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Chapter I

Introduction

The omnipresence of software and computing devices, notably in often critical domains such as medical
techniques, transportation, nuclear platforms, etc., brings to the fore the question of the level of confi-
dence we put in the programs which surround us. Does this program always return a result? Does it
compute what it is supposed to? Will this software behave as expected? Ensuring and moreover certify-
ing behaviour or good properties of a program or a procedure, in particular with the additional guarantee
of a mechanically checked proof, often amounts to tackling intermediate problems that are computation-
ally or technically difficult to solve for a non-expert, and to which the developer should not dedicate too
much of his proving effort. My research interests aim to contribute to the development of trustworthy
software. They address automated proof, and in particular the means to bring as much automation as
possible into the process of (mechanical) verification of program properties.

The general context of my contributions runs along a journey starting from the choice of a base for-
malism and a preferred property. It goes through the development of proof techniques for this property,
that must be well-suited to automation, programming practices, and more into solving problems one
meets in practice than pathological cases seldom encountered.

Its next step is to come closer to actual programming languages, principally by considering expres-
sive features upon the base formalism, and then studying how our automated techniques extend, for
instance, to symbols with associative and commutative behaviour, to evaluation strategies or to addi-
tional conditions, etc.

I strongly believe that, at each step along the way, results have to be implemented, as they were in
the first place designed to be used in concrete situations. Software developments are thus a fundamental
component of my work. As a consequence, a key point is the trust that one can place in automated
provers, especially with reference to their interaction with proof assistants (within which proofs are
usually developed interactively, step by step, and mechanically checked). This involves contributions on
formal models, communication between tools, techniques for formal proof, etc. At this stage, one can
start thinking about delegating proofs to automated provers in formal developments.

I shall hereafter describe this journey, with a summary of my contributions. I shall eventually
mention additional inflowing experiences that offer interesting perspectives on different programming
paradigms.

Formalism, Property

The course of my research starts in the context of first-order rewriting systems, when I joined the DÉ-
MONS team at LRI, at that time headed by Jouannaud, and already very active on this topic.

First-order rewriting constitutes a readable and clear way of presenting computations and equational
reasoning. For example, a function @ that computes the concatenation of two lists may be defined with
the two rules nil @ l→ l and (e :: l1) @ l2 → e :: (l1 @ l2). Basically, rewriting consists of directed equa-
tions possibly making equational reasoning ‘one way’: associativity of @ can for instance be expressed
with the single rule (l1 @ l2) @ l3 → l1 @(l2 @ l3). Widely used for proof, specification, programming,
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modelling languages (especially declarative style paradigms), etc., that is, almost everywhere equations
may be involved, rewriting enjoys also the remarkable property of being easily implementable: one can
find efficient rewriting engines like MAUDE developed at SRI [27], ÉLAN from LORIA [19], or CiME
from LRI [36].

In this context, I have focused since 1997 on the property of termination, that is the fundamental
property of a program that eventually returns a result on any input. Termination is closely related to the
existence of any calculus defined by a program: no termination means no result in finite time, at least
not always. It notably plays a fundamental role at several levels in programs, proofs and definitions. For
instance, termination of a relation →, i.e. the well-foundedness of its inverse, is crucial for induction
proofs with reference to ←. Some proof assistants require that the functions one defines are total, i.e.
that their computations always terminate. It also often acts as a preliminary for proofs of other properties:
for example the confluence of a relation defined by a finite rewriting system becomes decidable as soon
as the relation is proven to be terminating. Showing termination is, in particular, compulsory when one
wants to prove total correctness of programs.

The halting problem, well-known to be undecidable, boils down to termination of first-order rewrit-
ing, even for rewriting systems consisting of only one rule [43]. Thus, most efforts focus on defining
techniques devoted to prove termination of as many programs as possible, but which cannot be complete.
In the following chapters, I shall emphasise that proving termination consists in translating termination
problems into other termination problems until one reaches an empty or trivial problem. One can then
define a termination criterion as a translation that is (of course) sound, and, moreover, complete. Writing
criteria as inference rules, a termination proof may be naturally represented as a proof tree. I shall give a
brief overview of termination techniques in Section II.1, from the historical Manna-Ness criterion [120]
to the breakthrough for automated proof introduced by the dependency pair approach [9] and its various
refinements (marks, graphs, etc.). From our inference rules point of view, a termination proof (tree) can
be seen as follows: termination of a system R will be equivalent, by application of rule DP (for de-
pendency pairs), to the termination of its dependency chain relation�DP(R),R. This new problem will
in turn be equivalent to terminations of all relations �Di,R corresponding to, say, strongly connected
component in a dependency graph (rule GRAPH), and so on, until all the obtained branches in this tree
will be eventually closed, either by application of an axiom, or by reaching a termination problem for a
relation that is empty.

Proof Techniques

A technique well-suited to automation obviously enjoys effective means to close those proof trees. The
use of orderings is one of them. The Manna-Ness criterion requires a well-founded reduction ordering in
which the system is embedded; dependency pair approaches, noting that non-termination implies infinite
chains of recursive calls, may require weak orderings pairs to prove finiteness of the so-called depen-
dency chains, if any. Section II.2.1 will describe orderings based on polynomial interpretations, and in
particular contributions that Contejean, Marché, Tomás and I brought to their automation [38]: efficient
techniques regarding suitability checking, as well as regarding discovery of suitable polynomials with
full automation.

An important step is to define proof techniques that are well-suited to program verification. Programs
are usually devised over libraries and more generally in an incremental and modular (hierarchical) fash-
ion; a natural question is whether one can obtain termination techniques that match this good practice.

This concern was at the heart of my PhD [158], supervised by Marché, and I proposed some no-
tions to represent systems, as well as some results on modularity and techniques to prove termination
hierarchically [159, 160] that I shall present in Section II.3. In sharp contrast to previous attempts, the
constraints I put on unions of systems are very weak, and a first goal is reached in the sense that hierar-
chical unions are allowed. Instead, I focus on a stronger notion of termination that behaves nicely when



systems contain non-deterministic projections: CE-termination, while being far less restrictive than the
other compatible notion of simple termination.

The theoretical results obtained can be made effective with the use of orderings provided that they do
not increase for projections, which is the case for most classical orderings and their usual combinations.
The approach I propose, in particular, allows one to discard some irrelevant rules in the process of
discovering a termination proof, hence simplifying the problem to solve considerably.

Expressive features

Aiming to verify properties of programs, it is worth noticing that programming languages enjoy expres-
sive features such as equational theories, evaluation strategies, or membership conditions. Extensions of
rewriting with some of these features are discussed in Section II.4.

Associative and commutative (AC) operations are often met in programming languages, addition
of integers for instance is one of the most common. In the context of term rewriting, the usual way to
handle AC-symbols is to work on AC-equivalence classes: simply adding x + y → y + x or working
modulo C with an associativity rule would actually result in losing termination immediately. In fact,
equational theories like AC make termination proofs considerably more difficult as, for example, AC-
equivalent terms cannot be strictly ordered: one asks suitable orderings to be compatible with the theory.
Compatibility conditions for polynomial interpretations may be easily checked [14], but defining an AC-
compatible version of RPO-like orderings [47] is an arduous task, widely studied [12, 14, 44, 94, 95,
145], that leads to very restrictive conditions (with transformations systems) and/or intricate definitions
of simplification orderings.

