
Browse Your Content-Based Distributed Repository!

Camelia Constantin1, Cédric du Mouza2, Philippe Rigaux2, Virginie Thion−Goasdoué2, and
Nicolas Travers2

1LIP6, Université Paris 6, Paris, France
2CEDRIC, CNAM, Paris, France

Abstract

The demonstration is devoted to the desktop-level interactions offered by Cador, a content-based doc-
ument management system currently under development. Cador provides a rule-based language to query
and manipulate large collections of documents distributed in repositories. The language is able to define the
content of Virtual File Systems (VFS) as views over the document collections. This feature allows users to
combine their familiar interface and desktop-based softwares with the powerful search and transformation
tools provided by the underlying system.

The demonstration shows how VFS views can be created on-demand to present a desktop-based virtual
document organization and how standard desktop interactions can be captured and interpreted in terms
of document management operations: creation, updates, annotation, derivation of new content thanks to
transformation rules, sharing between users, etc. The example application is the management of a large
bibliographic database: users can, with a few clicks, organize their bibliographic references, import new
references, share them with a group of co-authors and automatically maintain a ready-to-use Bibtex file.

1 Motivation

Managing documents is a daily concern for everyone working with computers to create, update, search and
control digital content. Personal computers do provide support for document management, including rich
desktop applications to create and manipulate complex content, and the familiar abstraction of hierarchical
folders to organize document collections. However, this support remains rigid and limited: folder hierarchies are
statically defined, regardless of the documents features, and it is hardly possible to maintain several concurrent
hierarchies for a same collection; search functionalities are limited; collaborative features are not supported,
and dynamic behavior (e.g., validation workflows, or new content derivation) is impossible to express.

The goal of the Cador project is to bring to the management of rich-content document collections the benefit
of DBMS techniques. This covers efficient and expressive search (including search-by-content) capabilities,
support of distribution, concurrent/collaborative accesses, and a flexible organization based on a clear separation
between the logical and the physical models, to name a few [AMM08]. In the literature, Virtual File Systems
(VFS) as [GJR94, ORA00, WSSZ07] mainly focus on the efficiency of the interactions between the Desktop
and the database, not on the way files can be organized. Moreover, the relational approach is not dedicated
to documents which can have unlimited point of views. In particular, end-user’s familiar environment must
be preserved, including the ability to directly edit documents with an appropriate desktop application (e.g., a
text editor) and the organization of collections according to the paradigm of file systems organizations. Cador
addresses this by the ability to define VFS as views over the underlying document repositories. The approach
has been suggested in a recent past (see [BMPT09, AMM08]) but with limited query features. So as SharePoint,
GoogleDocs or LotusNotes which are static systems made with only a distant desktop without automatic views
or natural file system management. On this statement, we propose a manipulation language inspired from
recent projects such as Webdam [Web] which focuses on developing a formal model for Web data management,
enhancing its functionality, performance, and reliability. In Cador an unlimited number of views can be
defined over the same collection, enabling users to choose between several navigation patterns to access the
same document, and each user keeps its own views on the same collection.

The goal of the demonstration is to illustrate the approach benefits. We will show how a user can interact with
the VFS on a standard desktop, including searches on collections [ABG+06, SCL+06], and edition of documents
with his favorite desktop editor. Each user action over the VFS is captured by Cador and transmitted to a
rule-based system that triggers, depending on the specific application schema, content transformation, complex
access rights control, and maintenance of the virtual directory hierarchies content. The demo also shows how
some familiar desktop-based interactions can be interpreted and transposed as database operations over views.
Finally, the demo will explore some simple extensions of the standard file system behavior, allowing users to
express advanced searches whose result is displayed immediately in a virtual folder hierarchy.

1

2 System overview

Figure 1 shows the general architecture of Cador. At the lowest level, the physical storage consists of key-
value stores, possibly distributed in the case of very large collections. Each store acts as a repository for a
set of document complying to our logical document model, to be presented next. An instance of the model
(e.g., a document) typically represents some content (e.g., a PDF file) along with descriptive values (e.g.,
annotations) and relationships with other documents (composition, derivation, etc.). Repositories constitute
a logical storage unit to which access rights policies apply. Documents can be copied from one repository to
another, and a document in a repository A can refer to another document in a repository B through composition
or derivation relationship given by there document definition.

