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Abstract—  

This paper presents a self-adjustment of the length of the channel 
impulse response using a classical Cholesky Factorization. This is 
of special importance in the context of algorithms containing a 
matrix inversion and the rank of this matrix is strongly related to 
the length of the channel impulse, i.e. interferer cancellation 
algorithm [1]. 

When the length of the channel impulse response is over-
estimated, the matrix inversion is carried out with a singular 
matrix. A self-adjustment is then required to avoid an increase in 
the noise level. 

 

I. INTRODUCTION 

In most of the low rank channel (number of channel paths is 
too less than number of pilots) algorithms, the estimation of 
the true length of the channel impulse response, (the channel 
impulse response is token at the sampling instants) is 
important in order to guarantee immunity against the noise.  
This case of channel may occur when the sampling time is 
relatively long, such as in TEDS [2]. 
 
Performing interference cancellation algorithm [1], while 
neglecting the estimation of the length of the channel impulse 
response means that the performance of the algorithm becomes 
sub-optimal even when this length of the channel impulse 
response is assumed much larger than the true one. This 
problem appears essentially in the matrix inversion included in 
the algorithm. This matrix becomes obviously singular. 
 
A self-adjustment of the length of the channel impulse 
response can be achieved using Singular Value decomposition 
SVD by taking in account only the eigenvectors corresponding 
to the dominant eigenvalues. The subspace resulting is called 
commonly the signal-subspace. In [3], several methods to 
compute eigenvalues/eigenvectors of a positive hermitian 
matrix are proposed. They mostly use an iterative process 
exploiting Cholesky decomposition. Pivoting diagonal method 
[4, 5] allows a quick convergence of the process. However for 
some special cases of matrix, we can make an approximation 
of these eigenvalues only with the first iteration. 
 
In the present paper, we aim to achieve this self-adjustment 
with a classical Cholesky after some reordering in the rows and 
the columns of the matrix to inverse, based on certain 
assumptions on the channel impulse response. 

The rest of the paper is organized as follow. The signal model 
and interference cancellation technique is described in section 
II. Section III presents the effect of an over-dimensioned 
channel response impulse. In section III, the reordered 
Cholesky technique for self-adjustment of the channel impulse 
response is detailed. Numerical results of the Cholesky 
compared to TSVD (Truncated SVD) techniques follow in the 
next section.  Conclusion summarizes the present work in 
section V. 
 

 

II. SIGNAL MODEL AND INTERFERENCE CANCELLATION 

TECHNIQUE  

In this paper, we consider a two receive antennas SIMO 
(Single input multiple output) structure with co-channel 
interferer. The originality of the presented algorithm for co-
channel interference cancellation is based on the exploitation 
of the length of the channel impulse response [1]. The 
assumption of low rank channel allows the introduction of an 
extra third weight applied to the reference signal at the receive 
antennas, see figure 1.  
This algorithm is designed for an OFDM structure with an 
equidistant comb pilots to achieve the pilot-aided co-channel 
cancellation and channel equalization.  
 

 
Figure 1. Interference cancellation algorithm 

 
Signal model received by each antenna is formulated by: 

y� � h��d � h��z � n��,			k � 1,2           (1) 
With: 
  ��   : received signal 
 �  : useful signal 
 �  : interfering signal 
 ���  : useful channel 
 ���  : interfering channel 
 ���  : Gaussian noise 
 �  : index of antenna 
 
As given in [3], the weights ��, ��  are equivalent to a 
propagation channel and ��  to a double of propagation 
channel. Their impulse responses are ��, ��	and �� as given by 



(3). Their estimation is performed by minimizing the mean 
square error only on the OFDM symbols where the pilots are 
located (frequency dimension estimation): 
 min!",!#,!$ 			‖&‖� 
 
The solution is given as follow: 
 

a = ()*+, -,-)*+./"0
0,()*+, -,-)*+./"0            (2) 

With:  

1 = 	 2��		��		��3,		45� = 645 0 00 45 00 0 4�
8,		� = 9������:.	

