with similar semantics were unified in 
this paper for the three products, considering internal name 
and content similarity according to [22].  

In consequence, intermediate valid configurations in 
different products containing the same component names 
are considered equivalent. This requires a preceding step 
where the similar components of the initial architectures 
have been recognized and unified to form a single reusable 
component. This preceding step is not detailed in this 
paper, but it is really crucial and… difficult to achieve. 

III. REACTIVE DESIGN PROCESS TO BUILD THE PLA 
Figure 2 shows the main activities or sub-processes of the 
refactoring process to construct the PLA. 

 
Fig. 2. Activity diagram for the PLA Reactive Design Process.  

In what follows, each step of the PLA Refactoring 
Process will be detailed and applied to the case study. 

A. Specify products’ architectures.  

• Process to specify products’ architectures 
Actor: Software Architect 
Input: Description of the products’ architectures obtained from the  
           domain knowledge, using reverse engineering techniques  
For each product 
Begin 

Study names and contents of components; study 
connections.   
Unify components’ names for all products considering 
internal similarity of name and content. 
Assign a weight to each component, according to its 
relevance to the architecture. 
Specify the architecture of the current product using an 
ADL. 

End 
Output: Specification of products’ architectures in ADL and 
weights table. 

• Application to the case study 
Figure 1 shows the UML specification of the three 

products for robotics industry considered. Names for 
components and their connections are specified as follows: 
P1, P = {a, b (b1, b2, b3), c, d), R = {aRc, aRb, cRd, bRc}; 
P2, P = {a, b1, b2, c, e, f}, R = {aRb2, aRc, cRe, b1Rf, 
b1Rc, b2Rc}; P3, P = {a, c, g (b1), h}, R = {aRc, aRg, cRh, 
gRc}. The weights of each component were shown in Table 
I. 

B. Build the Refactoring Graph (RG).  
• Process to construct RG for each product 
Actor:  Refactoring Tool 
Input: ADL specification of the architecture for each product (P,  
           R) 
Begin 
let RGV being the set of vertices of RG 
let RGE being the set of edges of RG 
   Begin  
     RGE = Ø 
     RGV = G 
     Level(N) = G 
     for n = N-1 to 1 (step - 1) 
               We create the set of LevelE(n) containing all  
               valid configurations of (P, R) of order n such  
               that for each configuration G´in LevelE(n+1) 
                    for each Component C in configuration G´                       
         if (R' - C) is a valid configuration then  
           we add this configuration to LevelE(n): 
                          LevelE(n) = RGV U (G´-C) 
                          we register the couple ((G´-C), G´) as a  
                          transformation in RG  
                         RGE = RGE U {(G´ -C) --> G} 
                      End if 
                    next Component in configuration G´ 
                 next configuration in LevelE(n+1). 
                We add the current level to the RG: 
                RGV = RGV U LevelE(n) next level 
     End  
End 
Output: the RG of (P, R) following P: (RGV, RGE) 
 



• Application to the case study 
Figure 3 shows the RG for product P1. The node abcd 

represents the original architectural configuration of 
product P1 on level L4 (see Figure 1), and RG shows that 
abcd can be obtained by three alternative ways from the 
preceding level L3, either from valid configuration abc by 
adding d or from valid configuration bcd by adding a, and 
finally from acd by adding b. Figures 4 and 5 show the 
refactoring graphs RG for products P2 and P3, respectively. 
In these graphs, each node represents (part of) an 
architecture. 

C. Build Candidate PLA.  
The Candidate PLA is an architecture that contains the 

variation points and those architectural components that are 
functionally most relevant to the domain, according to the 
heuristic stated in [15]; this heuristic ensures the presence 
of the complete architectural configuration of at least one 
of the products, guaranteeing in this way that a domain 
architectural style will be also included in the candidate 
PLA.   

