
Graph Modelling of a Refactoring Process for
Product Line Architecture Design

Francisca Losavio, Oscar Ordaz

MoST, Escuela de Computación, Facultad de Ciencias,
Universidad Central de Venezuela

Caracas, Venezuela
{francisca.losavio, oscar.ordaz}@ciens.ucv.ve

Nicole Levy, Anthony Baïotto
CEDRIC, CNAM, Paris, France

nicole.levy@cnam.fr
anthony.baiotto@thalesgroup.com

Abstract—Product Line Architecture (PLA) is the main tangible
element shared by all products of a Software Product Line (SPL);
it covers common functionality and the required variability of SPL
products. Responding to industrial practice, this paper proposes a
reactive refactoring bottom-up process to build a PLA from
existing similar software product architectures of a domain,
expressed by UML logical views. An architecture is represented
by a connected graph or valid architectural configuration (P, R),
where P and R represent components and connectors of the
product. This process constructs a graph (RG) for each product,
organized by levels, containing intermediate valid configurations
or connected induced sub-graphs of (P, R). A candidate PLA is
automatically constructed followed by an optimization process to
obtain the PLA using the domain quality model. The refactoring
process is applied to a case study in the robotics industry domain.
Automatic parts of the process are tool supported.

Keywords — Software product line, product line architecture,
refactoring graph, automatic detection of variation points, quality
model

I. INTRODUCTION
A Software Product Line (SPL) is a set of software-

intensive systems, sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment and which are developed from a common
set of core assets. These assets are reused in different
products that form a family [1]. The key issue in SPL
development is the construction of a common architecture
from which new products can be derived. The SPL
approach favours reusability and claims to decrease costs
and time-to-market. Software Architecture is defined in [2]
as “a collection of computational components - or simple
components - together with a description of the interactions
between these components, the connectors”. Product Line
Architecture (PLA) is defined by [3], [4] as a core
architecture that captures the high level design for all the
products of the SPL family, including variation points and
variants documented in the variability model. Two main
axes for SPL engineering are followed: the proactive top-
down design which considers constructing PLA from
domain knowledge and the reactive or extractive bottom-up
design which develops the PLA from systematic refactoring
of existing products [5]. In this paper the reactive design is
followed because in practice, many industrial organizations
do not have a PLA; they only dispose of products

constructed over time and by different developer teams. A
generic architecture according to the business domain is
required to reduce costs, time-to-market, and increase
products evolution. In this case, several similar products
must be examined, using reverse engineering techniques to
identify commonalities and variation points. The PLA
design is a complex process that is in general poorly
described in literature and left to incomplete case studies
[6]; the details of methods and approaches are difficult to
follow due to the lack of standards. Moreover, existing
traditional architectural methods and evaluation techniques
for single-systems are reengineered and not specifically
designed for SPL [7], [8]. In the proactive approach,
reengineering is used mostly to maintain and improve the
PLA, and in the reactive approach it is required to recover
architectural knowledge from existing products.
Reengineering techniques are Reverse Engineering (the
examination) that helps clarifying the structure by
extracting information providing also high-level views on
the subject system, and Refactoring (the alteration) that
modifies software or software artefacts to improve some of
its quality properties, such as reliability or maintainability.

An important question that commonly appears in the
literature is what needs to be done to ensure a suitable
choice of architecture for the family of products of the SPL
[9]. This paper contributes to provide an answer to this
question, proposing a semiautomatic refactoring process to
build the PLA as a main goal.

The basic input required by this approach are
architecture descriptions of similar existing products that
will conform to the SPL family. In practice, a documented
description of the architecture is often missing, and these
descriptions are obtained by reverse engineering of the
products, showing a logical view of the architecture.
However, since the products have been already constructed
considering the experience of a software architect and his
knowledge of the system domain, the architecturally
relevant non-functional information related to the
architectural style, is already implicitly contained in the
architecture of the existing product.

On the other hand, in the reactive approach, domain
architectural quality requirements are used mostly to

reengineer an existing PLA. In our case, they will be used
as input to optimize the candidate PLA, obtained by the
functionality-based refactoring; the ISO/IEC 250101
standard quality model will be used to specify these
architectural quality requirements. The proposed
refactoring process is a straightforward process that is easy
to use and apply to a case study, since the construction of
an initial or candidate PLA, with commonality and
variation points, is tool-supported, and also from an
academic point-of-view, it can be used didactically to show
a complete construction process of a PLA. A prototype tool
implementing the process algorithms supports the
automatic construction of the candidate PLA. However as it
is just a prototype, it will not be described here; we have
only shown the graphics produced by the tool. This reactive
bottom-up process is based on the identification of different
connected architectural intermediate configurations,
starting from existing similar product architectures that will
be part of the SPL family. The inspiration for this paper
came from [10] with a case study in the robotics industry
domain, where a PLA is manually developed. The model
supporting our process is a graph or Refactoring Graph,
denoted by RG. The bottom-up process to construct RG,
whose activity diagram is shown in Figure 2, follows a
strategy based on situation planning proposed in Carlos
Matus [13]. Algorithms for all process steps are provided
and a prototype tool supports the automatic steps.