Figure 1: Architecture of Cador

A document collection is the union of the documents located in a set of repositories related to a common
schema. The model aims at capturing several distribution scenarios where documents are exchanged in a
collaborative space seen as a global collection instance. A typical scenario is for instance a setting with a central
repository R holding the “current” versions of the whole collection, with partial replications in local user’s
repositories. A document collection can be manipulated by a language, just like a relational database is accessed
and queried by SQL. In the case of document management, however, such “manipulations” go far beyond the
mere update and search features of a standard query language. Our rule-based language (briefly presented in
the next section) aims at capturing, at an abstract level and using a consistent syntax, the core operations that
can be applied to a large collection. This covers: (a) content-based functionalities, including search-by-content,
content transformation, and derivation of new contents (e.g., a PDF file from a set of LATEX sources), (b)
distribution features: copy from one repository to another, version management, support of conflict detection
and reconciliation, cross-repository references, etc.; (c) services encapsulation: the content of documents is
typically subject to specialized functions often available as services in the distributed system; the language
offers an encapsulation mechanism able to wrap this services as rules in the collection schema.

Finally, the upper level of the architecture consists of views, expressed with the rule-based language. Al-
though views in Cador capture a large class of collections filtering and restructuring, we focus in this demon-
stration on Virtual File Systems views. They put a collection (or a subset of) in the form of folders hierarchy
that can be published on the desktop of end-users which naturally hides the language declaration. The structure
of these hierarchies is content-driven. For instance a folder can be created for each tag taken from a hierarchical
taxonomy. The same collection can alternatively be organized on authorship, with one folder for each author,
possibly refined by a second level that further splits the documents of an author on a secondary criteria (say,
the publication year), etc. These (virtual) folders are populated by (virtual) files, their association being deter-
mined by the rules defining the VFS view. A part of the demonstration will illustrate the definition of views,
along with a discussion on the ability to express updates through the views (e.g., tagging a document when it
is dragged in a specific directory).

Implementation. Cador is implemented over the CouchDB distributed document system1 (where admin-
istrators manage distributed aspects) and uses the FUSE (File System in User Space) interface2 to create
repositories, publish views as folders and capture desktop interactions.

3 Formal model and language for document management

The structure of documents complies to a variant of a classical object-oriented database model such as the
one presented in [AHV95]. The manipulation language is inspired by the recent trend of specifying distributed

1http://couchdb.apache.org
2http://fuse.sourceforge.net

2

application with extensions of Datalog [AMC+09, ABGA11]. For the demonstration, we limit the presentation
of our formalism to strict necessary.

3.1 The model

We consider the countably infinite disjoints sets Pred, Prop, Rep, Func, AType, and I, V of, resp. predicate
names, property names, repository names, function names, type names, identifiers and revisions (versions). We
define a type as being an instantiation of the following abstract syntax τ = Pred |AType | [τ] | (p1 : τ, ..., pn : τ)
where p1, ..., pn are distinct properties of Prop. The expression (p1 : τ, ..., pn : τ) denotes a document type.
The expression [τ] denotes a list type. An atomic type (AType) is either one of the standard types string,
integer, . . . , or any content type produced by desktop applications such as pdf , bib, jpeg, dxf, etc.

We distinguish extensional and intensional predicates, and we assume that the nature of a predicate is
implicit from the context. Type specification only allows references to extensional predicates. In our model,
predicates, whether extensional or intensional, are typed. The schema of an extensional predicate is a triplet
(id : I, rev : V, value : τ), where τ is a document type. The schema of an intensional predicate is simply some
type τ . For simplicity, we blur the distinction between the type of an extensional predicate and the type of its
value property, when no ambiguity arises.

Example 1 A schema for the (value property of) BibEntry predicate is BibEntry(title : string, year : integer, pub :

string, authors : [Author]) where Author is a predicate defined as Author(fname : string, name : string).

Atomic type instances are defined as usual. Identifiers (i.e., instances of I) are marked with an ampersand
for clarity (&i). An instance of a document is referred to by a complex value compound of a key, a version, and
a repository. The definition of complex type instances follows standard rules. Predicates embedded in complex
types correspond to references, and are instantiated by identifiers referring to an instance of the predicate. Note
that, unlike some loose semi-structured models (e.g., XML DTDs), references in our model are typed.

We call document an instance of a predicate P . Given a collection schema {P1, · · · , Pn}, a collection is a
set of documents, each instance of some Pi, i ∈ {1, · · · , n}. Note that a same document (i.e., all versions of
document sharing a same id &i) may be replicated in several (possibly all) repositories. If R is a repository,
then P@R denotes the subset of P ’s instances that reside at R.