Let us note that the PLA quality requirements will be 
considered during the optimization step of the Candidate 
PLA. Any variation point can be considered as the initial 
PLA. In the case study, for example, the common 
configuration with the maximum number of components in 
the RGs of the three products is ac. From this initial PLA, 
the Candidate PLA will be constructed, according to the 
proposed heuristic.  To do so, we need to find the more 
“convenient path” to obtain at least one of the products, 
among different existing paths containing the variation 
point. This path will contain the most relevant functionality 

of the architecture (see Table I). For example in product P1, 
(ac, b, 3) means that component b is added to configuration 
ac, to conform configuration abc; since w=3, b 
(Picking/Packing application) is a relevant functionality for 
product P1 of the robotics industry. 

Two main automatic sub-processes are used to build the 
Candidate PLA: Construct the Product Line Architecture 
Graph (PLAG) and Construct the Candidate PLA; we 
proceed as follows:  

• Construction of the PLAG 
On the level (containing at least one of the products) 

nearest to the level containing the VP(s), a valid 
configuration Qi containing the VP(s) is selected for each 
RG, according to the heuristic which considers given 
weights ranking the relevance of a component w.r.t. the 
product architectural configuration. The PLAG is a graph 
defined by levels; it contains the VP(s) and the paths 
starting from L1 including these VP(s) and ending in the 
configuration Qi; these paths are the “convenient paths”.  

• Construction of the Candidate PLA  
It performs the automatic fusion, respecting component 

connections, of all the Qi architectural configurations, will 
be a candidate PLA. According to our heuristic, this first 
PLA configuration contains all possible VP(s) and most 
relevant common functionalities considered for the domain. 
This architecture has to be optimized in the final step, 
considering domain quality requirements, to obtain the final 
PLA. 
 
 

 
Fig. 3. RG of product P1. 



 
 

Fig. 4. RG of product P2. 
 

 
Fig. 5. RG of product P3. 

 
 



 
 
 
 

 

• Process to Construct the Product Line Architecture 
Graph (PLAG) 

Actor: Refactoring tool 
Input: RG of each product Pk, k=1, …, n. 
Begin 
For each RG 
   Begin 
      Begin  

Find the VP(s), V, i.e., equal configuration nodes on the  
same level Lq, q ≥ 2, in each RG of Pk, with the max number  
of components. Let d(V, Pk) for some V, be the number of  
transformations required to reach Pk from V; M = min d (V,  
Pk), k = 1, …, n. 
For each intermediate valid configuration Q on LM+q of  
each RG of   Pk, such that V ⊆ Q, compute the number of  
incidences of the weight values of the Q components,  
according to the weights of Pk components.  
The PLAG is the graph constituted by levels L1 , L2 , ..,  
Lq, Lq+1,…, LM+q , each Li contains configurations with i  
nodes. 
VP(s), V, are placed on the PLAG on Lq.  

 
 
 
 
 

 

 
For each V in Lq 

           Begin 
       For each Pk 
                        Begin 

Let Q on LM+q such that V ⊆ Q with the greatest  
Number of incidences each weight value, by 
default.  
Select a path from L1 to Q in RG of Pk   
containing the variation point V and those  
intermediate configurations of Q.  
Place the selected convenient path on the PLAG  
levels. 

         End 
              End 
         End 
End 
Output: PLAG 
 

• Application to the case study 
The resulting PLAG obtained for the case study is given 

in Figure 6. It describes how to construct the SPL common 
architecture for the Robotics Industry and how to construct 
each of the different products conforming the SPL family. 
In this case, there is only one variation point, but there 
could be several VP(s) denoting the different decisions to 
be taken when designing a product. Notice that in Figure 6, 
all the paths to obtain the three products were considered. 

 

 
Fig. 6. PLAG for the Candidate PLA for Robotics Industry. 

 
 

• Process to construct the Candidate PLA 
Actor: Refactoring tool  
Input: PLAG 
Begin 

The fusion of all configuration nodes on level LM+q of the 
PLAG, which includes all variation points, and respecting 
connections, constitutes the Candidate PLA. 

End 
Output: Candidate PLA 

• Application to the case study 
The PLA is constituted by the fusion of the 

configuration nodes abcd, ab1b2c, acgh on L4 belonging to 
the selected path, from ac to P1, P2, P3 respectively (see 
Figures 6, 7, 8). 



