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Abstract—

This paper presents a self-adjustment of the lengtbf the channel
impulse response using a classic@holesky Factorization. This is
of special importance in the context of algorithmscontaining a
matrix inversion and the rank of this matrix is strongly related to
the length of the channel impulse, i.e. interferercancellation
algorithm [1].

When the length of the channel impulse response isver-
estimated, the matrix inversion is carried out with a singular
matrix. A self-adjustment is then required to avoidan increase in
the noise level.

l. INTRODUCTION

In most of the low rank channel (number of charpaths is
too less than number of pilots) algorithms, thenestion of
the true length of the channel impulse response, ¢hannel
impulse response is token at the sampling instargs)
important in order to guarantee immunity againsetrbise.
This case of channel may occur when the samplimg fis
relatively long, such as in TEDS [2].

Performing interference cancellation algorithm [dfhile

neglecting the estimation of the length of the etgimpulse
response means that the performance of the algolidfttomes
sub-optimal even when this length of the channgbuise
response is assumed much larger than the true Tms.
problem appears essentially in the matrix inversmmtuded in
the algorithm. This matrix becomes obviously siagul

A self-adjustment of the length of the channel itspu
response can be achieved using Singular Value dsasition
SVD by taking in account only the eigenvectors coroasiing
to the dominant eigenvalues. The subspace resuficglled
commonly the signal-subspace. In [3], several nmuthto
compute eigenvalues/eigenvectors of a positive tiemn
matrix are proposed. They mostly use an iterativecgss

exploiting Cholesky decomposition. Pivoting diagonal method z

[4, 5] allows a quick convergence of the processweler for
some special cases of matrix, we can make an ajppatrn
of these eigenvalues only with the first iteration.

In the present paper, we aim to achieve this siifstment

The rest of the paper is organized as follow. Tigaad model
and interference cancellation technique is desdribhesection
Il. Section Il presents the effect of an over-disiened
channel response impulse. In section lll, the remd
Cholesky technique for self-adjustment of the channel irpul
response is detailed. Numerical results of tGholesky
compared tarSVD (Truncated SVD) techniques follow in the
next section. Conclusion summarizes the presemk o
section V.

Il.  SIGNAL MODEL AND INTERFERENCE CANCELLATION
TECHNIQUE

In this paper, we consider a two receive antennddOS
(Single input multiple output) structure with coarimel
interferer. The originality of the presented altjum for co-
channel interference cancellation is based on ¥pdogation
of the length of the channel impulse response [fe
assumption of low rank channel allows the introthrcof an
extra third weight applied to the reference sigtahe receive
antennas, see figure 1.

This algorithm is designed for an OFDM structurghwan
equidistant comb pilots to achieve the pilot-aid@dchannel
cancellation and channel equalization.
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Figure 1. Interference cancellation algorithm

Signal model received by each antenna is formulayed
Yk = hdkd + thZ + Ngk, k= 1,2 (1)
With:
Vi : received signal
d : useful signal

: interfering signal

Rak : useful channel

Rk . interfering channel
Ngy : Gaussian noise

k . index of antenna

with a classicaCholesky after some reordering in the rows andAs given in [3], the weightsy;,w, are equivalent to a
the columns of the matrix to inverse, based onagert propagation channel ang; to a double of propagation
assumptions on the channel impulse response. channel. Their impulse responses @yar, anda, as given by



(3). Their estimation is performed by minimizingetimean
square error only on the OFDM symbols where thetpiare
located (frequency dimension estimation):

miny, w,w, llell®

The solution is given as follow:
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With:
p; - i" column vector ofP
s;; © it" diagonal component of

The high complexity of performing BSVD is the reason why
we introduce this following regularization based the self-
adjustment of the length of the channel impulsepaase
performed by &holesky decomposition.

IV. SELFADJUSTMENT OF THE LENGTH OF THE CHANNEL
IMPULSE RESPONSE BASED ORHOLESKY DECOMPOSITION

In the last section, we have seen that wiers over-

»=10..010..0]" is the chosen constraint to avoid the nulidimensioned, the matrikFy;R" RF, ;) becomes singular. In

solution.

F, = F, and F,4 = F,, are the truncated Fourier basis,
1 _
—¢€
VN
Where:

L : supposed length of the channel impulse response.
N : number of pilots in an OFDM symbol.
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Finally:
Wl = Fyal
Wz = Fyaz (3)
wqg = Fgaq

These weights are then interpolated to all the OF)hbols
of the frame by a polynomial interpolation.

Ill.  PROBLEM OF AN OVERDIMENSIONED CHANNEL

IMPULSE RESPONSE

To avoid the drawback of the complexity imposed by

estimating the length of the channel impulse respbnit is
set often equal to the guard interGdlof the OFDM system in
use.

But, it is shown in [6], that the over-dimensioniafj. causes
an ill estimation of the weights,, w, and w,;. This problem
appears here as an ill-conditioned mafii¥};,R”RF,,) being
inverted.