3.2 The language

Our language is derived from Datalog on complex values [AHV95], and includes the specification of repositories
in rules as first-class citizen. A rule is an expression of the form:

H@R0(u0) : − Q1@R1(u1), . . . , Qn@Rn(un)

with H ∈ Pred, Ri ⊆ Rep, Qi ⊆ (Pred ∪ Func), and ui is a free value (possibly containing variables) with
appropriate types and arities. Documents are instantiated in a repository as facts using rules of the form
H@R0(u0). For instance, assuming that &mt is the id of the Author M. Thelwall:

BibEntry@R(id: &Thelwall09, title: ’Introduction to Webometrics’, year: 2009,

publisher: ‘Claypool Publishers’, authors: [&mt]) :-

Queries are expressed with variables (denoted $x) that map to documents. Each variable occurring in
the head relation H(u0) must occur in the body’s relations ({Qi(ui)|1 ≤ i ≤ n}). Functions permit to refer
to services, and must satisfy the following safety constraint: for each i ∈ [0..n], if Qi@ri(ui) has the form
F@r(p∗1 : τ1, . . . , p

∗
k : τk, p

+
1 : τk+1, . . . , p

+
m : τk+m) where F ∈ Func, then each p∗i is either a constant or

a variable bounded in a positive atom that occurs before F in the body. The safety constraint allows us to
consider a function, with its input (∗) and output (+) arguments, as a predicate for the evaluation of a rule.
We also introduce the shortcut Qi(ui) (resp. H(u0)) for Qi@local(ui) (resp. H@local(u0)). The following is
an example of a query that retrieves the citation of publications featuring Alan Turing as an author (note the
Citation function encapsulating a service call at Citeseer).

ans($c):- BibEntry@R($e), $a in $e.authors, $a.fname=’Alan’,

$a.lname=’Turing’, Citation@Citeseer($e, c)

The formalism permits an administrator to manage distributed data and collections, views and content
derivation. We now discuss these aspects in association with the description of the demonstration outline.

4 Demonstration

The demonstration simulates the cooperative work of researchers working on a set of bibliographic references.
The user goal is first to browse, tag and classify bibliographic references, and second to automatically obtain
some useful derived information, for instance bibliographic files containing Bibtex references, ready to be used
in a LATEX source.

3

4.1 The distribution scenario

The demonstration setting is summarized in Figure 2. The distributed document collection gathers in the virtual
space a collection of references to scientific publications (called “bibliographic entries”, or simply bibentries).
Bibentries are distributed in three repositories: DBLP which contains all DBLP references, userA and userB. A
fourth repository represents a content derivation service, Entry2Bibtex, that transforms a bibentry to a Bibtex
character string.

Figure 2: The distributed setting

Two views are proposed to users. The Web view publishes documents from the repositories to a Web
interface that can be used to search bibentries, to tag them with controlled terms, and to upload PDF files.
These operations are supported by a Desktop application (e.g., an embedded Javascript app.) that operates
over the Web view. The second view is the Desktop view, publishing bibentries as files in one or several folder
hierarchies. It permits to navigate in the views whose content reflects tagging and uploading actions, and, in a
more advanced mode, as an alternative to the search and tagging functionalities of the Web application. In this
case, adding a new entry should be as simple as dragging a file in a window, and this should transparently trigger
the underlying machinery of classification, derivation, replication, etc. Based on this setting, the demonstration
operates in three parts, detailed below.

4.2 Publish and derive bibliographic data

Our collection schema includes, in addition to BibEntry and Author described types, the extensional predicates
Tag(name : string) which stores tags used for annotating documents, and Tagged(entry : BibEntry, tags :
[Tag], content : pdf) which stores the association between a Bibentry and the tags and optional file provided by
a local user. Moreover, the collection schema features a service Entry2Bibtex that, giving a BibEntry, generates
the associated bibtex string. The service is modelled as a predicated Entry2Bibtex(in∗ : BibEntry, outbibtex+ :
string). The Web view relies on an intentional predicate named TaggedEntry defined from the preceding pred-
icates and function as:

TaggedEntry(entry: &$e, tags : $tags, content : $pdfFile, bibtex : $b) :- BibEntry@DBLP($e),

Tagged($e.id, $tags, $pdf), Entry2Bibtex@Bibserv ($e, $b)

The initial part of the demonstration shows how this intentional content can be modified with an application
that permits to add a pdf or a tag to the entry. The Desktop view will be shown with a second computer. It
will reflect any action performed on the Web view by expanding the content of virtual folders. If, for instance,
userA annotates bibentries with tags taken from the set {vldb12, pods12, bda12}, the Desktop view of userB
shows a VFS structured as a natural hierarchy.