D. Optimize Candidate PLA.  
This optimization step is a manual refactoring process 

performed using the expertise of the architect and the 
domain engineer to transform iteratively the Candidate PLA 
into the final PLA, responding to specific architectural 
quality properties of the domain. It considers three main 
sub-processes: build AQM (Architectural Quality Model), 
build EAQM (Extended Architectural Quality Model), and 
refactor the Candidate PLA; we proceed as follows: 

 

• Build AQM 

The software architect will take into account the 
knowledge of the domain (DD) to build the AQM, which 
contains the PLA quality requirements; these architectural 
quality goals drive the whole optimization process. It is 
specified according to the ISO/IEC 25010 standard. Notice 
that AQM should be part of the PLA asset repository; 
otherwise it should be built accordingly, using the available 
domain knowledge. The quality attributes to be considered 
in a particular domain, together with their metrics have to 
be defined. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

                           

 

 

 

 

Fig. 7. UML static view of PLAG for Robotics Industry, showing main components of Candidate PLA. 

 

 

• Build EAQM 

EAQM extends the AQM attaching a priority to each 
quality sub-characteristics (low, medium or high), an 
architectural solution for each sub-characteristic, and a 
comment justifying the selection. EAQM represents a 
quality-based scenario, such as those used in [9], [29], [30]. 
Notice that a complete architectural evaluation process, 
such as [26] or inspired in scenario-based evaluation 
methods, can be used in the selection step to justify the 
solution choice, which implies adding new or removing 
existing components. These components can be predefined 
architectural design patterns taken from catalogues, which 
are part of the PLA software assets. Table III shows the 
architectural solutions proposed for the case study, 
adding/removing components to take in charge the 

achievement of the quality; for example, to be able to 
recover the system efficiently in case of failure. Notice that 
EAQM could be mapped to a Software Interdependency 
Graph (SIG), where softgoals correspond to ISO/IEC 25010 
quality characteristics and sub-characteristics are 
refinements of softgoals; operationalizations are represented 
by the architectural solutions given in Table III. 

 
• Refactor Candidate PLA  

 
To refine or improve the selection of the architectural 

solution, the contributions technique from [16] is used. 
Contributions for each quality characteristic with respect to 
each other have been defined in Table IV for the case study, 
where +, -, 0 means positive, negative, indifferent 
contribution respectively. For example, if maintainability is 

a, c, 3

ac, g, 3
ac, b, 3

ac, b2, 3

acg, h, 1 abc, d, 1 ab2c, b1, 3

ab1b2c, f, 1

ab1b2cf, e, 1



achieved by introducing a new functionality, a user 
interface component to separate concerns and hence 
decrease coupling can contribute positively (+) to security 
if it includes authentication functionality, and also to 
performance, since coupling among components is 
reduced. The satisfaction of the security issue contributes 
negatively (-) to performance because extra time checking 
is increased, for example during the login functionality. 
Notice that more sophisticated metrics for each quality 
attribute, according also to the particular domain can be 
provided to enrich Table II.  

• Process to Optimize Candidate PLA 
Optimization process  
Actors: Software Architect Domain Engineer 
Input: Domain Description (DD), Candidate PLA, Asset 
          Repository (AR) including components on level L1, ISO/IEC  
          25010 standard to specify the AQM, Architectural  
         Evaluation Method (optional) 
Begin ‘optimization of Candidate PLA’ 
 
Build the AQM 
Input: DD, ISO/IEC 25010 
Begin ‘building AQM’ 
   Elicitate domain architectural requirements from the DD. 
   For each architectural requirement  
  Begin 
      State the architectural solutions 
      For each architectural solution,  
          Begin 
 Specify quality requirements as ISO/IEC 25010 quality 
 characteristics and sub-characteristics. 
 List quality characteristics and sub-characteristics 
 For each sub-characteristic 
                   Begin 
        Identify quality attributes and metrics to define the 
       AQM for the domain, in terms of ISO/IEC 25010. 
                   End 
           End 
     End 
  End 
End ‘building AQM’ 
Output: AQM 
 
Build the EAQM 
Begin ‘building EAQM’ 
    Begin 
    For each sub-characteristic of the AQM, specify a priority  
    end 
   Begin 
 For each priority (high, medium, low), starting from the  
       sub-characteristic with the highest priority 
 Begin 
  Evaluate the value of each quality on the Candidate PLA;  

  for example, evaluate the coupling attribute using the  
  metrics “number of connections” of a component. 