In our approach, the initial or candidate PLA obtained
automatically contains the most relevant functionalities of
the domain, according to [15]; it must undergo a manual
optimization process to construct the final PLA, which must
respond also to the domain architectural requirements. In
general, reengineering techniques and semi-automatic
processes are used for the evolution or construction of PLA,
however complete automation has not yet been achieved,
because the expertise of the software architect is still
considered in practice the key issue to select convenient
architectural solutions [9]. In consequence, our PLA
optimization step, which involves a refactoring of the
candidate PLA to take into account architectural quality
requirements, is still performed manually. In this context,
the ISO/IEC 25010 standard quality model is a software
asset capturing the domain knowledge on the quality
requirements of the family of products [25]. It has been
selected among other product quality standards, because it
is the updated version of the ISO/IEC 9126-1, well known
by the software community. It is used as a main standard
quality-based scenario [30] to specify these quality
requirements, unifying also software quality terminology.
Architectural evaluation techniques in general offer limited
and non-justified quality scenarios [9], [29]. The standard
quality model provides a complete view of the domain
quality requirements offering eight high-level quality
characteristics, allowing their refinement until the quality

1 ISO/IEC 25010. Systems and software engineering - (SQuaRE) -- System

and software quality models,” ISO/IEC JTC1/SC7/WG6, 2011.

attributes or measurable elements and their metrics are
attained, to facilitate and document the justification of the
selection of the convenient architectural solution. However,
the ISO/IEC 25010 quality model is a framework that must
be customized or adapted for a particular domain using the
experience of a quality engineer or architect.

This paper is structured as follows, besides this
introduction: the second section proposes the graph model
supporting the refactoring process and describes the case
study of the robotics industry domain. The third section
contains the detailed steps of the complete refactoring
process activities, and each step is illustrated by the
application to the case study. The fourth section discusses
the related works. Finally, conclusions and perspectives are
presented.

II. CONSTRUCTION AND PROPERTIES OF RG –
DESCRIPTION OF THE CASE STUDY

Definitions, terminology and properties of the RG
associated to each product are presented in what follows;
the case study is described at the end of this section.

A. Definitions, terminology and properties of RG
Architectural configuration or configuration is a graph

(P, R), where P is a set of components or software assets
and R is the set of relations (connectors) between each pair
of components. Notice that the P quality requirements are
implicitly considered in these relations, because the
architect took them into account when he constructed the
product architecture. The cardinality of P is defined as the
order of the configuration; to avoid trivial cases, order ≥ 2.
Note that assets, which are configurations of order 1,
constitute a trivial case.

Given a configuration (P, R) and Q a subset of P, the
sub-graph induced by Q, i.e., (Q, R’), where aR’b iff aRb, is
defined as an intermediate configuration of (P, R). Q ⊆ P
will denote the fact that (Q, R’) is an intermediate
configuration of (P, R). Intermediate configurations that
will be considered must to be valid configurations, i.e.
representing an architecture that could make sense. We will
consider that a configuration is valid when it does not
contain isolated components or groups of components, i.e.,
it is a connected graph of components and connectors
modelling the structure of the architecture [14].
A product is a software system that is represented by a
connected or valid configuration. Let us note that a more
restrictive definition of validity, considering some
additional constraints, could be considered later on during
the process.

Given a product (P, R), its refactoring graph RG is
defined as follows: the nodes are intermediate valid
configurations of (P, R), distributed in levels. There are as
many levels as components in the product. Intermediate
valid configurations constructed with i components are
placed in level i, Li. The bottom-up process to construct RG

starts from the last level with only one node, corresponding
to the complete product configuration. Each node or
intermediate valid configuration of Li, i≥2, originates as
many nodes in Li-1, as valid configurations exist from i
possible combinations. There exists an arc between two
nodes in consecutive levels, if one of them is obtained from
the other by adding a new component. That is to say, all
precedent nodes of Li are placed in Li-1.

Given two nodes ci-1, ci, belonging to levels Li-1 and Li
respectively; the arc represents the transformation to obtain
ci from ci-1, by adding a new component to ci-1. A triplet
indicating the starting node, the added component and its
associated weight, labels each arc. The weight associated to
each component of the product is used to select main
functionalities or archetypes. According to the J. Bosch’s
architectural design method [15], archetypes constitute an
initial architecture based on functionality. The scale of
weights ranking the relevance of the component with
respect to the architecture is set to: high = 3, medium = 2,
and low = 1 (see Table I).

A path between two nodes ci in Li and cj in Lj with i<j, is
a sequence of transformations and intermediate
configurations to obtain cj from ci, and can be considered a
construction strategy, as it describes how an architecture is
constructed from another by composition of
transformations. Another way to denote a path between two
nodes is to give the sequence of nodes forming the path; in
this case the transformation is implicitly defined. Notice
that there is a path between two nodes Q and Q’ iff Q ⊆ Q’;
therefore, the configuration node representing the product
can be obtained from any node following a path between
them. The weight of the construction strategy can be
defined as a function of the weights of the arcs forming the
path.

The following properties of RG hold because (P, R) is a
connected graph:

• All levels in RG are non empty sets.
• Levels Li, i≥2 are sets constituted by intermediate valid

configurations of (P, R) with i components, i.e., they
are induced connected sub-graphs of product (P, R).

• Each level Li is constituted by all intermediate
configurations of (P, R) of order i, i≥2.

• Each RG describes the different ways to build a
product P from given software assets, by adding
components one by one, such that each addition
produces a valid configuration of immediate increasing
order.