Dependency pairs had recently been introduced when Marché and I decided to explore the new
possibilities offered by this approach, in particular for AC-rewriting on flat terms. In a first article in
1998 we defined an extension to the AC-case of dependency pairs that do not involve marks [122]. Some
versions of the dependency pair approach may indeed use a set of symbols that is extended with marks,
and they can get more powerful this way. However, marks do not mix easily with equational theories that
can permute symbols. We proposed a definition for marked dependency pairs in 2002 in collaboration
with Kusakari [104], which involves a system that, roughly speaking, ‘unflattens’ marked terms.

The hierarchy of modules, however, is unchanged by AC-operations, and studying the extension
of my results on modularity to AC-rewriting gave Marché and me the opportunity to define in [123] a
notion of abstract AC-dependency pairs that can be instantiated by the concrete (marked or unmarked)
definitions existing at that time [70, 104, 106, 122].

Remarkably, the approach I use to establish the results of my thesis transfers smoothly to AC-
rewriting; in addition to techniques for hierarchical termination of AC-rewriting, [123] proposes modu-
larity results for CE-termination modulo AC.

Another common practice is to define an evaluation strategy. A context-sensitive (CS) strategy con-
sists in forbidding any evaluation/reduction step for some arguments of functions. Such syntactic re-
placement restrictions are found in the design of several programming languages, such as MAUDE [27],
CAFEOBJ [67], etc. CS-strategies are related to lazy evaluation, and can provide the ability to deal with
infinite objects. A classical example is to forbid evaluation in the two branches of an if, to force evalua-
tion of the condition, as usual. Termination of CS-rewriting has been widely studied; Alarcón, Gutiérrez,
and Lucas proposed in 2006 a first definition of dependency pairs that is well-suited to context-sensitive
systems [3, 4].

Section II.4.2 summarises my work with Gutiérrez and Lucas on termination techniques for CS-
rewriting, based on recent modular approaches. We proposed in [82] a notion of usable rules [73, 83]
for CS-rewriting. A straightforward (and cheaper) adaptation of usable rules for CS-dependency pairs is
shown to be unsound; we nonetheless characterise a class of CS-systems for which this direct efficient
version can be applied safely. These techniques are implemented in MU-TERM [2].
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MAUDE programs enjoy even more features. From the OBJ family, MAUDE is based on member-
ship equational logic (MEL). In short, specifications and programs in MAUDE are written using context-
sensitive rules, with conditions, and involving membership constraints. I took the opportunity offered
by a bilateral contract (2003–2005) between University of Illinois at Urbana-Champaign (UIUC) and
CNRS to collaborate on termination proof techniques for membership equational logic programs. Note
that in this context, standard termination notions are not satisfactory: a MAUDE interpretor may ‘loop’
on the condition of a rule that otherwise would terminate. For this reason, we consider the notion of
operational termination [119]. The idea, described in Section II.4.3, is to use in back-end the power
of available automated termination provers by translating any MEL program into a suitable input for
such provers, which seldom support such a combination of expressive features. To this end, Durán,
Lucas, Marché, Meseguer, and I defined two transformations, so as to remove successively member-
ship constraints and conditions from the original program [54, 55]. The first transformation eliminates
sorts and memberships, resulting in an unsorted context-sensitive and conditional rewrite theory. The
second transformation, extending previous works by Ohlebusch [139], and Marchiori [126], eliminates
conditions for context-sensitive systems. This last translation step is shown to be incomplete.

We prove that both transformations are sound, that is termination of the resulting rewriting sys-
tem implies operational termination of the original program. These techniques are implemented in
MTT, a termination tool for MAUDE programs, which uses external provers like CiME, APROVE [71],
MU-TERM, etc.

From theory to practice

Putting theory into practice, all the aforementioned techniques have been implemented in different tools
(though I am one of the main programmers of CiME, I did not contribute personally to the implementa-
tion of MTT or MU-TERM).

Polynomial ordering techniques, hierarchical termination methods and their extensions to
AC-rewriting were in particular integrated into the termination engine of CiME 2, of
which I am a main author.

Designed for automation, our techniques proved to be very efficient. As a matter of fact, all termina-
tion proofs throughout this thesis have been obtained using our tools. The hierarchical approach allowed
CiME to be the first tool able to prove termination for systems consisting of hundreds of rules, with
proof discovery times of a few seconds (systems coming from µ-CRL specifications of communicating
processes). We obtained in particular, with full automation, the first known proof of termination for
some AC-systems of the literature, the termination of which was conjectured. These achievements con-
tributed to the growth of activity in this area, and motivated the creation of a competition for automated
termination provers [124].

Mechanical Guarantees

All the tools mentioned above are large pieces of software, CiME 2 gathers about 60 000 lines of Objec-
tive Caml code, and they are prone to bugs themselves. The recent history of the termination competition
showed that incorrect ‘proofs’ could be returned. It was usually because of a small typing error in the
code but still the question is raised: to which extend can we trust automated provers?

Being confident in an automated prover is one first concern. Using a delegated prover to add au-
tomation to a proof assistant, for example to get rid of technically difficult proof steps in a development,
is another one. Skeptical proof assistants [151, 135] cannot indeed take for granted the answers of ex-
ternal procedures: they need a formal proof of the handled properties. Hence, in addition to developing
powerful techniques to prove termination of more and more relations with full automation, there is an
important need for formal (mechanical) certificates for these relations’ termination proofs, in order to
enable their definition and their use in skeptical assistants.



In 2005 the French National Agency for Scientific Research (ANR) launched a call for proposals and
gave me the opportunity to coordinate a project aimed to add automation to proof assistants: A3PAT,
of which I was principal investigator. The spectrum of the project1 was broad enough to cover several
aspects of this topic, not limited to termination; its funds allowed three post-doc students to be recruited,
amongst whom two were under my supervision.

Chapter III is dedicated to the approach developed in this project [32], and some of its results. The
A3PAT project is based on satellite tools: it aims to bridge the gap between proof assistants yielding
formal guarantees of reliability, and highly automated tools one has to trust.

The general architecture of the approach is described in Section III.2. It involves an evolution of
CiME, that produces traces for the proofs it discovers (termination of course [32, 31] but also unifica-
tion/disunification [33]). This new version features a trace compiler, targeted to the COQ proof assistant.
It generates COQ scripts that refer to a formal library, COCCINELLE, developed in the project, and
which contains definitions, structures and theorems about rewriting and termination. The COQ proof
assistant may then check the proofs. Note that our approach mixes shallow and deep embeddings that is,
respectively, direct use of the proof assistant’s own structure of terms (thus using built-in proof mech-
anisms, induction, inversion, etc.), and complete encoding of term algebras within the proof assistant
(thus applying our own efficient/generic techniques).

A challenging topic here is the definition of an adequate efficient trace language. It must be kept
of low verbosity while being expressive enough for proofs of different properties, and if possible not
related to a single prover, so as to allow certification of other provers’ results. A brief description of our
choices is in Section III.2.4.

Proving termination can amount to dealing with properties on data structures that may require heavy
computations and particularly involved algorithmics. This is in particular the case for proofs on graphs.
Efficient ways of proving relevant properties on these structures have to be devised so as to overcome
the potential difficulties. To this end, we proposed in 2008 a new formalisation for graphs [40], that
allows certification of (termination) proofs based on a graph analysis, and that can manage efficiently
graphs containing thousands of arcs. This approach is discussed in Section III.3.