  Provide an architectural solution (addition/deletion 
  of components); 
       if more than one architectural  solution is present, then a  
    scenario-based AEM could be used to select the  
               convenient solution to help the architect in his choice. 
  End if. 

Note that some quality requirements of minor priority 
can be achieved while satisfying higher priority ones; 

the study of contributions of each quality characteristic 
can be useful to handle these trade-offs (see Table 3). 

  Reconfigure the Candidate PLA with the selected 
  architectural solution.  
  Provide a textual justification of the decision taken.  
 End 
   End 
End ‘building EAQM’ 
Output: architectural solutions, EAQM  
Refactor Candidate PLA  
Input: architectural solutions, EAQM, PLA 
Begin ‘refactoring of Candidate PLA’ 
   Complete Candidate PLA with the selected architectural  
   solutions identified in the previous step, respecting connections  
   between components. 
   Study the AR to complete the PLA, if some components are still    
   missing; add the missing components respecting connections.  
End ‘refactoring of Candidate PLA’ 
Output: PLA 
 
End ‘optimization of Candidate PLA’ 
Output: AQM, EAQM, PLA 
 

 
 

Fig. 8. Candidate PLA for Robotics Industry. 

 
• Application to the case study 

Table II presents the AQM for our case study: 
reliability, maintainability, usability, security and 
performance; the sub-characteristics of maintainability that 
have been selected for the robotics industry AQM are: 
modularity (the degree to which a system or computer 
program is composed of discrete components such that a 
change to one component has minimal impact on other 
components), and modifiability (the degree to which a 
product can be effectively and efficiently modified without 
introducing defects or degrading performance). Reusability 
(the degree to which an asset can be used in more than one 
system, or in building other assets) is a global property that 
PLA has to accomplish as an asset and was not included in 
AQM; we preferred to enforce the fact that systems in the 
robotics industry domain must support evolution expressing 
scalability and sustainability (as a sub-sub-characteristic of 
modifiability), as it was stated in [10].  
 



TABLE II. AQM FOR ROBOTICS INDUSTRY 

Quality 
Characteristics 

Quality sub-
characteristics Quality Attributes Metrics 

Reliability - Availability 

Time to recover 
from failure   MTTR (1) 

Mean time between 
failures   MTBF (2) 

Maintainability 

   - Modularity 

   - Modifiability 
Coupling (4) 

 Number of 

 connections    - Scalability 

        - Sustainability 

Usability 
   - Appropriateness 

   - Accessibility 
Presence of a 
mechanism 

 

 

 Yes/no 

Security    - Authenticity Presence of a 
mechanism  

Performance     - Time behaviour Response time  Latency (3) 

(1) MTTR = average time that a device take to recover from any failure;  
(2) MTBF = average time between the difference of time spent failing and 
time spent recovering 
(3) Latency is a measure of the time delay experienced in a system; it can 
be computed roughly at architectural level, by summing up for each 
component the time spent in requiring/providing data, in a given scenario. 
 (4) This metric was proposed in [10]; other measures could certainly be 
used here; however, a low coupling is a sign of a well-structured system 
and a good design, and when combined with high cohesion, supports the 
general goals of high readability and maintainability.  
 

