
V. Tsaoussidis et al. (Eds.): WWIC 2013, LNCS 7889, pp. 43–55, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Service Creation and Self-management Mechanisms
for Mobile Cloud Computing

Tatiana Aubonnet1,2 and Noëmie Simoni2

1 CNAM, CEDRIC, 292 rue Saint Martin, 75003, Paris

2 Télécom Paristech, 46, rue Barrault, 75634, Paris Cedex 13
{tatiana.aubonnet,noemie.simoni}@telecom-paristech.fr

Abstract. Today, service providers need to develop competitive applications
for a quick time-to-market to attract and retain end users. To facilitate the task
of developers, we introduce a reference Service Creation Environment based on
service component and self-management mechanisms. This environment uses a
fairly high integration level using meta-modeling techniques and exchange
formats: Meta-Object Facility (MOF), Extensible Markup Language (XML),
OVF ++ (Open Virtualization Format). Our approach allows developers to
design the basic service components based on Quality of Service (QoS), to
build the service by composition, and to manage a mobile session by ubiquitous
services and the Virtual Service Community.

Keywords: service components, ubiquitous services, self-management.

1 Introduction

Today, the Next Generation Networks (NGN) [3], [14] are considered to be a "user-
centric" approach in the economic and technological world. Thanks to this new
concept, the user can use any access to services and any terminal. However, with this
freedom of access guaranteed by NGN, we have new challenges like the demand for
quickly delivering new applications. Service providers need to develop competitive
applications for a quick time-to-market to attract and retain end users.

Mobile Cloud Computing (MCC) is introduced as an integration of cloud
computing into the mobile environment. Mobile Cloud Computing [1] brings new
types of services and facilities for mobile users to take full advantage of cloud
computing. It is important for the service provider to fulfill mobile users’ expectations
by monitoring their preferences and providing appropriate services to each user.

With each evolution, the new actors are trying to facilitate implementation. Thus,
the key concepts such as (1) OSA (Open Service Architecture) PARLAY APIs, (2)
enabled services in IP Multimedia Subsystem (IMS), (3) Service Creation
Environment (SCE), and Service Logic Execution Environment (SLEE) in Intelligent
Networks, (4) Web Services APIs, (5) and infrastructure APIs for Cloud Computing
are proposed.

44 T. Aubonnet and N. Simoni

But important concepts are not taken into account in these environments such as
QoS and continuity of service in a mobile context.

Can we solve or at least help to solve these concepts through a service creation
platform? Our motivation is based on offering the maximum number of elements
through this platform. This means that we must answer the following questions: What
can we offer in term of construction (by construction)? What are the conditions to
achieve maximum agility and flexibility?

In this paper, we present a software development environment for a Service
Composition and Self-Management creation in Service-Oriented Architecture (SOA)
context. We discuss fundamental concepts of the service creation platform and detail
its main architectural components in order to have a reference framework.

The Service Components proposed are like actual automata that are accessible after
any event, because, the properties of these services are not only those of SOA,
namely: reusable, interoperable and autonomous, but also mutualizable, stateless,
ubiquitous and self-managed. This architecture ensures cloud users a composition of
Mobile Cloud Services in a seamless and dynamic way. A fairly high integration level
has been reached using meta-modeling techniques (OMG standard MOF, XML,
OVF++). We recommend taking the Service Components in the Referential of
Service Creation Environment.

This paper is organized as follows. The related works for service creation is
described in Section 2. Section 3 is devoted to our propositions for Workbench
Architecture modules of the Service Creation Environment (Service Components,
Links and Referential) for MCC including service component definition, Service
Composition and piloting. Our propositions for Self-Management Mechanisms are
presented in Section 4. Finally, in Section 5, we exhibit the advantages of our
approach in a Mobile Cloud Computing use case.

2 Related Works

Works interests in the service creation field are the existing platforms in the
Intelligent Network, Web Services, active networks and also Mobile Cloud Services
gateway.