Finally, an interesting benefit of abstract formalisations is that keeping them as general as possible
may lead to relaxing premises of theorems. An illustration is an extension of the subterm criterion [31]
for termination of rewriting systems, which we proposed recently while giving its first full formalisation.
This is the version of the criterion that is described Section II.1.4. Another example is a new notion of
matrix interpretations [42] developed within the project.

Proof of Imperative Programs

A post-doc position at INRIA gave me the opportunity to experience a different point of view on program
verification, in the context of a widespread mainstream imperative language. I shall sketch in Conclusion
our experience with the KRAKATOA tool [121] and its initial development.

KRAKATOA is a tool that translates a Java/Javacard program (hence imperative) annotated in JML
into a program with the same semantics but in the language of the WHY tool, a verification conditions
(VC) generator. The VC produced, once proved, allow one to guaranty the correctness of the origi-
nal program with reference to its specification (annotations). We use notably a memory model à la
Burstall-Bornat. Amongst the first tools dedicated to formal verification of programs written in widely
used languages, KRAKATOA has been successfully applied to the study of Javacard applets provided by
industrial partners (Gemalto, etc.). The original approach served as a basis for other verification tools,
and was adapted to the analysis of programs written in C (Caduceus).

1http://a3pat.ensiie.fr
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This dissertation

This dissertation describes and illustrates my contributions on automated and mechanical proof. Some
technical details and proofs of theorems are omitted. Most of the presented definitions and theorems
appeared with their proofs in the relevant articles, to which I shall refer, as well as in the course material
for the lecture on Automated Reasoning I have been giving at MPRI2.

2http://mpri.master.univ-paris7.fr/



Chapter II

Automated Proofs of Termination

II.1 Termination of Rewriting, Overview

II.1.1 Preliminaries and Notations

I suppose that the reader is familiar with basic notions of rewriting and refer to surveys [52, 11, 139] for
technical details. I shall however give some notations.

A signature F is a set of symbols (with arities). Let X be a set of variables; T (F , X) denotes the
set of finite terms on F and X . The root position in a term is denoted by Λ, the symbol at root position
in a term t is denoted by Λ(t), t|p denotes the subterm of t at position p. A context C[]p is a term with a
special constant ‘hole’ at position p, C[s]p denotes the replacement of the hole at p with a term s.

A substitution is a mapping σ from variables to terms. We use postfix notation for substitution
applications. A binary relation R is said to be stable if sσR tσ for every substitution σ whenever sR t;
it is said to be monotonic (denoted by M(R)) if C[s] R C[t] for every context C whenever sR t. The
accessibility predicate over a relation and a term is inductively defined as follows: an element t is said
to be accessible for R if all its predecessors (that is all s such that sR t) are accessible. The relation
R is said to be well-founded (denoted by WF(R)) if all elements in its support are accessible, that is if
there is no infinite sequence x1 R−1 x2 R−1 · · ·

A term rewriting system (TRS for short) over a signature F and a set of variables X is a set R of
rewrite rules written l→ r. A term rewriting systemR defines a rewrite relation→R the following way:
s→R t (which constitutes a rewriting step) if there is a position p such that s|p = lσ and t = s[rσ]p for
a rule l → r ∈ R and a substitution σ. We say then that s reduces to t at position p with l → r or, if
the rule of R is not relevant, with R, respectively denoted by s

p−−→
l→r

t and s
p−→
R
t. That is: the rewriting

relation is the monotonic and stable closure of R.
Following Dershowitz, I shall say that a term is mortal (for a given relation) if it cannot be source of

infinite sequences of rewriting steps, otherwise it is said to be immortal. A rewriting relation→ defined
by a system R is said to be terminating (or that it terminates) if all terms are mortal, (written SN(→))1,
that is when WF(←). I shall override this terminology for R, that is denote by SN(R) and state that R
terminates, when SN(→R).

The notations SN(→) and WF(←) are both kept to emphasise that inductive and computational
aspects of a relation are addressed here, in particular regarding their use in a proof assistant (Sec. III.2.1).

II.1.2 Generalities

Termination of rewriting is an undecidable property as it is closely related to the Turing machine halting
problem. This is shown firstly by Huet & Lankford in 1978 [90]; they give a simple translation from
configurations of a Turing machine into words, and they model the behaviour of the machine by an
unbounded number of rewrite rules. In 1987, this number is kept fixed (and small) by Dershowitz [48].

1SN stands for Strongly Normalising.
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Finally, Dauchet proposes in 1989 a correspondence between the behaviour of a Turing machine and a
term rewriting system, left linear, non-overlapping, and consisting of only one rule [43].

The problem being undecidable even for systems with only one rule, the techniques developed and
implemented to show termination are sound, of course, but they will always be incomplete. The user is
eventually given a termination argument, a non-termination argument, or a “do not know” statement.

Intuitively, from the automation point of view, a proof of termination is thus always difficult to
discover. It might be easy to see that f(f(x)) → f(x) terminates; it requires a little more work to
show termination of f(a, b, x)→ f(x, x, x). In practice, it is not uncommon to face systems consisting
of hundreds (if not thousands [56]) of rules, possibly involving equational theories. Moreover, size is
not all that matters: termination of a small and simple system like {a(a(x)) → b(c(x)), b(b(x)) →
a(c(x)), c(c(x))→ a(b(x))} has been shown only recently [86, 87] with original ordering techniques.
Finally, termination of the Syracuse sequence2, also known as Collatz’s conjecture, is still a challeng-
ing. . . conjecture.

II.1.3 Problem Transformations, Criteria, Orderings

A termination proof generally consists in transforming termination problems into (sets of) problems that
are equivalent with reference to termination but easier to solve, eventually reaching empty problems
that close the proof. Sound and complete transformations are called criteria. Being transformations of
problems, it has been noticed that criteria can be expressed in a uniform setting, as we noted in [32],
and as Thiemann et al. independently pictured as processors [153, 73]. I shall follow the idea we
introduced [32, 40], and model a termination proof by an inference tree where inference rules are criteria
possibly guarded by conditions (such as the existence of an adequate well-founded ordering, inclusion
properties over relations, etc.). The general form of a rule is the following:

RULE NAME(PARAM)
p1 . . . pn

p
CONDITIONS

where p, p1 . . . pn are properties on relations, and PARAM is an (optional) parameter of the rule.

A First Criterion

The fundamental operation is actually to mimic steps in the initial relation by steps in another relation
that is known to be terminating.

Obviously, if the inverse rewriting relation is included into a well-founded ordering, the relation ter-
minates. However, checking this embedding directly may require to test an infinite number of pairs, and
is not convenient at all in practice and for automation. One may think of an easier test by checking that
the rules of the system only (and not the whole relation) is embedded into the inverse of a well-founded
ordering that is stable by the very same operations extending the system to the relation: monotonicity
and instantiation.

The historical Manna and Ness criterion [120] consists in discovering a well-founded, monotonic
and stable ordering, for which each rule of the system decreases strictly, thus embedding the relation in
the well-founded ordering and ensuring its termination. In terms of inference rules, the criterion is:

MN(>)
SN(→S)

WF(<) ∧M(<) ∧ (S ⊆>)

Intuitively, the ordering strictly controls every single step of the relation3.
2A Syracuse sequence for an integer un > 1 is defined as un+1 = un

2
if un is even, and un+1 = 3un + 1 if un is odd. It

is conjectured that sequences are finite for all initial u0.
3The orderings that are suitable to prove termination of a system give in particular information on maximal derivation

length of the relation, see Section II.2.1.



p p

6= p ?