Given RGs associated to products Pk, a variation point
VP, is defined as equal configuration nodes on the same
level Lq, q ≥ 2, in each RG of Pk, with the maximum
number of components. Notice that if more than one VP is
present, by definition, they are on the same level Lq.

B. Case Study in the Robotics Industry Domain
An interesting work of Koziolek, Weiss and

Doppelhamer [10] describes a reengineering approach to
build the PLA to develop PC software for a robotics
industry, based on the refactoring of three existing
products. However, it lacks the description of a systematic
process, being limited to expertise considerations; the PLA
that is produced satisfies established architectural quality
goals for the domain. Considering this case study [10], we
propose in this work a systematic and repeatable derivation
process, based on a refactoring approach and the use of the
graph model described in section II.A, to construct a PLA.
The bottom-up derivation of the PLA from the individual
products is performed analysing automatically the RG
associated to each product, and using a heuristic proposed
by I. Bosch [15], on the choice of the main common
functionality. Figure 1 shows three similar products of the
robotics industry domain specified in UML [11],
corresponding to the case study described in section II.B,
adapted from [10]. Notice that UML 2.0 is used here as an
ADL (Architecture Description Language); however, only
static design aspects, a logical view of the architecture, are
discussed in this work [12].

Fig. 1. Architecture logical view of 3 products of a Robotics Industry [10].

In Figure 1, aRb means that component a is connected to
component b by some type of connector R, and for example
for the first product: P1 = {a, b, c, d}; sub-components are
denoted by a list, b (b1, b2, b3). In fact, a component b
containing other components b1, b2, b3 can be considered
also as a set of 4 components {b, b1, b2, b3} and relations
b R b1, b R b2 and b R b3; however, we have not
considered this composition relation here. The “functional
relevance” of each component with respect to the
architectural configuration of each product is expressed by

Product P1:
{a, b(b1,b2, b3),
c,}
aRc; aRb; cRd;
bRc

 Product P2:
 {a, b1, b2, c ,e , f}
 aRb2; aRc; cRe; b1Rf; b1Rc;
 b2Rc

Product P3:
 {a, c, g(b1), h}
 aRc; aRg; cRh;
 gRc

their weights, provided by the architect, as shown in Table
I, according to [15].

TABLE I. COMPONENT WEIGHTS FOR EACH PRODUCT

Pi\w a b b1 b2 b3 c d e f g h

P1 3 3 2 2 2 3 1
P2 3 3 3 3 1 1
P3 3 2 3 3 1

However, other architectural metrics could have been
chosen [30], such as for example the SPL compound
metrics of [31] or the SPL structural metrics of Rahman
[32] based on the reusability and modularity offered by the
component. In our case, the components shared by the 3
initial architectures seemed to be the most functionally
relevant and therefore have a weight equal to 3. The weight
2 is when they appear in 2 architectures and otherwise,
their weight is 1. Product architectures shown in Figure 1
had been recovered in [10] using reverse engineering
techniques, which are not discussed here. However,
component names with similar semantics were unified in
this paper for the three products, considering internal name
and content similarity according to [22].

In consequence, intermediate valid configurations in
different products containing the same component names
are considered equivalent. This requires a preceding step
where the similar components of the initial architectures
have been recognized and unified to form a single reusable
component. This preceding step is not detailed in this
paper, but it is really crucial and… difficult to achieve.

III. REACTIVE DESIGN PROCESS TO BUILD THE PLA
Figure 2 shows the main activities or sub-processes of the
refactoring process to construct the PLA.

Fig. 2. Activity diagram for the PLA Reactive Design Process.

In what follows, each step of the PLA Refactoring
Process will be detailed and applied to the case study.

A. Specify products’ architectures.

• Process to specify products’ architectures
Actor: Software Architect
Input: Description of the products’ architectures obtained from the
 domain knowledge, using reverse engineering techniques
For each product
Begin

Study names and contents of components; study
connections.
Unify components’ names for all products considering
internal similarity of name and content.
Assign a weight to each component, according to its
relevance to the architecture.
Specify the architecture of the current product using an
ADL.

End
Output: Specification of products’ architectures in ADL and
weights table.

• Application to the case study
Figure 1 shows the UML specification of the three

products for robotics industry considered. Names for
components and their connections are specified as follows:
P1, P = {a, b (b1, b2, b3), c, d), R = {aRc, aRb, cRd, bRc};
P2, P = {a, b1, b2, c, e, f}, R = {aRb2, aRc, cRe, b1Rf,
b1Rc, b2Rc}; P3, P = {a, c, g (b1), h}, R = {aRc, aRg, cRh,
gRc}. The weights of each component were shown in Table
I.