The Intelligent Network introduced two concepts: Service Creation Environment
(SCE) [5] and a Service Logic Execution Environment (SLEE). These two concepts
have been introduced with Intelligent Networks to ease and speed up the development
and deployment of services [2]. An SCE is generally a graphical user-interface for
developing services using predefined components, also called building blocks. A
SLEE is the environment in which the services are actually executed.

This approach has been a precursor in separating the service components and of
execution logic (enchainment).

Industry shows interest in Web Services due to their potential in facilitating
seamless business-to-business or enterprise application integration [11], [13]. The
contributions of Web Service creation are: improving the semantics of creation and
collaboration services, introducing Web Services APIs and the decentralized vision
for the composition of services (choreography).

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 45

The active network context enables customers to install and run their own
customized services on a provider’s network; a framework for service creation and
management for active networks in telecom environments is defined in [4]. A key
problem in this context is how on the one hand, a customer, who wants to run its
service on the network, and on the other hand, the provider, who owns the network,
interacts for the purpose of service installation and management. This problem has
been addressed by introducing a service application based on Service Components
and by network virtualization [7].

The paradigms of Service-Oriented Architecture, user mobile centric and Cloud
Computing provide service-orientation for both software and the infrastructure
services. In particular, the mobile cloud computing environment distributes and
allocates IT resources according to an user’s request, so there should be a study on
technology that manages these resources and deals with effectively. C. Chapman and
al. [6] discusses the implications of the on-demand cloud provisioning and
architectural definition of distributed applications deployed in the cloud. It underlines
especially that such an architecture has to be dynamically configured at runtime. It
proposes language elements for describing software architectures, requirements
towards the execution platforms, architectural constraints (e.g. concerning placement
and collocation) and rules relating to applications elasticity. Concerning the
requirements for the underlying IaaS platforms, both approaches are based on OVF
(Open Virtualization Format) formalism.

We note that for the mobile context there is a missing feature, the continuity of
service. Our motivation is to design, self managed components, reacting throughout
the life cycle and during run time to trigger the load balancing based on user
localization. That is why we integrate two new aspects and we present our two
proposals: a service creation environment with the QoS (non-functional aspects of the
service) integration and Self-Management Mechanisms to satisfy the continuity of
service in MCC.

3 First Proposal: A Service Creation Environment

In this section, we present our propositions for a Service Creation Environment. The
SCE showed in this paper can reside in the PaaS for Mobile Cloud Computing. Each
component of the SCE consists of a consistent functionality the developer can
manipulate for its creation of services. The Service Creation Environment is given in
Figure 1. The architecture is based on a double separation: on one side the separation
between Service Components and Links, and on the other side the separation between
Modeling and Piloting (see Figure 1). SCE eases designing and provides a guide for
each stage of development. The Service Components and Links are accessible
through Referentials that are exported in the OpenCloudware Self-Service Portal. The
Referential modules constitute a space for knowledge sharing on the basis of a
common representation and they are built on standards allowing model storing, reuse
and activation. In the context of the SCE workbench, the developer draws on the
referential for services and links suited to their needs and defines the sequence and
control desired.

46 T. Aubonnet and N. Simoni

For MCC, we can find for example a set of basic services such as Location Basic
Service, Geographic-Location Basic Service, Presence Basic Service, etc. Location Basic
Service (LBS) takes out the logic address (SIP URI) of a resource from the knowledge
database. Geographic-Location Basic Service (Geo-LBS) takes out the geographical
position (longitude, latitude) of a resource from the knowledge database. Presence Basic
Service (PBS) takes out the state of the Resource from the knowledge database. It allows
us to know if a resource is "Available", "Can be activated" or "Enabled". But we can also
find component security service (authentication, authorization) or management services.

The role of Referential is to assure consistent communication between modeling
and piloting tools during the service creation process. The interface between the
Modeling, Piloting and the Referential is assured by an exchange of models based on
the OVF++/XML standards.

enchainementOpenCloudware Self-
Service Portal

Links

Links Model Nodes Model

Service
Composition

Service Components

Modeling

Piloting

Enchainement

Links Referential
Components
Referential
(LBS, PBS ..)