R

q
R

· · ·q6= q ?

R
R

6= Λ ?
· · ·

6= Λ ?

DPR

Figure II.1. Chain of recursive calls (at positions p then q) and corresponding dependency chain DPR.

II.1.4 Dependency Pairs, Dependency Graphs

The aforementioned method is in fact too restrictive in the sense that it requires monotonicity over
suitable orderings. A breakthrough occurs in 1997 when Arts & Giesl introduce a powerful technique,
based on a fine analysis of immortal terms: the dependency pairs (DP) approach [8, 9]. In contrast
to criterion MN, the dependency pair approach focuses on the possible inner recursive calls of rules
(the so-called dependency pairs). This leads in particular to a weakening of the constraints on suitable
orderings.

Dependency Pairs

Let us partition the signature into two subsets: the set of defined symbols, occurring at Λ in left-hand
sides of rules, which intuitively represent functions, and the set of constructors, which intuitively repre-
sent data. A recursive call involves a function, that is a defined symbol.

Definition 1 (Dependency pairs [9]) The set of unmarked dependency pairs of a rewriting system R,
denoted by DP(R), is defined as DP(R) = {〈u, v〉 |u→ t ∈ R and t|p = v with Λ(v) defined }.

Distinguishing root symbols of dependency pairs (by means of marks, or ‘tuple-symbols’) empha-
sises termination-relevant steps and enhances this technique significantly. Let us denote by F̂ a copy
of F where every symbol is now labelled with a mark. A marked dependency pair is simply4 a pair
〈u, v〉 of terms in T (F ∪ F̂ , X) defined as in Definition 1 where symbols at Λ in both members have
been replaced with their marked copy. It will be clear from the context if DP(R) is the set of marked or
unmarked pairs, as considering marks is not a dramatic change in the proof of relevant theorems, with
the noticeable exception of rewriting modulo equational theories (see Section II.4.1).

Given a systemR and a setD of pairs, we note s�D,Rt if and only if s
6=Λ ?−−−→
R

uσ
Λ−−−−−→

〈u,v〉∈D
vσ ≡ t. A

dependency chain (of D over R) is a sequence in�D,R. It is said to be minimal if all proper subterms
of every terms in this sequence are mortal. The link between recursive calls and dependency chains is
illustrated on Figure II.1.

For both marked and unmarked case, the dependency pair criterion [9] can be rephrased as follows:

Theorem 1 (Arts & Giesl [9]) For a rewriting system R, SN(�DP(R),R) is equivalent to SN(→R).

4It is simple in the case of a free algebra, but we will see that it gets much more intricate when equational theories are
involved.
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We obtain the rule DP DP
SN(�DP (S),S)

SN(→S)

It is left to prove that dependency chains are terminating. The absence of infinite (minimal) dependency
chains may be proven directly with the use of relevant orderings, see Theorem 5. Amongst the gains: the
control over rules is not necessarily strict, the control over DP steps has to be strict but is not required to
be monotonic.

Example 1 Consider this system R from [8], modelling division for Peano integers:

x− 0 → x s(x)− s(y) → x− y
0÷ s(y) → 0 s(x)÷ s(y) → s((x− y)÷ s(y))

The set of defined symbols contains two elements: {−,÷}, the set DP(R) has three dependency pairs:

(1) 〈s(x)−̂s(y), x−̂y〉 (2) 〈s(x)÷̂s(y), (x− y)÷̂s(y)〉 (3) 〈s(x)÷̂s(y), x−̂y〉

To prove termination of R, it is sufficient to prove that�DP(R),R terminates.

Remark 1 It is sufficient to prove that only minimal chains terminate. Dershowitz remarked [51] that
some pairs were irrelevant in that case: in particular, pairs 〈l̂, r̂〉 coming from a rule l → C[r] where r
is a proper subterm of l. For example, the pair 〈f̂(f(x)), f̂(x)〉 from a rule f(f(x))→ f(g(f(x))) can
be discarded. Dershowitz’s improvement is now part of the classical definition of dependency pairs, see
for instance [83].

Very well-suited for automation, this approach has been made even more powerful by use of multiple
refinements: for example it can benefit greatly from the analysis of a dependency graph.

Dependency Graphs

We restrict now to systems that consist of a finite number of rules. As noticed in [9], not all DP can
follow another in a dependency chain: one may consider the graph of possible sequences of DP. This
graph is finite as long as we restrict to finite systems, and each dependency chain corresponds to a path
in this graph.

Definition 2 (Dependency graph [9]) Let R be a rewriting system. The dependency graph of a set of
dependency pairsD over a systemR, denoted by G(D,R), is defined as (D,A) where 〈s, t〉 7→ 〈s′, t′〉 ∈
A if and only if there exists a substitution σ such that tσ

6=Λ ?−−−→
R

s′σ.

Therefore, if there is no infinite path corresponding to a dependency chain in the graph, then there is no
infinite dependency chain. For finite systems, infinite dependency chains can only correspond to cycles
of the finite graph. The fundamental theorem of graph refinement is as follows:

Theorem 2 (Giesl et al. [69]) A system R terminates if and only if for each circuit C in the dependency
graph G(DP(R), R), the corresponding relation�C,R is terminating

Note that it is not sufficient to consider elementary circuits only, see [10] for a counter-example.

Example 2 From the dependency pairs of Example 1 one can build the following dependency graph:

1 3 2



We may note that the dependency pair (3) is not on any circuit of the dependency graph. Pairs (1) and
(2) belong to one circuit each. By Theorem 2, termination of R is equivalent to termination of both
relations�(1),R and�(2),R. Pair (3) does not have to be considered.

The relevant criterion is the following GRAPH rule:

GRAPH
SN(�D1,S) . . . SN(�Dn,S)

SN(�D,S)
Decomp(D, {D1, . . . , Dn})

It states that one can consider any decomposition {D1, . . . , Dn} ⊆ P(D) of the set of pairs D that
is compatible with the topology of strongly connected components, and then be left with termination
problems for the corresponding �Di,S , each of which being potentially simpler than the original one.
Amongst the several notions of a compatible decomposition, the one that is most used is the decomposi-
tion into SCC. Sets Di without any circuit lead to trivially terminating�Di,R and, thus, can be omitted.

This theorem is not applied as is in the practice of discovering termination proofs. A decomposition
into strongly connected components (SCC) (or any other compatible decomposition) allows to search
for some uniform arguments for some classes of circuits (see Hirokawa and Middeldorp [83]), thus
preventing any exponential blow-up. This is in particular how we will certify graph criteria (see [40],
and Section III.3). The efficient technique of [83] is to prove at once that all circuits in an SCC involving
a selected pair correspond to terminating rewritings, to recompute a compatible decomposition on what
remains when the selected pair is removed, and to prove recursively that relevant rewritings terminate
(that is to apply Criterion GRAPH on the remaining set of pairs). This can be represented by a rule that
has to be instantiated by relevant pairs-pruning arguments :

RMVERTEX(arg)
SN(�D\〈u,v〉,S)

SN(�D,S)
guards for arg (removing 〈u, v〉)

A method for proving termination is thus to apply recursively GRAPH in conjunction with RMVERTEX.
Of course the argument of rule RMVERTEX may be sufficient to remove several pairs at once, and I shall
denote it by RMVERTEX*.