The solution, given in [6, 7], consists in addmigmatrix to
(FfLR"RF,;) . This operation is called the Tikhonov
regularization [8, 9].

Another technique commonly usedTiSVD [10]. This method
consists in truncating the singular values fo« 4L. L is the
equivalent regularization parameter .

the following, we prove easily that the number ailln
eigenvalues of a given matrix is detected B}olesky
decomposition.

Let's denoteC, the Cholesky decomposition ofFf;, R RF,,,).
Then the elements; are obtained by:

ci = (i — 2hch cix?)

(6)
(7)

1 -
Gi = o (l‘ij - Zi(=11 Cikcjk)

with:  i+1<j<4L

r;; are the components @), R"RF,,)

P is the set of Eigen vectors corresponding to therehsing
Eigen valuesS of the matrix(F;,R"RF,,):

(FJ R RF, ;)= PSP"
ce™ = (FuR"RE, )
Then

S=PpPHCcCcHP

S4-L = O then
However, p,, 7 (4L) # 0 then

p4-LH(4'L)C4L,4L =0
Capar = 0.

Iteratively, according to equations (6) and (7 fbllowing
formula is deduced:

For 0 <k <4L,

If Sii=0 thenCii=0 y kSlS4L
To achieve the self-adjustment of the length of ¢hannel
impulse response we have to know the power charstiteof

If P and$ are respectively the Eigen vectors and the Eigepropagation channel paths. This characteristicwsllais to

values matrices ofFj;R*RF,;), then the solution without
regularization is:
A Siiilevpi @)

= aL 1 H
vH 3L, 5Pi VP

After regularization it becomes:

neglect the paths of near zero power.

The mean powe®; of the propagation channel pdtht the

sampling instants related to its propagation delay(when

taking in consideration only the path-loss andrhdtipath in

propagation channel) by the formula of the powetayle
profile. It is approximated by the following fornau[11, 12,

13].



performance of this method is monotonically imprbugith
E[0;] x 2 (9) anincrease of the threshold.
i Unlike Cholesky method, the performance @5vVD seems to
) be insensitive to the threshold changes.
With: a=2and0 <i<L.
©, aconstant power. . _ For such cases of propagation environments and
E[0,] denotes the mathematical expectatio® of interference/noise power, the optimal value of theeshold

. ) ) can be set td.50,,2 whereo,? is the noise power, see figure.
This assumption means that by analogy to the petjiay g 5ng7.

channel paths, the mathematical expectation ofrthéulus of
the componentsay;, a,;, ay; follows an  exponentially 10
decreasing curve.

Exploiting this result, we can reorder the elemexitgectora
according to the formula (9). Thereforebecomesu, after
this operation:
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Figure 2. TU50: Uncoded BER vs CIR Fortreshold = ¢,,2
Before proceeding t€holesky factorization, the columns and

rows of (Fy4R¥RF,4) are subjected to the same order as i

a,. The decomposition process is interrupted whenviiee

of ¢;; is less than a pre-determined threshold (genetaly
threshold is a bit superior to the noise power). &&aote the
value ofi by £ =i when the decomposition process is exitec
(£ <4L).

If £ < 4L, the lower triangular matri€ contains onlyC rows

of the full Cholesky decomposition. This means that some of
the latest component af, are set to zero and the length of the &
channel impulse response is self-adjusted. 7 L. ET s

Uncoded BER
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by simulating, in full-precision format, the interénce W= 7 & & 0w 1 14 & s
cancellation algorithm described above. CIR [dB]

Figure 3. HT200: Uncoded BER vs CIR Fortreshold = 6,2
The propagation channel used for the useful anerfarer
signals areTU50 Typical Urban with 50knvh velocity (2
paths) andHT200 Hilly Terrain with 200knvh E
velocity (3 paths) [14]. :

The reorderecholesky results are compared fd IR the fixed
length of the impulse responde= GI = 4 (guard interval 'k
length) and tarSVD at several exit threshold levels.

For all the considered thresholds, the performanicdoth
Cholesky and TSVD are better than thELIR whenL = GI. :
This result is expected because 4 is over dimensioned for
both channel propagatiomU50 and HT200 where for an
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When the threshold becomes high, the performantaireul CIR [dB]

by Cholesky method tends to improve. We can observe that the  Figure 4. TUS0: Uncoded BER vs CIR Fortreshold = 1.25a,2



In addition, the reordere@holesky presents low complexity
and low execution time, which makes it, more indéng
compared taSVD.
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Figure 5.HT200: Uncoded BER vs CIR Fortreshold = 1.250,,%
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Figure 6. TU50: Uncoded BER vs CIR Fortreshold = 1. 50,2
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Figure 7. HT200: Uncoded BER vs CIR Fortreshold = 1. 50,2

VI. CONCLUSION

In this paper, a regularization method for an fetence

cancellation algorithm based on the reorder€Holesky

factorization is studied. According to the obtaimedults, for

low CIR, this method seems to be more efficient tharTéwD
for an appropriate decomposition process exit tioelslevel.
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