SC

SCSC

44

33

22

11

Interface
Selection
Interface
Selection

SC

SC

SC SC

SC
SC

SC SC

VPSN

Fig. 1. Service Creation Environment (SCE)

This architecture also illustrates the separation between static (Service Component
and Link Component) and dynamic (Piloting) aspects. This separation gave us a
greater independence (static and dynamic) and consequently betters opportunities to
evolve, as well as a more effective communication.

Compared to the SIB (Service Independent Block) approach [2], Service
Component Architecture (SCA) is considered as a promising technique for service
building. The main advantages of our approach are modeling the overall behavior of
the system, and flexibility: our Service Components based on QoS are independent,
modular, reusable and interoperable like the SOA components, but in more they are
autonomous, stateless, ubiquitous and self-managed. These components form the
basis for the definition of a Service Element Library called Components Referential in
OpenCloudware Self-Service Portal.

The last important input for SCE is the “NLN” model (Node, Link, Network) [8],
which provides an abstract image of the global system. Indeed, we divide the system
into four decision views (visibility level): User, Service, Transport Network and
Equipment. Each level consists of abstract nodes and links forming a subsystem
called abstract network.

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 47

In this article the SCE is focalized by "Service Level" in where the nodes are the
Service Component (SC) and Links (service interactions) and the whole forming a
Virtual Private Network Service (VPSN). In this section, the question is: how to define
a service creation platform allowing the introduction of self-management. To reply,
we present:

• Service Component (Section 3.1).
• Service Composition (Section 3.2).
• Piloting (Section 3.3)
• E2E Process (Section 3.4) (life cycle: think, build, run.)

3.1 Service Component

Service Component Properties

All the services are built according to SOA principles to allow the design of new
services via a composition of service elements, a loose coupling between them and an
exchange standard by standard interface. We present the set of important Properties
to respect and follow in any design and deployment of SOA architecture.

Reuse: consists in designing services to make them more reusable. Reusing the same
service in various business processes allows to reduce the development effort to meet
new business needs.

Loose coupling: it is to limit the dependencies between services. It ensures agility
that allows an SOA solution to adapt to changes in the IT world efficiently. Usually,
these changes are due to external needs in the IT environment and therefore are
difficult to be planned in advance. For this reason, loosely coupled relationships
become an essential property for SOA. It is carried out by using the service contract,
which allows the services to interact according to predefined parameters, and to share
some knowledge while remaining independent from one another.

Stateless: it represents a service that does not keep state information and does not
handle it. If a service maintains a state in the long-term, it will thus lose its property of
loose coupling, its availability for other queries, as well as its potential to scalability.
To do this, the services must be designed in a stateless way even if it means
delegating state management to someone else. For a service to be stateless, its
operations need to be designed to make stateless treatments, i.e. the treatment of an
operation should not rely on information received during a previous invocation. It
should be noted that the more intelligent the messages exchanged are, the more the
services will stateless.

But specially, in addition to these SOA Properties, we introduce the mutualization
property of the Service Component. It is designed to offer the same treatment to
multiple users. This requires all component operations to be executed for all
requesters. It is the contrary of the object, because the user can execute a selected
method. This property will enable Ubiquitous Services Components to by make.

Among properties, we also introduce the four QoS criteria types: availability,
reliability, delay, and capacity describe below in the Management Interface.

48 T. Aubonnet and N. Simoni

Service Component Interfaces

The Service Component is illustrated in Figure 2 with three Interfaces: Usage,
Control, and Management.