	< = 20 … 0	1	0 … 03> is the chosen constraint to avoid the null 
solution. 
 45 = 4?	 and 		4� = 4�?	are the truncated Fourier basis, 

4? == 1√A &BC�DE?F  

Where:

 

G : supposed length of the channel impulse response. A : number of pilots in an OFDM symbol. 
Finally: 

Hw� = FKa�w� = FKa�w� = F�a�
             (3) 

 
These weights are then interpolated to all the OFDM symbols 
of the frame by a polynomial interpolation. 
 

III.  PROBLEM  OF AN OVER-DIMENSIONED CHANNEL 

IMPULSE RESPONSE    

To avoid the drawback of the complexity imposed by 
estimating the length of the channel impulse response G, it is 
set often equal to the guard interval LM of the OFDM system in 
use. 
But, it is shown in [6], that the over-dimensioning of G causes 
an ill estimation of the weights	��, ��	and	��. This problem 
appears here as an ill-conditioned matrix N45�O 1O145�P being 
inverted. 
The solution, given in [6, 7], consists in adding QM matrix to N45�O 1O145�P . This operation is called the Tikhonov 
regularization [8, 9]. 
 
Another technique commonly used is TSVD [10]. This method 
consists in truncating the singular values for ℒ < 4G.	ℒ	is the 
equivalent regularization parameter . 
 
If U  and V  are respectively the Eigen vectors and the Eigen 
values matrices of N45�O 1O145�P, then the solution without 
regularization is: 

 � = ∑ 		 "XYYZ[Y\] ^Y_`^Y
`_ ∑ 	 "XYYZ[Y\] ^Y_`^Y`            (4) 

 
After regularization it becomes: 
 

� = ∑ 		 "XYYℒY\] ^Y_`^Y
`_ ∑ 	 "XYYℒY\] ^Y_`^Y`            (5) 

With: 
 ab : cde column vector of  U 
 fbb : cde diagonal component of  V 
 
The high complexity of performing a TSVD is the reason why 
we introduce this following regularization based on the self-
adjustment of the length of the channel impulse response 
performed by a Cholesky decomposition. 
 

IV.  SELF-ADJUSTMENT OF THE LENGTH OF THE CHANNEL 

IMPULSE RESPONSE BASED ON CHOLESKY DECOMPOSITION 

In the last section, we have seen that when G  is over-
dimensioned, the matrix N45�O 1O145�P becomes singular. In 
the following, we prove easily that the number of null 
eigenvalues of a given matrix is detected by Cholesky 
decomposition.  
 
Let’s denote g, the Cholesky decomposition of N45�O 1O145�P. 

Then the elements hCb	are obtained by: 
 cjj = Nrjj − ∑ cj��jB��m� P            (6) 

 cnj = �opp Nrjn − ∑ cj�cn�jB��m� P           (7) 

 
with:  c + 1 ≤ r ≤ 4G 
 sbC are the components of N45�O 1O145�P 
 U is the set of Eigen vectors corresponding to the decreasing 
Eigen values  V of the matrix	N45�O 1O145�P: 
 N45�O 1O145�P=	UVUO 

 ggO = N45�O 1O145�P 
Then V = UOggOU 

 
If    ft? = 0  then  at?Ou4Gvht?,t? = 0 
However,  at?Ou4Gv ≠ 0  then  ht?,t? = 0. 
 
Iteratively, according to equations (6) and (7), the following 
formula is deduced: 
 
For  0 < � ≤ 4G ,  

If  sjj = 0  then  cjj = 0  ,  � ≤ c ≤ 4G           
 
To achieve the self-adjustment of the length of the channel 
impulse response we have to know the power characteristic of 
propagation channel paths. This characteristic allows us to 
neglect the paths of near zero power. 
 