B. Build the Refactoring Graph (RG).
• Process to construct RG for each product
Actor: Refactoring Tool
Input: ADL specification of the architecture for each product (P,
 R)
Begin
let RGV being the set of vertices of RG
let RGE being the set of edges of RG
 Begin
 RGE = Ø
 RGV = G
 Level(N) = G
 for n = N-1 to 1 (step - 1)
 We create the set of LevelE(n) containing all
 valid configurations of (P, R) of order n such
 that for each configuration G´in LevelE(n+1)
 for each Component C in configuration G´
 if (R' - C) is a valid configuration then
 we add this configuration to LevelE(n):
 LevelE(n) = RGV U (G´-C)
 we register the couple ((G´-C), G´) as a
 transformation in RG
 RGE = RGE U {(G´ -C) --> G}
 End if
 next Component in configuration G´
 next configuration in LevelE(n+1).
 We add the current level to the RG:
 RGV = RGV U LevelE(n) next level
 End
End
Output: the RG of (P, R) following P: (RGV, RGE)

• Application to the case study
Figure 3 shows the RG for product P1. The node abcd

represents the original architectural configuration of
product P1 on level L4 (see Figure 1), and RG shows that
abcd can be obtained by three alternative ways from the
preceding level L3, either from valid configuration abc by
adding d or from valid configuration bcd by adding a, and
finally from acd by adding b. Figures 4 and 5 show the
refactoring graphs RG for products P2 and P3, respectively.
In these graphs, each node represents (part of) an
architecture.

C. Build Candidate PLA.
The Candidate PLA is an architecture that contains the

variation points and those architectural components that are
functionally most relevant to the domain, according to the
heuristic stated in [15]; this heuristic ensures the presence
of the complete architectural configuration of at least one
of the products, guaranteeing in this way that a domain
architectural style will be also included in the candidate
PLA.

Let us note that the PLA quality requirements will be
considered during the optimization step of the Candidate
PLA. Any variation point can be considered as the initial
PLA. In the case study, for example, the common
configuration with the maximum number of components in
the RGs of the three products is ac. From this initial PLA,
the Candidate PLA will be constructed, according to the
proposed heuristic. To do so, we need to find the more
“convenient path” to obtain at least one of the products,
among different existing paths containing the variation
point. This path will contain the most relevant functionality

of the architecture (see Table I). For example in product P1,
(ac, b, 3) means that component b is added to configuration
ac, to conform configuration abc; since w=3, b
(Picking/Packing application) is a relevant functionality for
product P1 of the robotics industry.

Two main automatic sub-processes are used to build the
Candidate PLA: Construct the Product Line Architecture
Graph (PLAG) and Construct the Candidate PLA; we
proceed as follows:

• Construction of the PLAG
On the level (containing at least one of the products)

nearest to the level containing the VP(s), a valid
configuration Qi containing the VP(s) is selected for each
RG, according to the heuristic which considers given
weights ranking the relevance of a component w.r.t. the
product architectural configuration. The PLAG is a graph
defined by levels; it contains the VP(s) and the paths
starting from L1 including these VP(s) and ending in the
configuration Qi; these paths are the “convenient paths”.

• Construction of the Candidate PLA
It performs the automatic fusion, respecting component

connections, of all the Qi architectural configurations, will
be a candidate PLA. According to our heuristic, this first
PLA configuration contains all possible VP(s) and most
relevant common functionalities considered for the domain.
This architecture has to be optimized in the final step,
considering domain quality requirements, to obtain the final
PLA.

Fig. 3. RG of product P1.

Fig. 4. RG of product P2.

Fig. 5. RG of product P3.

• Process to Construct the Product Line Architecture
Graph (PLAG)

Actor: Refactoring tool
Input: RG of each product Pk, k=1, …, n.
Begin
For each RG
 Begin
 Begin

Find the VP(s), V, i.e., equal configuration nodes on the
same level Lq, q ≥ 2, in each RG of Pk, with the max number
of components. Let d(V, Pk) for some V, be the number of
transformations required to reach Pk from V; M = min d (V,
Pk), k = 1, …, n.
For each intermediate valid configuration Q on LM+q of
each RG of Pk, such that V ⊆ Q, compute the number of
incidences of the weight values of the Q components,
according to the weights of Pk components.
The PLAG is the graph constituted by levels L1 , L2 , ..,
Lq, Lq+1,…, LM+q , each Li contains configurations with i
nodes.
VP(s), V, are placed on the PLAG on Lq.

For each V in Lq

 Begin
 For each Pk
 Begin

Let Q on LM+q such that V ⊆ Q with the greatest
Number of incidences each weight value, by
default.
Select a path from L1 to Q in RG of Pk
containing the variation point V and those
intermediate configurations of Q.
Place the selected convenient path on the PLAG
levels.

 End
 End
 End
End
Output: PLAG

• Application to the case study
The resulting PLAG obtained for the case study is given

in Figure 6. It describes how to construct the SPL common
architecture for the Robotics Industry and how to construct
each of the different products conforming the SPL family.
In this case, there is only one variation point, but there
could be several VP(s) denoting the different decisions to
be taken when designing a product. Notice that in Figure 6,
all the paths to obtain the three products were considered.

Fig. 6. PLAG for the Candidate PLA for Robotics Industry.

• Process to construct the Candidate PLA
Actor: Refactoring tool
Input: PLAG
Begin

The fusion of all configuration nodes on level LM+q of the
PLAG, which includes all variation points, and respecting
connections, constitutes the Candidate PLA.

End
Output: Candidate PLA

• Application to the case study
The PLA is constituted by the fusion of the

configuration nodes abcd, ab1b2c, acgh on L4 belonging to
the selected path, from ac to P1, P2, P3 respectively (see
Figures 6, 7, 8).