Usage
interface

User Operations

Service Component

Control
interface

Management
interface

QoS Component

QoS Supervision (In/Out)

Monitoring

Service Component
Resources Manager

Usage
interface

User Operations

Service Component

Control
interface

Management
interface

QoS Component

QoS Supervision (In/Out)

Monitoring

Service Component
Resources Manager

Fig. 2. Service Component

The Usage Interface is used to enable a basic service.
The Control Interface is used to reserve resources.
The Management Interface is represented by a QoS management interface integrated
into each component composite. We use the same modeling to which we add the
following models: QoS generic model and interaction model. The QoS model is
generic and represents the behavior.
Four criteria have been proposed to describe a behavior:

(1) Availability: accessibility rate of the Service Component (accessibility rate).
(2) Reliability: running without alteration of information (error rate).
(3) Delay: time for request processing (response time).
(4) Capacity: maximum load of the Service Component (processing capacity).

Unlike some contexts, where just the throughput criterium as in UMTS is considered,
or two criteria (throughput and fault tolerance) in the G1010, we found that these four
criteria were necessary to describe the behavior of any function. We can say that these
are sufficient because these criteria are independent of context. Indeed, they meet the
following transparencies. The first is temporal and spatial transparency, i.e. to
process and to transfer the information every time it is produced by the user
(availability). The second is semantic transparency, i.e. the processing and the transfer
is made without changing its content (reliability). The third is transparency in the
distance, i.e. to process and transfer without changing the temporal relationship to the
information generated (delay). Finally, transparency to the source, i.e. treat and
transfer the information generated instantly (capacity).

These criteria are evaluated by Key Performance Indicators (KPI) which are
measurable parameters. A KPI is a metric capturing some aspects of the performance

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 49

of one or more resources which is measured either directly, or could be defined in
hierarchies. An example of KPI for the delay criteria is defining access time < 2s.

The interaction model specifies the autonomous degree of the distributed
components, roles. The different roles are: passive, active, reactive, proactive. The
developer of the service creation platform chooses to activate one of the roles. A
reactive and proactive component describes the interaction behavior of an active
component in which the object, which is highly-autonomous, does not simply act in
response to its environment stimulus (changes). The proactive component can be used
to maintain the QoS dynamically.

Figure 2 shows a service component where all interfaces are enabled. We obtain a
composite component incorporating a QoS component and a control component. You
can also associate a monitoring component. It is an autonomous Service Component
(SC independent) satisfying stateless, and self-management, because it supervises the
compliance of the delivered QoS. The OpenCloudware project adopted a Service
Component approach based on QoS [9].

Remark : Link Component

In accordance with the <Node, Link, Network> abstract model, we see that the service is a
resource composed of nodes (Service Components) and Links (network link,
interconnection) of the same visibility level. We have assigned links to different network
protocols (HTTP, SIP). The QoS Link will be integrated in the template OVF/XML.

3.2 Service Composition

In the Referential of the OpenCloudware Self-Service Portal (Figure 1) we have the
service components. These are basic services.

To build the VPSN that will meet the customer request, we must identify and then
select the right VPSN nodes (SC) - regarding their processing functionality and QoS- and
establish the right VPSN links - regarding their communication capabilities and QoS that
connect the selected nodes. Identifying the required VPSN nodes means to find which
nodes are necessary to carry out the VPSN processing and thus the customer requested
service functionalities. This is done thanks to service profiles that are created for each
offered service by the service supplier. Among the identified nodes, we have to choose
which one can carry out the requested behavior. This service node selection must be
carried out in parallel with the link establishment to connect the selected nodes.

The VPSN uses the logic (the sequence) that specifies how the selected nodes must
be connected according to the semantic of the requested service. The link
establishment is thus carried out according to the VPSN logic.

The concept of “everything is a service” or “X-as-a-Service” allows the
composition of a mobile application in the Cloud (Figure 3). The MCC application is
composed by Service Components, for example SC1, SC2, SC3, SC4, SC5 {security
as a service authentication, security as a service authorization, service logic builder
as a service, mobility as a service, and charging as a service, etc}. But also, this
application is composed by meta-services for example MSC1 {monitoring as a
service}, see Figure 3.