Remark 2 It is worth noticing that the analysis of graph allows the use of different techniques and
orderings for each subset of dependency pairs [69].

The dependency graph G(D,R) is not computable in general since knowing if a σ such that sσ → tσ
exists is not decidable. As a consequence, one uses an approximated graph, that is a graph (D,A′ ⊇ A)
that contains it.

Arts & Giesl propose in 1997 a simple and quite efficient technique based on connectability to build
an approximated graph [9]. The technique and the resulting graph are usually referred to as EDG. The
principle is the following: reductions between DP steps, that is rewriting steps that (potentially) occur
in proper subterms, must leave the constructor cap untouched. One may however consider that subterms
with a defined symbol at root can be rewritten into anything (a good deal of the approximation is here).

Definition 3 (EDG [9]) Let R be a rewriting system over T (F , X). For all t ∈ T (F , X),

• CAP(t) is the term t where all proper subterms with a defined symbol at Λ are replaced with fresh
variables,

• REN(t) is the term t where each occurrence of each variable is replaced with a fresh one5.

5A term may indeed be rewritten into two different reducts. Thus, several instances of a term must have their reducts
abstracted with different variables.
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Term t is said to be connectable to term t′ if REN(CAP(t)) and t′ unify.

Arts & Giesl prove that connectability defines a sound approximation of the dependency graph:

Lemma 3 Let R be a rewriting system, if there is a σ such that tσ
6=Λ ∗−−−→
R

t′σ, then t is connectable to t′.

This approximation is quite powerful in practice, and preserves good properties such as CE termina-
tion (see Section II.3).

There are many other approximations, of various complexity, and not always comparable. For exam-
ple, simply taking into account the fact that proper subterms do not rewrite to anything but to instances
of the right-hand sides of rules, one obtains EDG* approximation [130]. Some other techniques make
use of tree automata [129], etc.

Termination of�D,R: Subterm

As usual, termination of dependency chains can be proven directly by embedding the original relation
into another one that is proven to be terminating. This can be done by construction, for instance with
the subterm criterion [83] for which we proposed in 2010 an extension [31], as well as giving its first
certification6 (see Chapter III), as part of a work with Contejean, Courtieu, Forest, Paskevich and Pons
from the A3PAT team.

The classical idea behind the subterm criterion is that some dependency chains cannot be minimal.
Similarly to Hirokawa and Middeldorp [83], we define a projection over terms, based on a mapping p
from function symbols to natural numbers. The projection is also denoted by p. In contrast to [83], we
do not require that p(f) should be less than the arity of f . Our projection is defined as follows:

p(x) = x

p(f(t1, . . . , tn)) =

{
tp(f) if 1 ≤ p(f) ≤ n
f(t1, . . . , tn) otherwise

Theorem 4 (Contejean et al. [31]) Let R be a TRS, and D = D′ ∪ 〈u0, v0〉 be a subset of DP(R). If
there exists a projection based on p such that

• p(v0) is a proper subterm of v0,

• p(u0)(→R ∪B)+p(v0),

• for every pair 〈u, v〉 of D′, p(u)(→R ∪B)?p(v),

then,�D,R minimal wrt R is terminating if�D′,R minimal wrt R is terminating.

One obtains then the following instance:

RMVERTEX(p)
SN(�D\〈u0,v0〉,S)

SN(�D,S)

p(v0)C v0
p(u0)(→R ∪B)+p(v0)
p(u)(→R ∪B)?p(v), ∀〈u, v〉 ∈ D

Our statement is more general than the one given in [83], since we consider a less restrictive pro-
jection and the relation →R ∪ B instead of B, but our proof follows the same line. We remark that if
s �〈u,v〉,R t for a pair 〈u, v〉 of D′ which is strongly connected to 〈u0, v0〉, then p(s)(→R ∪B)?p(t),
and that if s �〈u0,v0〉,R t, then p(s)(→R ∪B)+p(t). Thus we mimic the original sequence of steps by
another sequence in a terminating relation.

6 The formalisation we proposed is for the COQ proof assistant. Another formalisation by the IsaFoR team was obtained
independently for ISABELLE/HOL, and for the plain historical criterion only.



Quite simple to automate and computationally frugal, the historical subterm criterion of [83] is
already impressive by its efficiency in practice. Regarding our generalised subterm criterion, it may
apply on systems where some redundant rules are added in order to speed up computations. For instance,
it proves useful on the following system where the original subterm criterion fails.

Example 3 This system is a slight modification of the one in [83] that computes the list of all integers
between two given bounds, in increasing order. The last rules does not change the underlying equational
theory of the rest of the TRS; they are, in fact, expressible as a composition of two other rules. However,
such ‘derived’ rules naturally appear in the practice of program optimisation, like deforestation.

x+ 0 → x
x+ s(y) → s(x+ y)
incrlist(nil) → nil
incrlist(x :: l) → s(x) :: (incrlist(l))
btw(0, 0) → 0 :: nil
btw(0, s(y)) → 0 :: (btw(s(0), s(y)))
btw(s(x), 0) → nil
btw(s(x), s(y)) → incrlist(btw(x, y))
btw(x+ s(z), y + s(z′)) → incrlist(btw((x+ z), (y + z′)))
btw(0, x+ s(y)) → 0 :: btw(s(0), s(x+ y))

This system admits 11 dependency pairs, building the following estimated graph:
1 : 〈btw(0, x+ s(y)), x+ y〉
2 : 〈btw(0, x+ s(y))), btw(s(0), s(x+ y))〉
3 : 〈btw(x+ s(z), y + s(z′)), y + z′〉
4 : 〈btw(x+ s(z), y + s(z′)), x+ z〉
5 : 〈btw(x+ s(z), y + s(z′)), btw((x+ z), (y + z′))〉
6 : 〈btw(x+ s(z), y + s(z′)), incrlist(btw((x+ z), (y + z′)))〉
7 : 〈btw(s(x), s(y)), btw(x, y)〉
8 : 〈btw(s(x), s(y)), incrlist(btw(x, y))〉
9 : 〈btw(0, s(y)), btw(s(0), s(y))〉
10 : 〈incrlist(x :: l), incrlist(l)〉
11 : 〈x+ s(y), x+ y〉

1
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The pair 5: 〈btw(x+ s(z), y + s(z′)), btw((x+ z), (y + z′))〉 can be discarded if one uses a pro-
jection of btw on its second argument, since one can rewrite y+s(z′) into s(y+ z′) which admits y+ z′

as a proper subterm.
The pair 2: 〈btw(0, x+ s(y)), btw(s(0), s(x+ y))〉 can be discarded with the same projection since

one has the reduction x+ s(y)−→
R
s(x+ y) = s(x+ y) (note that there is no use of B to conclude on

this last pruning).
Applications of Theorem 4 alone are actually sufficient for a termination proof of this example.

Termination of�D,R: Ordering Pairs

Termination can also be proven with the help of ordering pairs. As relation �D,R does not preserve
context, strict monotonicity is not required for an ordering that contains the (inverse) relation. It is
sufficient to control that (non monotonic) DP steps decrease and that (monotonic) rewriting steps do not
increase, as illustrated on Figure II.2. Ordering pairs are defined to this end.

A very general definition of ordering pairs may be found in [105]. Due to our definition of�D,R,
we use a slightly restricted notion.
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Figure II.2. Control of the dependency chain using an ordering pair (�, <).