D. Optimize Candidate PLA.
This optimization step is a manual refactoring process

performed using the expertise of the architect and the
domain engineer to transform iteratively the Candidate PLA
into the final PLA, responding to specific architectural
quality properties of the domain. It considers three main
sub-processes: build AQM (Architectural Quality Model),
build EAQM (Extended Architectural Quality Model), and
refactor the Candidate PLA; we proceed as follows:

• Build AQM

The software architect will take into account the
knowledge of the domain (DD) to build the AQM, which
contains the PLA quality requirements; these architectural
quality goals drive the whole optimization process. It is
specified according to the ISO/IEC 25010 standard. Notice
that AQM should be part of the PLA asset repository;
otherwise it should be built accordingly, using the available
domain knowledge. The quality attributes to be considered
in a particular domain, together with their metrics have to
be defined.

Fig. 7. UML static view of PLAG for Robotics Industry, showing main components of Candidate PLA.

• Build EAQM

EAQM extends the AQM attaching a priority to each
quality sub-characteristics (low, medium or high), an
architectural solution for each sub-characteristic, and a
comment justifying the selection. EAQM represents a
quality-based scenario, such as those used in [9], [29], [30].
Notice that a complete architectural evaluation process,
such as [26] or inspired in scenario-based evaluation
methods, can be used in the selection step to justify the
solution choice, which implies adding new or removing
existing components. These components can be predefined
architectural design patterns taken from catalogues, which
are part of the PLA software assets. Table III shows the
architectural solutions proposed for the case study,
adding/removing components to take in charge the

achievement of the quality; for example, to be able to
recover the system efficiently in case of failure. Notice that
EAQM could be mapped to a Software Interdependency
Graph (SIG), where softgoals correspond to ISO/IEC 25010
quality characteristics and sub-characteristics are
refinements of softgoals; operationalizations are represented
by the architectural solutions given in Table III.

• Refactor Candidate PLA

To refine or improve the selection of the architectural

solution, the contributions technique from [16] is used.
Contributions for each quality characteristic with respect to
each other have been defined in Table IV for the case study,
where +, -, 0 means positive, negative, indifferent
contribution respectively. For example, if maintainability is

a, c, 3

ac, g, 3
ac, b, 3

ac, b2, 3

acg, h, 1 abc, d, 1 ab2c, b1, 3

ab1b2c, f, 1

ab1b2cf, e, 1

achieved by introducing a new functionality, a user
interface component to separate concerns and hence
decrease coupling can contribute positively (+) to security
if it includes authentication functionality, and also to
performance, since coupling among components is
reduced. The satisfaction of the security issue contributes
negatively (-) to performance because extra time checking
is increased, for example during the login functionality.
Notice that more sophisticated metrics for each quality
attribute, according also to the particular domain can be
provided to enrich Table II.

• Process to Optimize Candidate PLA
Optimization process
Actors: Software Architect Domain Engineer
Input: Domain Description (DD), Candidate PLA, Asset
 Repository (AR) including components on level L1, ISO/IEC
 25010 standard to specify the AQM, Architectural
 Evaluation Method (optional)
Begin ‘optimization of Candidate PLA’

Build the AQM
Input: DD, ISO/IEC 25010
Begin ‘building AQM’
 Elicitate domain architectural requirements from the DD.
 For each architectural requirement
 Begin
 State the architectural solutions
 For each architectural solution,
 Begin
 Specify quality requirements as ISO/IEC 25010 quality
 characteristics and sub-characteristics.
 List quality characteristics and sub-characteristics
 For each sub-characteristic
 Begin
 Identify quality attributes and metrics to define the
 AQM for the domain, in terms of ISO/IEC 25010.
 End
 End
 End
 End
End ‘building AQM’
Output: AQM

Build the EAQM
Begin ‘building EAQM’
 Begin
 For each sub-characteristic of the AQM, specify a priority
 end
 Begin
 For each priority (high, medium, low), starting from the
 sub-characteristic with the highest priority
 Begin
 Evaluate the value of each quality on the Candidate PLA;

 for example, evaluate the coupling attribute using the
 metrics “number of connections” of a component.

 Provide an architectural solution (addition/deletion
 of components);
 if more than one architectural solution is present, then a
 scenario-based AEM could be used to select the
 convenient solution to help the architect in his choice.
 End if.

Note that some quality requirements of minor priority
can be achieved while satisfying higher priority ones;

the study of contributions of each quality characteristic
can be useful to handle these trade-offs (see Table 3).

 Reconfigure the Candidate PLA with the selected
 architectural solution.
 Provide a textual justification of the decision taken.
 End
 End
End ‘building EAQM’
Output: architectural solutions, EAQM
Refactor Candidate PLA
Input: architectural solutions, EAQM, PLA
Begin ‘refactoring of Candidate PLA’
 Complete Candidate PLA with the selected architectural
 solutions identified in the previous step, respecting connections
 between components.
 Study the AR to complete the PLA, if some components are still
 missing; add the missing components respecting connections.
End ‘refactoring of Candidate PLA’
Output: PLA

End ‘optimization of Candidate PLA’
Output: AQM, EAQM, PLA

Fig. 8. Candidate PLA for Robotics Industry.

• Application to the case study

Table II presents the AQM for our case study:
reliability, maintainability, usability, security and
performance; the sub-characteristics of maintainability that
have been selected for the robotics industry AQM are:
modularity (the degree to which a system or computer
program is composed of discrete components such that a
change to one component has minimal impact on other
components), and modifiability (the degree to which a
product can be effectively and efficiently modified without
introducing defects or degrading performance). Reusability
(the degree to which an asset can be used in more than one
system, or in building other assets) is a global property that
PLA has to accomplish as an asset and was not included in
AQM; we preferred to enforce the fact that systems in the
robotics industry domain must support evolution expressing
scalability and sustainability (as a sub-sub-characteristic of
modifiability), as it was stated in [10].