50 T. Aubonnet and N. Simoni

Mobile Cloud Computing

Security aaS
authentication

Security aaS
authentication

Security aaS
authorization

Security aaS
authorization

Load testing aaSLoad testing aaS

Storage aaSStorage aaS

Monitoring aaSMonitoring aaS

Application

Billing aaSBilling aaS

Accounting aaSAccounting aaS

Service logic builder aaSService logic builder aaS

Flexibility aaSFlexibility aaS

Management Service Cloud Services

Mobile Cloud Computing

Security aaS
authentication
(SC1)

Security aaS
authentication
(SC1)

Security aaS
authorization (SC2)

Security aaS
authorization (SC2)

Load testing aaSLoad testing aaS

Storage aaSStorage aaSMobility aaS (SC4)Mobility aaS (SC4)

Monitoring aaS (MSC1)Monitoring aaS (MSC1)

Application

Billing aaSBilling aaS

Accounting aaSAccounting aaS

Charging aaS (SC5)Charging aaS (SC5)Service logic builder aaS (SC3)Service logic builder aaS (SC3)

Flexibility aaSFlexibility aaS

SearchSearch

SC6SC6 SC7SC7 SC8SC8 SC9SC9 SC10SC10

Fig. 3. Service Composition

The meta-services are the supervision services used for the management of each
service component. These services manage the end-to-end application. Virtual
resources will have a provisioning and will be instantiated.

3.3 Piloting: Event Driven Approach

As we have seen, the Virtual Private Service Network represents the selection of the
services components and their sequencing. The link represents the interactions
between services at the logical level. The entities of this level provide an application
service. The VPSN is created at the time when the developer connects to the platform.
When the developer connects, the platform knows the commercial offers it has
subscribed to. These commercial offers are available in Referentials. A component of
the platform, the “translator”, knows the mapping between offers and the Services
Components that provide this offer. The VPSN is created when all of SC
corresponding to the commercial offers of the developer have been attached to the
VPSN.

In our proposition, we favor an event-based approach. Our QoS management
architecture is associated with a computing model that analyzes the QoS-based event
and consequently adapts the VPSN configuration. Its QoS-component detects a QoS
degradation and notifies the cloud management system. This latter monitors the event.

In order to support our event-driven approach, we create an Events Manager on the
platform. The latter receives the notification (QoS degradation event) and matches
this event to a specific action.

More precisely, the developer has at his disposal a decision table where for each
event he indicates the next SC. The SC may be an application component or
management component. Normally, a management action is a notification sent inside
the service platform to a management service that is already subscribed to this type of
events. In our example, a specific manager is subscribed to QoS degradation event.
Hence, the Events Manager sends to the right manager, the right notification, to
inform it that he is now able to start its control action and management process on the
service layer. For the QoS degradation, the VSC service (that is explained later) is
invoked.

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 51

For the mobility we have “spatial mobility event”.
To illustrate the QoS integration in Service Creation Environment, in the

following section we describe an E2E Process of the life cycle.

3.4 End to End Process

We propose to take into account the four processes of the life cycle: design, (THINK),
Deployment (BUILD), Provisioning, and Operating (RUN), see Figure 4.