Definition 4 (Ordering pair) An ordering pair is a pair (�, <) of relations over T (F , X), stable7, and
such that:

• � is reflexive, < is irreflexive, and

• < · � ⊆ <.

An ordering pair (�, <) is well-founded if < is well-founded; overriding the notation this is denoted
by WF(�, <). It is said to be weakly monotonic if � is monotonic, denoted by WM(�, <), and strictly
monotonic if < is monotonic.

Rephrasing [9], and coming back to the definition of �D,R, an effective corollary of Theorem 1
consists in discovering a well-founded weakly monotonic ordering pair �, < such that rewriting steps
decrease for � and dependency pairs steps decrease for > to prove that�DP(R),R terminates, by inclu-
sion in >.

Corollary 5 If there is a well-founded weakly monotonic ordering pair (�, <) for which: l � r for all
l→ r ∈ R, and u > v for all 〈u, v〉 ∈ D, then�DP(R),R is terminating.

We may define the relevant inference rule:

DP⊆(�, <)
SN(�D,R)

WF(�, <) ∧WM(�, <)
∧ (R ⊆�) ∧ (D ⊆>)

Example 4 A suitable ordering pair (�1, <1) must fulfil the following constraints in order to prove
termination of�(1),R in Example 2:

s(x)−̂s(y) >1 x−̂y
x− 0 �1 x 0÷ s(y) �1 0

s(x)− s(y) �1 x− y s(x)÷ s(y) �1 s((x− y)÷ s(y))

Similarly, an ordering pair (�2, <2) to prove termination of�(2),R must fulfil:

s(x)÷̂s(y) >2 (x− y)÷̂s(y)
x− 0 �2 x 0÷ s(y) �2 0

s(x)− s(y) �2 x− y s(x)÷ s(y) �2 s((x− y)÷ s(y))

Discovering adequate pairs (�1, <1) and (�2, <2) suffices to prove termination of R. Note the use
of several orderings as mentioned in Remark 2.

It suffices to find an adequate ordering pair:

7The original definitions require those relations to be transitive, but it has been noticed that this is actually unnecessary.



Corollary 6 If there is a well-founded weakly monotonic ordering pair (�, <) for which: l � r for all
l→ r ∈ R and u � v for all 〈u, v〉 ∈ D, and u0 > v0 for a 〈u0, v0〉, then termination of�D∪{〈u0,v0〉},R
is equivalent to termination of�D,R.

This effective corollary can be summarised in the following instance:

RMVERTEX(�, <)
SN(�D\〈u,v〉,S)

SN(�D,S)

WF(�, <) ∧WM(�, <) ∧ u > v
∧ (S ⊆ �) ∧ (D\〈u, v〉 ⊆�)

Remark 3 Note that premises of Corollary 6 can actually be weakened by requiring an additional
reflexive relation ≤ giving a relation triple (�,≤, <) with < · ≤ ⊆ < and < · � ⊆ <. Corollary 6 could
then be rephrased as follows: if l � r for all l → r ∈ R and u ≥ v for all 〈u, v〉 ∈ D, and u0 > v0

for a 〈u0, v0〉, then termination of�D∪{〈u0,v0〉},R is equivalent to termination of�D,R. However, for
the sake of readability, and to stay compatible with previous works, we will stick to orderings pairs
throughout this thesis.

An important point is that the constraints to be fulfilled by the embedding relations are much weaker
than in the case of the Manna & Ness criterion, especially regarding monotonicity. We will see an
interesting illustration with Example 6.

II.2 Orderings

Orderings to prove termination are classically divided in two classes: syntactical orderings and seman-
tical orderings.

Syntactical orderings are built from a precedence on symbols which is extended to terms. Introduced
independently by Manna, Dershowitz [53, 46] and Plaisted [142], syntactical path orderings rely on the
idea that a term s is smaller than t if it is built from subterms smaller than those of t for the ordering, into
a context made from symbols smaller for the precedence than those of t. One may compare the multisets
of subterms, as in [53, 46, 142] thus defining Multiset Path Orderings (MPO). One may also compare
them lexicographically as in Kamin & Levy [93] (LPO). Dershowitz proposes in 1982 a more general
notion of path ordering, the Recursive Path Ordering [47] (RPO), which combines those two ways of
comparing subterms, by adding to functions symbols a status that determines how the comparison of
subterms may be performed (multiset, lexico left-right, lexico right-left, etc.). RPO is stable, monotonic,
and it is well-founded whenever the precedence is well-founded.

Remark 4 Historically, syntactical orderings are on purpose simplification orderings by construction.
It is actually easier to prove that they are well-founded on finite signatures in that case, using Kruskal’s
Theorem. However this restriction to finite signatures is not compulsory: as stated above, RPO is well-
founded provided that the precedence is well-founded, that is even when the signature is infinite8.

Transformation techniques like Recursive Program Schemes (RPS) and in particular Argument Fil-
tering Systems (AFS) [9] allow one to lose monotonicity when applied prior to use an RPO (in particular
by erasing arguments).

Regarding automation, syntactical orderings are easy to implement, and are decidable on finite sig-
natures. In addition to the naive enumerative approach, several techniques have been devised to search
efficiently for these orderings with full automation, from constraint resolution as in the pioneer tool
REVE [109, 65], to the recent SAT-solver based methods [6]. For many years they have been the most
widely used orderings, in particular for termination purposes.

8In particular, the COQ formalisation of RPO in COCCINELLE does not use any finiteness assumption on the signature, see
Section III.
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Remark 5 An intermediate ordering is the Knuth-Bendix Ordering (KBO) [96], which uses a weight
function (an extension to terms of a mapping from symbols to nonnegative integers) in conjunction with
a compatible precedence. KBO is successfully used for (termination and) completion purposes.

For more detailed surveys on various path orderings, see [147, 149].

Semantical orderings make use of an interpretation of terms in an ordered algebra. Many kinds of
interpretation were studied amongst which natural numbers, ordinals, elementary interpretations [110],
and polynomial interpretations [120, 107]. See [49] for examples. Recently, new kinds of interpretation
were brought to the fore, and proved to be very successful in practice: matrix-based interpretations [57,
42], over arctic domains [97], rational or real [46, 117] numbers9, etc.

I shall focus in this section on polynomial interpretations over nonnegative integers and their imple-
mentation, in particular on the contribution of a joint work, published in 2005, by Contejean, Marché,
Tomás and myself [38].

II.2.1 Polynomial Interpretations

Several reasons have made, in the past, polynomial interpretations less popular than syntactical methods
like RPO.

A theoretical limitation comes from the standard Manna-Ness criterion that dominated amongst
termination techniques before 1997 and the dependency pair approach. As each single rewriting step
decreases for the ordering, the complexity measure of the computed function and maximal length of
derivation are captured by the ordering. In particular, the combination of polynomials with the Manna-
Ness criterion puts strong restrictions on the class of relations the obtained ordering can contain: the
length of derivations has a double exponential bound [85], and the computed function necessarily be-
longs to a restricted complexity class [16]. For instance, the termination of the famous Ackermann-Péter
function can easily be proven using Manna-Ness and RPO, while it is impossible to obtain a polynomial
interpretation suitable to that criterion10.

From a practical point of view, precedence-based orderings are much easier to implement, and de-
cidable, whereas the search for suitable polynomials is necessarily incomplete.