TABLE II. AQM FOR ROBOTICS INDUSTRY

Quality
Characteristics

Quality sub-
characteristics Quality Attributes Metrics

Reliability - Availability

Time to recover
from failure MTTR (1)

Mean time between
failures MTBF (2)

Maintainability

 - Modularity

 - Modifiability
Coupling (4)

 Number of

 connections - Scalability

 - Sustainability

Usability
 - Appropriateness

 - Accessibility
Presence of a
mechanism

 Yes/no

Security - Authenticity Presence of a
mechanism

Performance - Time behaviour Response time Latency (3)

(1) MTTR = average time that a device take to recover from any failure;
(2) MTBF = average time between the difference of time spent failing and
time spent recovering
(3) Latency is a measure of the time delay experienced in a system; it can
be computed roughly at architectural level, by summing up for each
component the time spent in requiring/providing data, in a given scenario.
 (4) This metric was proposed in [10]; other measures could certainly be
used here; however, a low coupling is a sign of a well-structured system
and a good design, and when combined with high cohesion, supports the
general goals of high readability and maintainability.

The EAQM in Table III proposes architectural solutions
for each quality requirements of the AQM, with their
priority, where modularity and modifiability have the
highest priority; according to our process, they will be
considered first. Modularity is achieved by introducing a
new Remote User Interface (RUI), and with the
introduction of a new Engineering component, the
modifiability (scalability and sustainability) requirement is
accomplished; both solutions contribute to decrease the
coupling. Moreover, the RUI component also improve the
system usage, hence it will also directly contribute to
achieve usability, with medium priority, which according to
Table IV, could affect negatively the performance (-), with
also medium priority. However, the security mechanism for
authenticity, of low priority, that affects also negatively the
performance (-), increases the system’s reliability (+), with
medium priority, with respect to access control, and it is
also accomplished by the RUI component. On the other
hand, the Engineering component includes a Job Controller
sub-component, which improves the performance (time
behaviour) with a reduced response time and the reliability
will finally also benefit (+) from the reduced coupling
because the recovery time could be reduced, satisfying also
the availability requirement of medium priority. In
consequence, in this case study, the fact of satisfying the
quality characteristics with highest priority has as well
contributed to the satisfaction of the lower priority quality
requirements.

The optimized PLA, obtained from the Candidate PLA,
is shown in Figure 9. The Job Controller component is not
shown, since it is included in the Engineering component.

However, it can be adapted from the existing b3 component
of the Picking/Packing Application of product P1, and
added between the Plant Interaction Controller (a) and the
Robot Controller (c) components to further increase
availability and even some performance. The Engineering
component is now responsible for the painting, palletizing
and picking/packing applications.

Notice that components e and f were still missing in the
candidate PLA of Figure 8, however they are required by
components c and b1 to perform the required functionality.
According to the process to optimize the Candidate PLA, in
the Refactor PLA sub-process, these components can be
added from the asset repository, respecting the connections.
In Figure 9 only the painting extension, component e, has
been shown to illustrate this aspect.

TABLE III. EAQM FOR ROBOTICS INDUSTRY

Quality sub-
characteristics Priority Architectural solution Justification

 - Availability Medium
- Add a new Engineering
component: (b3) Job
Controller

To improve
recovering time in
case of failure

 - Modularity

 - Modifiability
 - Scalability

High

- Add a new RUI
component: i To decrease coupling

- Add a new Engineering
component: (b3) Job
Controller

To decrease coupling

 - Sustainability

- Appropriateness

 - Accessibility

Medium

- Add a new RUI
component: i

To improve also the
system usage by the
end user

 - Authenticity Low - Add a new RUI
component: i

With an additional
authentication
functionality

- Time behaviour Medium
- Add a new Engineering
component: (b3) Job
Controller

To improve the
response time

TABLE IV. CONTRIBUTIONS FOR EACH QUALITY CHARACTERISTIC OF

THE PROPOSED ARCHITECTURAL SOLUTION
Quality
Characteristic

Reliability Maintain-
ability

Usability Security Performance

Reliability + 0 + +

Maintainability + + + +

Usability 0 + + -

Security + + + -

Performance + + - -

There are tools that support the partial automation of the
presented sub-processes [16], [23], [24], [26], [27],
however a complete automation is still difficult to achieve;
the final selection of architectural solutions is generally
provided by the architect [15], [23], [24].

Fig. 9. PLA for robotics industry.

IV. RELATED WORKS
Refactoring has been traditionally used to reconstruct
legacy code and reverse engineering to recover or
reconstruct documentation [17]. In the SPL context
reengineering techniques have been used to modify existing
PLA that in general have been built within a proactive top-
down approach using domain knowledge; from this
generalization, new evolutionary PLAs are built in [6], [18],
and [19]; reverse engineering is also used in SPL to analyse
feature models [20], [21]. On the other hand, reverse
engineering and refactoring techniques are required to
construct the PLA according to a bottom-up approach [5],
which is the one followed in this paper. Works [10] and
[22] have similarity with our approach, however none of
them use a graph model to support the PLA construction;
actually a graph model is a useful tool to make
computations and our proposal is based on a graph
algorithm. In [10] reverse engineering techniques were
used to recover manually the architecture of three robotics
industry products, from where the authors proceeded also
manually to construct the PLA satisfying main domain
architectural quality requirements; the trade-offs step was
limited to an informal discussion and no standards were
used to specify quality requirements.