Think Build

Design OperatingDeployment

S
L
A

Provisionning Delivery Assurance

Run

Resource Profile

Resource Profile
Current
Values
QoS

Real Time Profile

Real Time Profile

Current
Values
QoS

Thresholds
Values QoS

Continuous deployment

Self-
management

Reprovisionning

User
Profile

Resource
Usage
Profile

Real time
Profile

Resource
Profile

K_Base

Réservation
Ressource

Mobility
Heterogeneity
environment

Control
E2E QoS

SLA
Mapping

E2E QoS

Contract
Mapping

Resource Profile

Resource Profile

Design
QoS

Usage Profile

Usage Profile

Offered
QoS

Demanded
QoS

Think Build

Design OperatingDeployment

S
L
A

Provisionning Delivery Assurance

Run

Resource Profile

Resource Profile
Current
Values
QoS

Real Time Profile

Real Time Profile

Current
Values
QoS

Thresholds
Values QoS

Continuous deployment

Self-
management

Reprovisionning

User
Profile

Resource
Usage
Profile

Real time
Profile

Resource
Profile

K_Base

Réservation
Ressource

Mobility
Heterogeneity
environment

Control
E2E QoS

SLA
Mapping

E2E QoS

Contract
Mapping

Resource Profile

Resource Profile

Design
QoS

Usage Profile

Usage Profile

Offered
QoS

Demanded
QoS

Fig. 4. End to End Process

The QoS component managed the behavior of the Service Component. Figure 4
shows the functions that it performs at each life cycle phase. The information is
contained in appropriate profiles that are located in the referential.

In the design phase the QoS is evaluated as a design value in the service profile
(instance of “Resource Profile”).

In the deployment phase we can install the component in the right place by
comparing the values that we find in the profile called “Usage Profile”: the QoS
offered and QoS requested.

In the provisioning phase, the QoS component is evaluated according to resource
availability, to determine whether answer the query with the required QoS.

In the operating phase, the QoS component monitors continuously the availability
of the Service Component resources. If the availability of the resources does not
fulfill the QoS, then the QoS component emits an event of “out_contract” type. It uses
its Management Interface. This event is received by the Event Manager of MCC
session which will then seek SC replacement by Ubiquitous Services.

In the following section we propose Self-Management, i.e., Self-Management by
the Ubiquitous Services compatible with the objectives in the Mobile Cloud
Computing, and Virtual Service Community creation.

52 T. Aubonnet and N. Simoni

4 Second Proposal: Self-management Mechanisms

We introduce Self-Management Mechanisms. The management of the QoS is possible
thanks to reactive and proactive role of the Service Component.

In our research, we rely on the objectives of the OpenCloudware project which will
incorporate: (1) the components of modeling (THINK), (2) the development and
production of applications (BUILD), (3) a PaaS platform compatible with multi-IaaS
(RUN) for deployment, orchestration, performance testing, and self-management, (4)
and the provisioning of virtualized multi-tier applications of type JavaEE.

During the cloud user session each Service Component is self-managed. This
ensures automation and decentralization of service control and management. In this
section, the question is: how to create and manage a MCC session based on QoS
between a user and a service provider? To answer this, we present:

• Ubiquitous Service Creation (Section 4.1).
• Virtual Service Community Creation (Section 4.2)

4.1 Ubiquitous Service Creation

To enable the replacement of a service, we define the concept of Ubiquitous Service.
Ubiquitous Service is a Service Component offering the same functionality and the
same QoS depending on the model.

Ubiquitous Service will ensure the replacement of a degraded service by an
equivalent service to maintain the QoS contract during the different movements.
Thus, the mobility of service will result in the replacement of a service element by a
Ubiquitous Service element. This replacement is done without breaking session
thanks to the concept of VSC. The Virtual Service Community (VSC) contains a set
of ubiquitous SCs (section 4.2).

4.2 Virtual Service Community Creation

To guarantee a continuous end-user’s session, the Service Creation Platform proposes
to regroup elements into Virtual Service Communities in order to have a dynamic
E2E mobility management solution. This concept is also called the Community of
Interest (CoI) concept. Each CoI defines a group of elements that share a common
interest. Community members are self-managed and can exchange information with
each other in pursuit of shared goals.

When deploying a new service in the supplier platforms, the Virtual Service
Community management provides the service called VSC Creation. VSC Profile is
included in the referential on the platform. This VSC Profile contains the following
attributes: Service ID, Functionality, QoS criteria, Provider ID, SIP URI, Longitude,
and Latitude, but also other attributes.

For each deployment, there is a search for the existence of the appropriate VSC.
When found, this new component is attached to the VSC. Thus the VSC will contain
all components functionally equivalent and with the same QOS.