The dependency pair approach and its effective criteria changed the context. These new techniques
demand much weaker properties on the underlying orderings used in termination proofs. In particu-
lar, monotonicity of the strict part of the ordering is not required. As a consequence, some orderings
previously seen as less powerful than others (for termination proof using the Manna-Ness criterion)
underwent a regain of interest. This is the case for polynomial orderings.

This new opportunity for polynomial interpretations-based orderings led us to design a new imple-
mentation of them inside the CiME rewrite tool [36], and Contejean, Marché, Tomás and I proposed [38]
efficient techniques:

• to check that a polynomial interpretation induces an ordering that proves termination of a given
system, and

• to discover well-suited polynomial interpretations with full automation.

I shall briefly describe these techniques hereafter, full details can be found in the journal article in which
they were published [38].

The techniques presented here brought to the fore how powerful polynomial-based orderings could
be in practice. As a matter of fact, they are still widely used today. CiME 2 has been a very efficient

9Note that polynomial interpretations over integers are subsumed neither by interpretation over rational numbers [118] nor
by interpretations over real numbers [133].

10The situation is completely different with dependency pairs, as illustrated in Example 6.



solver for finding polynomial interpretations for years, and was also used as a back-end for other au-
tomated provers like MU-TERM [2, 116], or Cariboo [63]. However, the constraints solving techniques
presented there have been recently replaced with SAT-solver targeted translations [66].

Domains and interpretations

Term orderings induced by polynomial interpretations in their present form have been defined in 1979
in a pioneer paper of Lankford [107].

LetD be an arbitrary non-empty domain equipped with some ordering≥D, and let>D be≥D−≤D.

Definition 5 Let φ be a function that maps each ground term t ∈ T (F) to an element of D. The
relations �φ and >φ generated by φ are defined by

t1 �φ t2 if and only if φ(t1) ≥D φ(t2)

t1 >φ t2 if and only if φ(t1) >D φ(t2)

Lemma 7 (�φ, <φ) is an ordering pair on ground terms. It is well-founded if <D is well-founded.

To generalise this construction to non-ground terms, a natural way would be to define t1 �φ t2 when
t1σ �φ t2σ for any ground substitution σ. However, such a definition is not well suited for automation,
and we proceed in a different way which leads to an almost equivalent but slightly restricted definition.

The idea is the following: we should not interpret a non-ground term into an element of D, but
actually into an abstraction mapping any interpretation (or valuation) of its variables inD into an element
in D. In other words, interpretation φ(t) of a non-ground term t is a function from X → D to D. This
set (X → D)→ D of functions is naturally equipped with the ordering defined by

f �D,X g if and only if for all ρ ∈ X → D, f(ρ) ≥D g(ρ)

f >D,X g if and only if for all ρ ∈ X → D, f(ρ) >D g(ρ)

We should point out that >D,X is not �D,X − �D,X . For instance, if one maps a constant a to the
minimal element of D then, for any variable x, x �D,X a but x 6�D,X a. Hence (x, a) ∈�D,X − �D,X
while (x, a) 6∈>D,X .

Automation of such an ordering only relies on the automation of this ordering on functions. We will
see how to automate that ordering in the special case of D being a set of integers.

Definition 6 Let φ be a function which maps each term t ∈ T (F , X) to a function from X → D to D.
The relations �φ and >φ generated by φ are defined by

t1 �φ t2 if and only if φ(t1) �D,X φ(t2)

t1 >φ t2 if and only if φ(t1) >D,X φ(t2)

Lemma 8 <φ · �φ⊆<φ on non-ground terms. <φ is well-founded if <D is well-founded.

Definition 7 We define an homomorphic interpretation φ by giving, for each f of arity n, a function
[[f ]]φ from Dn to D, and then by induction on terms: for any ρ ∈ X → D,

φ(f(t1, . . . , tn))(ρ) = [[f ]]φ(φ(t1)(ρ), . . . , φ(tn)(ρ))

φ(x)(ρ) = ρ(x)

For the sake of readability we write [[f ]] if the relevant interpretation is clear from the context.

Lemma 9 If φ is an homomorphic interpretation, then (�φ, <φ) is stable, hence an ordering pair.
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Lemma 10 For any symbol f of arity n, and 1 ≤ i ≤ n, if for all d1, . . . , di−1, di+1, . . . , dn in D,
[[f ]](d1, . . . , di−1, x, di+1, . . . , dn) is monotonic (resp. strictly) nondecreasing in x then �φ (resp. >φ)
is monotonic with reference to the i-th argument of f .

In order to automate the search for interpretations, it is necessary to focus on a particular interpreta-
tion domain. The most convenient one is the set of integers. Since it is not well-ordered, we have in fact
to consider a set of integers greater than or equal to a given minimum value µ.

Definition 8 For a given µ ∈ Z, let Dµ = {x ∈ Z | x ≥ µ}. It is clear that the usual ordering
< is well-founded over each Dµ. Interpretations into Dµ are called arithmetic, they may be called
µ-interpretations in order to specify the value of µ.

An arithmetic homomorphic interpretation φ defined by functions [[f ]]φ, f ∈ F , is called a polyno-
mial interpretation if for every f , [[f ]]φ is a polynomial function.

To check whether a given polynomial interpretation is suitable for proving termination of a given
system, one must be able to check that:

1. each polynomial effectively maps Dn
µ into Dµ;

2. any of those polynomials is weakly and/or strictly increasing in some/all of its arguments.

Moreover, so as to perform comparisons we must be able to check that:

3. for any two terms t1 and t2, t1 �φ t2 and/or t1 >φ t2.

Item (1) can be dealt with as follows: given a polynomial P with n variables, P effectively maps
Dn
µ into Dµ if and only if polynomial P − µ is nonnegative on Dn

µ .
Item (2) can be dealt with as follows: given a polynomial P with n variables, P is nondecreasing in

its i-th argument if and only if polynomial

Q(X1, . . . , Xn) = P (X1, . . . , Xi−1, Xi + 1, Xi+1, . . . , Xn)

− P (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)

is nonnegative on Dn
µ . Similarly, P is strictly increasing in its i-th argument if and only if polynomial

Q(X1, . . . , Xn) = P (X1, . . . , Xi−1, Xi + 1, Xi+1, . . . , Xn)

− P (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)− 1

is nonnegative on Dn
µ .

Item (3) can be taken care of as follows: given t1 and t2, φ(t1) and φ(t2) can be computed as
polynomials P1 and P2 over their variables, and then t1 �φ t2 if and only if polynomial P1 − P2 is
nonnegative on Dn

µ , and t1 >φ t2 if and only if polynomial P1 − P2 − 1 is nonnegative on Dn
µ .

We see that proving termination of TRS using a given polynomial µ-interpretation can be done
automatically, as soon as one can check whether a given polynomial with n variables is nonnegative
over Dn

µ .

Checking Positiveness

Given a polynomial P ∈ Z[X1, . . . , Xn], how can one prove that P (x1, . . . , xn) ≥ 0 for any value
xi ≥ µ? Checking whether a polynomial is nonnegative or not is far from being a simple task. This
problem is undecidable in general since Hilbert’s Tenth Problem can be reduced to it [127, 128].