The folders that represent tags contain Bibtex entries, automatically generated, and pdf files if the (optional)
pdf content has been uploaded. Under userA viewpoint, these folders behave just like any standard read-file
file system object. At this moment, the demonstration does not allow updates.

4.3 Defining views

The second part of the demonstration unveils the view mechanism that supports the Desktop view. It ac-
tually relies on two built-in intensional predicates: Folder(name : string, parent : Folder) and File(name :

string, extension : string, content : blob, folder : Folder) that respectively model the standard directory and file
artifacts. The demonstration shows how a new VFS can be defined though folders in the Desktop. Here is for
instance the definition of the tags VFS shown on the figure above. First we instantiate a fact that corresponds
to the root folder (note that we assume that the view content is put in the local – unspecified – repository).

4

Folder (name: ’tags’, parent: \texttt{null}) :-
Then, for each tag, we create a second directory level with the rule:
Folder(name: $t.name, parent: $i1) :- Folder (id: $i1, name: ‘tags’, null), Tag($t)
PDF files are included in the tag folder if present:
File($e.title, ’pdf’, $e.pdf, $i1) :- Folder (id: $i1, name: $t),TaggedEntry ($e),

$t in $e.tags, $b.pdf not null
Bibtex are viewed as text files just the same:
File($b.title, ‘bib’, $e.bibtex, $i1) :- Folder (id: $i1,name: $t), TaggedEntry ($e), $t in $e.tags
Any modification or new definition of a VFS in the Desktop view is reflected by new folders and files on the

Desktop. This part of the demonstration emphasizes the dynamic aspect of the file system which now becomes
an “intelligent” part of the information space, in both its organization and content.

4.4 Performing update through views with the Desktop

The final part of the demonstration shows more advanced aspects of the Desktop view. The challenge is to
model updates of the underlying collection as standard desktop interactions. This includes:

• Search (including search by content). The view definitions above show that the content of a (virtual)
folder can be determined by the path from the root. We will show a complementary approach where a
file containing a query, in a folder, determines the folder content. By modifying the pattern, the folder’s
content evolves dynamically. Search by content can be achieved the same way, by putting in a folder a
sample document that defines the folder population as, e.g., the k nearest documents from the underlying
collection.

• Creation and update of documents. Document templates will be automatically provided in a folder from
the schemas of the collection. From such a template, new documents can be edited, and inserted in the
repository each time the Save menu item is operated.

• Annotation. Documents can be automatically tagged, based on the folder they reside in (e.g., a document
inserted in the directory turing/1936 is automatically annotated as an Alan Turing’s author, published
in 1936). The demonstration shows a drag/drop mechanism that tags documents.

Note that any modification in the collection is automatically reported in VFS views. In particular, derivation
rules are automatically triggered and reflected by the interface: creating new documents entails for instance an
insertion in the Bibtex file in the VFS views.

References

[ABG+06] Sasha Ames, Nikhil Bobb, Kevin Greenan, Owen Hofmann, Mark W. Storer, Carlos Maltzahn,
Ethan L. Miller, and Scott A. Brandt. LiFS: An Attribute-rich File System for Storage Class
Memories. In MSST, 2006.

[ABGA11] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Emilien Antoine. A Rule-Based Language
for Web Data Management. In PODS, 2011.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[AMC+09] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell C.
Sears. Dedalus: Datalog in Time and Space. Technical report, Univ. of California, Berkeley, 2009.

[AMM08] Sasha Ames, Carlos Maltzahn, and Ethan L. Miller. QUASAR: Interaction with File Systems Using
a Query and Naming Language. Technical report, Univ. of California, Santa Cruz, 2008.

[BMPT09] Scott Brandt, Carlos Maltzahn, Neoklis Polyzotis, and Wang-Chiew Tan. Fusing Data Management
Services with File Systems. In PDS, pages 42–46, 2009.

[GJR94] Narain H. Gehani, H. V. Jagadish, and William D. Roome. Odefs: A file system interface to
an object-oriented database. In VLDB, pages 249–260, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[ORA00] ORACLE. Oracle Internet File System Archive Documentation, 2000.
http://etn.oracle.com/documentation/ifs arch.html.

[SCL+06] YongJoo Song, Yongjin Choi, HyunBin Lee, Donggook Kim, and Daeyeon Park. Searchable Virtual
File System: Toward an Intelligent Ubiquitous Storage. In GPC, pages 395–404, 2006.

[Web] Webdam. European Project FP7, 2007-2013. http://webdam.inria.fr/wordpress/.

[WSSZ07] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending ACID Semantics to the File
System. ACM Transactions on Storage (TOS), 3(2):1–42, June 2007.

5