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 53

However, due to mobility, some components used in the end user’s session may
not continue to fulfill their SLA or end-to-end user QoS requirements. To solve these
mobility problems, according to the VSC concept, a ubiquitous counterpart that
respects these requirements (a member of the same VSC) is dynamically found to
replace the current component. As a result, this ubiquitous solution that is based on
gathering QoS and functionality equivalent elements into communities guarantees all
mobility cases by maintaining end-to-end sessions and their E2E QoS.

5 Use Case Service Creation and MCC Session Self-management

Today, the cloud users have become nomadic and expect to access their services
without any temporal, geographical, technical or economic constraints (Figure 5). The
developer defines the components they will need with their QoS requirements.

 Wifi Access

Serviceware
SC1

SC3
SC5

SC4

SC5 SC5 SC5

Network (IaaS, MPLS …)

SC2

SC2

SC4

 3G Access

Service
Components
Service
Components

Service
Composition
Service
Composition

LinkLink

SC5

SC5
SC5

SC5

QoS OUT ContractQoS OUT Contract

VSC
ubiquitous
services

VSC
ubiquitous
services

11

33

22

Piloting : VPSNPiloting : VPSN 44

Fig. 5. Mobile Cloud Computing Use Case

Thanks to Service Creation Platform the developer will be able to in design phase
(THINK):

- (1) Select the Service Components (SC) in the Referential (if they exist, otherwise it
will create them), see Figure 5.
- (2) Define the service composition.
- (3) Select link, see Figure 6.
- (4) Define the service logic since the control is done on the basis of its VPSN.

In case the developer would also like to implement self-management, in the
deployment phase (BUILD) he will be able select Ubiquitous Services (SC5, see
Figure 5), and create the VSC.

54 T. Aubonnet and N. Simoni

Fig. 6. OVF network link

During the operating phase (RUN), depending on the mobility, the system provides
the services requested by maintaining QoS and service continuity according to these
rules. As a result, VPSN and VSC establish a dynamic session that best suits the
users’ preferences and their QoS requirements.

Our proposals are evaluated on an autonomous Self-Management infrastructure
and especially for the self-configuring of applications. Self-configuring represents the
ability of a system to configure itself and to adapt the various changes in its
environment. It allows the configuration and reconfiguration of a system through its
autonomic and dynamic components. This autonomic infrastructure relies on JADE, a
framework for the construction of autonomic systems using the Fractal reflective
component model, and TUNe, a global autonomic management system [12]. It is used
in OpenCloudware as part of the autonomic PaaS management layer.

The language used is OVF++. It is based on a well known formalism for describing
virtual machines (OVF) and it integrates an architecture description language Fractal
ADL (Architecture Definition Language). ADL is an open and extensible language to
define component architectures for the Fractal component model. To treat the
behavioral aspects (QoS), have introduced a new control interface (Management
Interface). This interface manages and notifies the QoS of each Fractal component.

The Fractal component incorporating QoS will integrate Self-Management right
from the design phase. The Self-Management Mechanisms to satisfy the continuity of
service in MCC are assured by Ubiquitous Services and VSC.

6 Conclusion and Future Works

We have presented an innovative approach to domain engineering based on Service
Components and Self-Management Mechanisms. This approach has been assessed
and refined based on our experience in the Service Creation Environment. Our SCE
adopted a Service Composition approach. Thus, the Service Components proposed
have the properties recommended by SOA, namely: reusable, interoperable and
autonomous, enhanced by the following properties: mutualizable, stateless, ubiquitous
and self-managed. The Fractal Service Component is based on a QoS applicable in all
phases of the life cycle. This architecture ensures cloud users have a composition of
mobile cloud services in a seamless and dynamic way.

We have proposed the dynamic composition of the user session and a Self-
Management by the Ubiquitous Services and VSC. This flexible way to create a
service is essential if operators wish to by competitive.