More recent works [23], [24] propose the automation of the
trade-offs step, based on multi-objective optimization,
where objectives represent different quality attributes. The
HAM (Hybrid Assessment Method) [9] is based on multi-
criteria concepts and techniques for trade-offs analysis, in
an architecture assessment process; however, quality
standards are not used. In our case, the information about
non-functional requirements, such as architectural styles
and their quality, on one hand is contained in the candidate
Architecture, since al least one of the SPL family products
is included; on the other hand, in the optimization step, it is
captured by the AQM with attributes and metrics and by the
EAQM, which is used for the choice of the architectural
solution, as a classic architecture evaluation scenario [30],
providing a complete picture of the domain architectural

requirements. However, HAM could be used to improve
the assignment of the priorities of the quality properties in
the EAQM.

Our paper inspired in [10], proposes a tool-supported
automatic refactoring process to construct first a Candidate
PLA; the final PLA is obtained by manual refactoring this
candidate PLA to satisfy specific quality requirements; the
ISO/IEC 25010 standard is used to improve communication
among the work teams. The trade-offs step is performed
manually, however goal-oriented techniques can be used to
improve the selection of the architectural solution and more
sophisticated tool-supported techniques could be
introduced [9]. A semi-automatic PLA recovery approach is
presented in [22], assuming that involved legacy products
have similar designs and implementations. However, they
do not deal specifically with the architectural configuration,
as we do; measures are defined to detect class, code, and
methods similarities; we use some of them in the first step
of our process to unify components’ names. In [28] legacy
software products are systematically reengineered into SPL,
based on automatic variability analysis. They propose a
hybrid approach that consolidates feature knowledge from
top-down domain analysis with bottom-up analysis of
products’ code similarities. The bottom-up analysis follows
an approach similar to [22] with respect to similarity
measures.

In general, we can appreciate the use of reengineering
techniques and semi-automatic processes for the evolution
and/or construction of the PLA, however complete
automation has not yet been achieved, because the
expertise of the software architect is still considered in
practice the key issue to select convenient architectural
solutions [9], [15]. Our main contribution is to produce
automatically the candidate PLA architecture, using a graph
model as a supporting structure for computations.

V. CONCLUSION
A semiautomatic reactive bottom-up process based on the
RG graph model has been proposed to build a PLA. RG
expresses all different ways to assemble a product starting
by a component and adding one component at a time, such
that connectivity is preserved in already assembled
configurations. Moreover, RG allows the clear
identification of VPs for all products since they belong to
the same level, facilitating the fusion process, which
completes the candidate PLA with the main common
functionality, and including at least an architectural style of
one of the given products, according to the heuristic
provided. Combinatorial explosion in case of huge products
is limited by the connectivity of valid configurations. The
automatic construction of RG, PLAG and Candidate PLA is
supported by a prototype computational tool, which can be
used also for didactical purposes, to show the PLA
construction process. The optimization of the Candidate
PLA is still manual; the standard AQM is used as a main

scenario-based quality requirements specification tool,
offering the complete picture of the domain quality
requirements; however the trade-offs analysis of quality
requirements can be automated integrating existing tools
from multi-objective optimization models and from goal-
oriented engineering; for example EAQM can be mapped to
a SIG that can be automatically generated and Model-
Driven and Goal-Oriented Engineering techniques could be
used. These are still on-going research trends. Let us note
about the first step of the process, that the existence of the
architectures of several products used to construct the PLA
is not as simple as it may seem. It involves a considerable
reverse engineering effort in documenting individual
components and unifying their names and semantics using
complex similarity measures. Our support tool is currently
under construction; Figures 3, 4, 5 and 6 have been
obtained using it. This paper considers only VP(s) common
to all products. In the near future the case of partial
variability will be considered.

ACKNOWLEDGMENT
This research has been partially sponsored by the PEII-
Fonacit DISoft project No 2011001343, and the CDCH
DesCCaP project Nr. PG-03-8014-2011, Universidad
Central de Venezuela.

REFERENCES
[1] P. Clements and L. Northrop. “Software product lines: practices and

patterns”, 3rd edn., Readings, MA, Addison Wesley, 2001.
[2] M. Shaw, D. Garlan. “Software Architecture. Perspectives of an

emerging discipline”, Prentice-Hall, 1996
[3] K. Pohl, G. Böckle, F. van der Linden. “Software product line

engineering - foundations, principles, and techniques”. Springer
IXXVI, 1-467, 2005.

[4] E. Y. Nakagawa, P. O. Antonio and M. Becker. “Reference
architecture and product line architecture: a subtle but critical
difference”, Crancovic V., Grhun, and M. Book (Eds.): ECSA 2011,
LNCS 6903, pp. 207-211, Springer-Verlag, Berlin, Heidelberg,
2011.

[5] P. Clements and C. Krueger. “Point-Counterpoint”, IEEE Software,
19(4), 2002.

[6] A. Rashid, JC. Royer, A. Rummler (Eds). “Aspect-Oriented Model-
Driven Software Product Lines. The AMPLE Way”. Chapter 1, p. 4,
Cambridge University Press, Cambridge, 2011.