The EAQM in Table III proposes architectural solutions 
for each quality requirements of the AQM, with their 
priority, where modularity and modifiability have the 
highest priority; according to our process, they will be 
considered first. Modularity is achieved by introducing a 
new Remote User Interface (RUI), and with the 
introduction of a new Engineering component, the 
modifiability (scalability and sustainability) requirement is 
accomplished; both solutions contribute to decrease the 
coupling.  Moreover, the RUI component also improve the 
system usage, hence it will also directly contribute to 
achieve usability, with medium priority, which according to 
Table IV, could affect negatively the performance (-), with 
also medium priority. However, the security mechanism for 
authenticity, of low priority, that affects also negatively the 
performance (-), increases the system’s reliability (+), with 
medium priority, with respect to access control, and it is 
also accomplished by the RUI component. On the other 
hand, the Engineering component includes a Job Controller 
sub-component, which improves the performance (time 
behaviour) with a reduced response time and the reliability 
will finally also benefit (+) from the reduced coupling 
because the recovery time could be reduced, satisfying also 
the availability requirement of medium priority. In 
consequence, in this case study, the fact of satisfying the 
quality characteristics with highest priority has as well 
contributed to the satisfaction of the lower priority quality 
requirements. 
 

The optimized PLA, obtained from the Candidate PLA, 
is shown in Figure 9. The Job Controller component is not 
shown, since it is included in the Engineering component. 

However, it can be adapted from the existing b3 component 
of the Picking/Packing Application of product P1, and 
added between the Plant Interaction Controller (a) and the 
Robot Controller (c) components to further increase 
availability and even some performance. The Engineering 
component is now responsible for the painting, palletizing 
and picking/packing applications. 
 

Notice that components e and f were still missing in the 
candidate PLA of Figure 8, however they are required by 
components c and b1 to perform the required functionality. 
According to the process to optimize the Candidate PLA, in 
the Refactor PLA sub-process, these components can be 
added from the asset repository, respecting the connections. 
In Figure 9 only the painting extension, component e, has 
been shown to illustrate this aspect. 
 

TABLE III. EAQM FOR ROBOTICS INDUSTRY 

Quality sub-
characteristics Priority Architectural solution Justification 

  - Availability Medium 
- Add a new Engineering 
component: (b3) Job 
Controller 

To improve 
recovering time in 
case of failure 

  - Modularity 
 
  - Modifiability 
        - Scalability 

 

High 

- Add a new RUI 
component: i To decrease coupling 

- Add a new Engineering 
component: (b3) Job 
Controller 

To decrease coupling 

       - Sustainability 

- Appropriateness 

  - Accessibility 

Medium 

 
- Add a new RUI 
component: i 

To improve also the 
system usage by the 
end user 

  - Authenticity Low - Add a new RUI 
component: i 

With an additional 
authentication 
functionality 

- Time behaviour Medium 
- Add a new Engineering 
component:  (b3) Job 
Controller 

To improve the 
response time 

       
TABLE IV. CONTRIBUTIONS FOR EACH QUALITY CHARACTERISTIC OF 

THE PROPOSED ARCHITECTURAL SOLUTION  
Quality 
Characteristic 

Reliability Maintain-
ability 

Usability Security Performance 

Reliability  + 0 + + 

Maintainability +  + + + 

Usability 0 +  + - 

Security + + +  - 

Performance + + - -  

 
There are tools that support the partial automation of the 
presented sub-processes [16], [23], [24], [26], [27], 
however a complete automation is still difficult to achieve; 
the final selection of architectural solutions is generally 
provided by the architect [15], [23], [24]. 
 



 
 

Fig. 9. PLA for robotics industry. 

IV. RELATED WORKS 
Refactoring has been traditionally used to reconstruct 
legacy code and reverse engineering to recover or 
reconstruct documentation [17]. In the SPL context 
reengineering techniques have been used to modify existing 
PLA that in general have been built within a proactive top-
down approach using domain knowledge; from this 
generalization, new evolutionary PLAs are built in [6], [18], 
and [19]; reverse engineering is also used in SPL to analyse 
feature models [20], [21]. On the other hand, reverse 
engineering and refactoring techniques are required to 
construct the PLA according to a bottom-up approach [5], 
which is the one followed in this paper. Works [10] and 
[22] have similarity with our approach, however none of 
them use a graph model to support the PLA construction; 
actually a graph model is a useful tool to make 
computations and our proposal is based on a graph 
algorithm. In [10] reverse engineering techniques were 
used to recover manually the architecture of three robotics 
industry products, from where the authors proceeded also 
manually to construct the PLA satisfying main domain 
architectural quality requirements; the trade-offs step was 
limited to an informal discussion and no standards were 
used to specify quality requirements.  