<!—Network as a Service (NaaS) constraint element definitions -->
<xs:element name="appE2EDelay" type="tns:linkSetVmSetConstraint"
 QoS requested=" currentvalue " QoS offered=" thresholdvalue " />
<xs:element name="appE2EAvaibility" type="tns:linkSetVmSetConstraint"
 QoS requested=" currentvalue " QoS offered=" thresholdvalue " />
<xs:element name="appE2EReliability" type="tns:linkSetVmSetConstraint"
 QoS requested=" currentvalue " QoS offered=" thresholdvalue " />
<xs:element name="appE2ECapacity" type="tns:linkSetVmSetResourceConstraint"
 QoS requested=" currentvalue " QoS offered=" thresholdvalue " />

 Service Creation and Self-management Mechanisms for Mobile Cloud Computing 55

Our future works will be the integration of our Self-Management approach in the
PaaS platform of the OpenCloudware project.

Acknowledgments. This work is supported by the OpenCloudware project.
OpenCloudware is funded by the French FSN (Fond national pour la Société
Numérique), and is supported by Pôles Minalogic, Systematic and SCS.

References

1. ABI Research. Research report on Entreprise Mobile Cloud Computing: cloud Services,
mobile devices, and the IT supply chain analysis (2009),
http://www.abiresearch.com/research/1004608

2. ITU-T recommendation Y.2001: general overview of NGN. Y-Series recommendations:
global information infrastructure, internet protocol aspects and next-generation networks,
next generation networks - frameworks and functional architecture models (December
2004)

3. Mikoczy, E., Kotuliak, I., Deventer, O.V.: Evolution of the Converged NGN Service
Platforms Towards Future Networks. Future Internet Journal 3(1) (March 2011)

4. Brunner, M.: Service Management in a Telecom Environment based on Active Network
Technology. Ph.D. thesis No. 13433, Swiss Federal Institute of Technology Zurich (ETH
Zurich), Switzerland (2000)

5. Aubonnet, T., Simoni, N.: PILOTE: A Service Creation Environment in Next Generation
Network. In: Proceedings of the IEEE Intelligent Network Workshop, IN 2001, Boston,
USA, Mai 6-9, pp. 36–40 (2001)

6. Chapman, C., Emmerich, W., Marquez, F.G., Clayman, S., Galis, A.: Software
architecture definition for on-demand cloud provisioning. In: Hariri, S., Keahey, K. (eds.)
HPDC, pp. 61–72. ACM (2010)

7. Distefano, S., Puliafito, A., Rak, M., Venticinque, S., Villano, U., Cuomo, A., Di Modica,
G., Tomarchio, O.: QoS management in Cloud@Home infrastructures. In: Proc. of
CyberC, Beijing, China, pp. 190–197 (October 2011)

8. Simoni, N., Xiong, X., Yin, C.: Virtual Community for the Dynamic Management of NGN
Mobility. In: Proceedings of the Fifth International Conference on Autonomic and
Autonomous Systems, ICAS 2009, Valencia, April 20-25, 2009, pp. 82–87 (2009)

9. Opencloudware project (2011-2014), http://www.opencloudware.org/
10. Modica, G.D.: Resource and Service Discovery in SOAs: A P2P Oriented Semantic

Approach. International Journal of Applied Mathematics and Computer Science 21(2),
285–294 (2011)

11. Zhang, X., Yin, Y., Zhang, M., Zhang, B.: A Composite Web services Discovery
Technique Based on Community Mining. In: Proc. IEEE Asia-Pacific Service Computing
Conference (APSCC 2009), Singapore, December 7-11, pp. 445–450 (2009)

12. Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., Mos, A., De Palma, N., Quema,
V., Stefani, J.-B.: Architecture-based autonomous repair management: An application to
J2EE clusters. In: Proceedings of the IEEE Reliable Distributed Systems (2005)

13. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the SOA-
based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of
Web Services. IEEE Transactions on Services Computing 3(3), 223–235 (2010)

14. Mikoczy, E., Kotuliak, I., Deventer, O.V.: Evolution of the Converged NGN Service
Platforms Towards Future Networks. Future Internet Journal 3(1), 67–86 (2011)