[7] M. Matinlassi. “Comparison of software product line architecture
design Methods: COPA, FAST, FORM, KobrA and QADA”, Proc.
of the 26th. Inter. Conference on Software Engineering (ICSE’04),
2004.

[8] E. J. Chikofsky and J. H. Cross, II. “Reverse engineering and design
recovery: A taxonomy”. IEEE Software, pp. 13–17, January, 1990.

[9] A. Rashid, JC. Royer and A. Rummler (Eds). “Aspect-Oriented
Model-Driven Software Product Lines. The AMPLE Way”. Chapter
2, p. 48, and Chap. 5 pp. 125-157. Cambridge University Press,
Cambridge, 2011.

[10] H. Koziolek, R. Weiss, J. Doppelhamer. “Evolving industrial
software architectures into a software product line: A case study”. R.
Mirandola, J. Gorton, and C. Hofmeister (Eds): QoSA 2009, LNCS
5581, pp. 177-193, 2009.

[11] P. Krutchen. “The 4+1 View model of software architecture”. IEEE
Software, 12(6) pp. 42-50, 1995.

[12] Object Management Group (OMG). “Unified Modeling Language
Supersturcture”, version 2.0 (formal/05-07-04), August. Available
at: www.omg.org/spec/UML/2.0. 2005.

[13] C. Matus. “Planificación de situaciones”. Cuadernos de CENDES,
Universidad Central de Venezuela, Caracas, Venezuela, 1977.

[14] B. Westfechtel and A. von der Hoek. “Software architecture and
software configuration management”, in Software Configuration
Management (SCM): ICSE Workshops, LNCS Vol. 2649, Portland,
OR, Springer-Verlag, May, pp. 24-39, 2003.

[15] J. Bosch. “Design and use of software architectures - adopting and
evolving a product-line approach”. Addison-Wesley, 2000.

[16] L. Chung, B. Nixon and E. Yu. “Using non-functional requirements
to systematically select among alternatives in architectural Design”,
in 1st Inter. Workshop on Architectures for Software Systems, pp.
31-42, Seattle, Washington, 1995.

[17] M. Fowler. 1999. Refactoring. Improving the design of existing code.
Addison-Wesley.

[18] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek. “Refactoring
product line architectures”, in IWR: Achievements, Challenges, and
Effects, pp. 23–26, 2003.

[19] D. Saraiva, L. Pereira, T. Batista, F.C. Delicato, P.F. Pires, U.
Kulesza, R. Araújo, T. Freitas, S. Miranda, and A.L. Souto.
“Architecting a model-driven aspect-oriented product line for a
digital TV middleware: A refactoring experience”. LNCS, Volume
6285, Software Architecture, pp. 166-181, 2010.

[20] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien and P. Lahire.
“Reverse engineering architectural feature models”. ECSA’11, 2011.

[21] S. She, R. Lotufo, T. Berger, A. Wasowski and K. Czarnecki.
“Reverse engineering feature models”. ICSE’11: 461-470, 2011.

[22] Y. Wu, Y. Yang, X. Peng, C. Qiu and W. Zhao. “Recovering object-
oriented framework for software product line reengineering”. 12th
Inter. Conf. on Software Reuse, ICSR’11, Pohang, South Korea,
June 13-17. LNCS 6727, Springer, pp. 119-134, 2011.

[23] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola and R.
Reussner. “A hybrid approach for multi-attribute QoS optimisation,
in component based software systems”, 6th QoSA'10, vol. 6093
LNCS, pp. 84-101. Springer, June 2010.

[24] A. Koziolek, H. Koziolek and R. Reussne, “PerOpteryx. Automated
application of tactics in multi-objective software architecture
optimization”, QoSA’11, Boulder, Colorado, USA, 2011.

[25] F. Losavio, A. Matteo, N. Levy, “Web services domain knowledge
with an ontology on software quality standards.” ITA’09, pp.74-85,
CAIR, Glyndwr University, UK, Sept. 2009

[26] L. Zhu, A. Keaurum, I. Gorton and R. Jeffrey. “Trade-off and
sensitivity analysis in software architecture evaluation using analytic
hierarchy process”, Software Quality Journal, 13, pp. 357–375,
2005.

[27] I.M. Murwantara. “Towards quality attributes decision modelling
approach for a product line architecture”, IJCSNS International
Journal of Computer Science and Network Security, Vol.11 No.11,
November 2011.

[28] Y. Xue. “Reengineering legacy software products into software
product line based on automatic variability analysis”. ICSE 2011: pp.
1114-1117, 2011.

[29] Clements P., Kazman R. and Klein M. “Evaluating Software
Architectures: Methods and Case Studies”, Addison-Wesley, 2002.

[30] Tan L., Lin Y., Ye H. “Quality-Oriented Software Product Line
Architecture Design”, Journal of Software Engineering and
Applications, Vol. 5, 472-476, 2012.

[31] van der Hoeck A., Dincel E., Medvidovic N. Metrics to Assess the
Structure of Product Line Architectures, MTRICS’03, 9th
International Symposium on Software Metrics, p 298, 2003.

 [32] Rahman A. Metrics for the Structural Assessment of Product Lines
Architectures, Master Thesis, School of Engineering, Blekinge
Institute of Technology, Ronneby, Sweden, 2004.