The mean power Θb 	of the propagation channel path c	at the 
sampling instant	is related to its propagation delay zb 	(when 
taking in consideration only the path-loss and the multipath in 
propagation channel) by the formula of the power delay 
profile. It is approximated by the following formula [11, 12, 
13]. 



 E2Θj3 ∝ }]~p�             (9) 

 
With:  	� ≥ 2 and 0 ≤ c < G. 
  Θ�  a constant power. 
 	�2Θb3 denotes the mathematical expectation of Θb. 
 
This assumption means that by analogy to the propagation 
channel paths, the mathematical expectation of the modulus of 
the components ��b , ��b , ��b  follows an exponentially 
decreasing curve. 
Exploiting this result, we can reorder the elements of vector � 
according to the formula (9). Therefore �  becomes ��  after 
this operation: 
 

� =

��
��
��
��
� ������⋮��?���⋮��?���⋮���?��

��
��
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�
  becomes �� =
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��
��
��
��
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Before proceeding to Cholesky factorization, the columns and 
rows of NFK�� R�RFK�P are subjected to the same order as in  a�. The decomposition process is interrupted when the value 
of cjj  is less than a pre-determined threshold (generally the 
threshold is a bit superior to the noise power). We denote the 
value of i by ℒ = i when the decomposition process is exited uℒ ≤ 4Lv. 
If  ℒ < 4L, the lower triangular matrix C contains only ℒ rows 
of the full Cholesky decomposition. This means that some of 
the latest component of �� are set to zero and the length of the 
channel impulse response is self-adjusted. 
 

V. NUMERICAL RESULTS 

The following results depicted by figures 2 to 7 are obtained 
by simulating, in full-precision format, the interference 
cancellation algorithm described above. 
 
The propagation channel used for the useful and interferer 
signals are TU50 Typical Urban with 50km/h velocity (2 
paths) and HT200 Hilly Terrain with 200km/h 
velocity (3 paths) [14]. 
 
The reordered Cholesky results are compared to FLIR the fixed 
length of the impulse response G = GI = 4  (guard interval 
length) and to TSVD at several exit threshold levels. 
 
For all the considered thresholds, the performance of both 
Cholesky and TSVD are better than the FLIR when G = GI. 
This result is expected because G = 4 is over dimensioned for 
both channel propagation TU50 and HT200 where for an 
optimum performance	G  must be equal to 2   and 3  
respectively. 
 
When the threshold becomes high, the performance obtained 
by Cholesky method tends to improve. We can observe that the 

performance of this method is monotonically improved with 
an increase of the threshold. 
Unlike Cholesky method, the performance of TSVD seems to 
be insensitive to the threshold changes. 
 
For such cases of propagation environments and 
interference/noise power, the optimal value of the threshold 
can be set to 1.5σ��  where σ��  is the noise power, see figure. 
6 and 7. 

 
Figure 2. TU50: Uncoded BER vs CIR For �������� =  ¡¢ 

 

 
Figure 3. HT200: Uncoded BER vs CIR For �������� =  ¡¢ 

 

 
Figure 4. TU50: Uncoded BER vs CIR For �������� = £. ¢¤ ¡¢ 



 

 
Figure 5. HT200:  Uncoded BER vs CIR For �������� = £. ¢¤ ¡¢ 

 

 
Figure 6. TU50: Uncoded BER vs CIR For �������� = £. ¤ ¡¢ 

 

 
Figure 7. HT200: Uncoded BER vs CIR For �������� = £. ¤ ¡¢ 

 

VI.  CONCLUSION  

In this paper, a regularization method for an interference 
cancellation algorithm based on the reordered Cholesky 
factorization is studied. According to the obtained results, for 
low CIR, this method seems to be more efficient than the TSVD 
for an appropriate decomposition process exit threshold level. 

In addition, the reordered Cholesky presents low complexity 
and low execution time, which makes it, more interesting 
compared to TSVD. 
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