More recent works [23], [24] propose the automation of the 
trade-offs step, based on multi-objective optimization, 
where objectives represent different quality attributes. The 
HAM (Hybrid Assessment Method) [9] is based on multi-
criteria concepts and techniques for trade-offs analysis, in 
an architecture assessment process; however, quality 
standards are not used. In our case, the information about 
non-functional requirements, such as architectural styles 
and their quality, on one hand is contained in the candidate 
Architecture, since al least one of the SPL family products 
is included; on the other hand, in the optimization step, it is 
captured by the AQM with attributes and metrics and by the 
EAQM, which is used for the choice of the architectural 
solution, as a classic architecture evaluation scenario [30], 
providing a complete picture of the domain architectural 

requirements. However, HAM could be used to improve 
the assignment of the priorities of the quality properties in 
the EAQM.  

Our paper inspired in [10], proposes a tool-supported 
automatic refactoring process to construct first a Candidate 
PLA; the final PLA is obtained by manual refactoring this 
candidate PLA to satisfy specific quality requirements; the 
ISO/IEC 25010 standard is used to improve communication 
among the work teams. The trade-offs step is performed 
manually, however goal-oriented techniques can be used to 
improve the selection of the architectural solution and more 
sophisticated tool-supported techniques could be 
introduced [9]. A semi-automatic PLA recovery approach is 
presented in [22], assuming that involved legacy products 
have similar designs and implementations. However, they 
do not deal specifically with the architectural configuration, 
as we do; measures are defined to detect class, code, and 
methods similarities; we use some of them in the first step 
of our process to unify components’ names. In [28] legacy 
software products are systematically reengineered into SPL, 
based on automatic variability analysis. They propose a 
hybrid approach that consolidates feature knowledge from 
top-down domain analysis with bottom-up analysis of 
products’ code similarities. The bottom-up analysis follows 
an approach similar to [22] with respect to similarity 
measures.  

In general, we can appreciate the use of reengineering 
techniques and semi-automatic processes for the evolution 
and/or construction of the PLA, however complete 
automation has not yet been achieved, because the 
expertise of the software architect is still considered in 
practice the key issue to select convenient architectural 
solutions [9], [15]. Our main contribution is to produce 
automatically the candidate PLA architecture, using a graph 
model as a supporting structure for computations. 

V. CONCLUSION 
A semiautomatic reactive bottom-up process based on the 
RG graph model has been proposed to build a PLA. RG 
expresses all different ways to assemble a product starting 
by a component and adding one component at a time, such 
that connectivity is preserved in already assembled 
configurations. Moreover, RG allows the clear 
identification of VPs for all products since they belong to 
the same level, facilitating the fusion process, which 
completes the candidate PLA with the main common 
functionality, and including at least an architectural style of 
one of the given products, according to the heuristic 
provided. Combinatorial explosion in case of huge products 
is limited by the connectivity of valid configurations. The 
automatic construction of RG, PLAG and Candidate PLA is 
supported by a prototype computational tool, which can be 
used also for didactical purposes, to show the PLA 
construction process. The optimization of the Candidate 
PLA is still manual; the standard AQM is used as a main 



scenario-based quality requirements specification tool, 
offering the complete picture of the domain quality 
requirements; however the trade-offs analysis of quality 
requirements can be automated integrating existing tools 
from multi-objective optimization models and from goal-
oriented engineering; for example EAQM can be mapped to 
a SIG that can be automatically generated and Model-
Driven and Goal-Oriented Engineering techniques could be 
used. These are still on-going research trends. Let us note 
about the first step of the process, that the existence of the 
architectures of several products used to construct the PLA 
is not as simple as it may seem. It involves a considerable 
reverse engineering effort in documenting individual 
components and unifying their names and semantics using 
complex similarity measures. Our support tool is currently 
under construction; Figures 3, 4, 5 and 6 have been 
obtained using it. This paper considers only VP(s) common 
to all products. In the near future the case of partial 
variability will be considered.  
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