Testing positiveness, in the context of automated termination proofs, has been studied by several
authors [14, 68, 110, 143, 144, 148]. All their methods propose to approximate the problem by checking



positiveness for any real values greater than µ of their arguments, a problem that becomes decidable
(Tarski 1930) but still algorithmically very complex. These authors proposed partial methods (i.e. cor-
rect and terminating but incomplete) supposed to be sufficient for an application to termination of TRS.

In 1998, Hong & Jakuš [88] make a comparison between some of these methods while proposing
a new one: the absolute positiveness method. They prove it to be strictly more powerful than methods
of Ben Cherifa & Lescanne [14] and Steinbach [148], and to be equivalent to Giesl’s method [68]
computing successive derivatives.

The methods of Rouyer [143, 144] and Lescanne [110] are not comparable with the absolute pos-
itiveness method. On a few examples, they succeed to prove positiveness of non-absolutely positive
polynomials, such as x2 + y2 − 2xy. However, they do not propose any way to automate the search for
polynomial interpretations. Since they do not offer a clear increment of power in practice, our method
of choice will be the absolute-positiveness method.

Definition 9 A polynomial P is said to be µ-absolutely positive if and only if polynomial
Q(X1, . . . , Xn) = P (X1 + µ, . . . ,Xn + µ) has nonnegative coefficients only.

This is not exactly the definition by Hong & Jakuš: they consider strict positiveness, which can be
obtained by taking Q − 1 instead of Q in our definition. A straightforward sufficient condition for
positiveness (adapted from Hong & Jakuš [88]) is the following:

Lemma 11 If P is µ-absolutely positive, then it is nonnegative for all values in Dµ of its variables.

This check seems to be nice and easy to perform. However, computing the ‘translated’ polynomial
Q above can be costly in general. More precisely, Hong & Jakuš show that the algorithmic complexity
of computing translations is the same as Giesl’s method [68]. Nevertheless, this method is at least as
powerful as the former ones while being quite simple.

We improve it a bit in our context by computing µ-translation in advance. If µ = 0, testing absolute
positiveness becomes completely trivial. Hence taking µ = 0 as often as possible seems to be a good
choice. We show in [38] that is always possible.

Lemma 12 If (�φ,≺φ) is an ordering pair defined by polynomial interpretations with a given µ, then
this ordering pair can also be defined by some polynomial interpretations with µ = 0.

The gain is twofold. Regarding efficiency, µ-translation can now be performed once and for all, and
not at each positiveness check. Regarding automated search for polynomials, setting µ = 0 is enough.

Finally we give a simplified criterion for weak or strict monotonicity of the generated ordering
when µ = 0.

Lemma 13 A polynomial 0-interpretation P (x1, . . . , xn) with nonnegative coefficients is always non-
decreasing in each of its arguments. It is strictly increasing in its i-th argument if and only if there is a
monomial axki with a > 0 and k > 0.

In particular, there is no need of AFS to obtain a non-strictly monotonic ordering11.

Example 5 Orderings pairs (�1, <1) and (�2, <2) in Example 4 may be instantiated respectively with
the following polynomial-based orderings:

[[−̂]]1(x, y) = x [[÷]]1(x, y) = x [[s]]1(x) = x+ 1
[[−]]1(x, y) = x [[0]]1 = 0

11Which does not mean that AFS are useless in a whole proof branch closed by a polynomial ordering, as they can interact
with usable rules (Section II.3) for example.
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[[÷̂]]2(x, y) = x [[÷]]2(x, y) = x [[s]]2(x) = x+ 1
[[−]]2(x, y) = x [[0]]2 = 0

The termination proof tree can now be closed (guards are omitted, as well as pairs outside any SCC):

GRAPH

DP⊆(�1, <1)
SN(�〈s(x)−̂s(y),x−̂y〉,R)

· · · DP⊆(�2, <2)
SN(�〈s(x)÷̂s(y),(x−y)÷̂s(y)〉,R)

· · ·

DP
SN(�DP(R),R)

SN(→R)

Decomp(SCC . . .)

Note that in this case using rule RMVERTEX is unnecessary.

Discovering Suitable Interpretations with Full Automation

Firstly, to find a suitable interpretation automatically, we choose for each symbol of the signature a
parametric polynomial, that is a polynomial where coefficients are variables the values of which have to
be found. In order to have a finite number of such variables, we need to fix a bound on the degree of the
polynomials we search for. In this respect, we follow Steinbach’s classification [148], looking for linear,
simple, simple-mixed polynomials12.

Secondly, we have to translate each of the conditions that ensure suitability of the defined ordering
(termination constraints) into constraints on these variables. We end up with non-linear Diophantine
constraints on the coefficients introduced in the parametric interpretations.

Finally, we have to solve these constraints, a problem which is undecidable [127, 128].
The choice we made at that time, and which we implemented in CiME 2, is to turn this problem into a

decidable one by putting an arbitrary bound on the solutions we look for: we restrain the search for values
of variables satisfying the constraints to a given interval [0, B] where B is some nonnegative integer
bound. The problem becomes then an instance of the so-called finite domain constraint satisfaction
problems, which have been extensively studied in the literature, especially in the context of constraint
logic programming [28, 91].

Translating into finite domain constraints is quite a well-known approach for linear Diophantine
constraints [28] which is a major case in applications of constraint logic programming. However, the
case of non-linear Diophantine constraints not being widely studied, we designed a specialised variant of
finite domain constraints to fit our needs, and we developed original techniques for variable abstraction
so as to keep constraints as small as possible, thus adding efficiency to the propagation procedure.

As already mentioned at the beginning of this section, provers nowadays use SAT-solving techniques
to discover polynomial interpretations [66].

Example 6 The following system R is a translation in first-order rewriting of a Prolog program com-
puting the Ackermann-Péter function. The translation technique is the one used in the tool TALP [140]
dedicated to termination of logic programs.

R =


u11(Aout(v0)) → Aout(v0) u22(Aout(v0)) → Aout(v0)
u21(Aout(v0), v1) → u22(Ain(v1, v0)) Ain(O, v0) → Aout(S(v0))
Ain(S(v0), O) → u11(Ain(v0, S(O))) Ain(S(v0), S(v1)) → u21(Ain(S(v0), v1), v0)

The use of dependency pairs and dependency graphs, in conjunction with the following two polynomial

12A quadratic class was added as an extension of simple-mixed polynomials.



interpretations, allows us to prove termination of this system.

[[Aout]]1(X0) = 0 [[u11]]1(X0) = 0 [[u21]]1(X0, X1) = 0
[[Ain]]1(X0, X1) = 0 [[u22]]1(X0) = 0 [[O]]1 = 0

[[S]]1(X0) = X0 + 1 [[û21]]1(X0, X1) = X1 + 1 [[Âin]]1(X0, X1) = X0

[[Aout]]2(X0) = 0 [[u11]]2(X0) = 0 [[u21]]2(X0, X1) = 0
[[Ain]]2(X0, X1) = 0 [[u22]]2(X0) = 0 [[O]]2 = 0

[[S]]2(X0) = X0 + 1 [[Âin]]2(X0, X1) = X1

This termination proof is discovered with full automation by CiME.
Note that the complexity of Ackermann-Péter function makes impossible any termination proof with

polynomial orderings using the Manna-Ness criterion.

II.3 Incremental and Modular Criteria

The size of systems that one meets in practice (several hundreds or thousands of rules) suggests that a
Divide and Conquer approach would be of great help to prove termination. One can see the dependency
graph analysis as a first step forward to this end, however it is worth noticing that the criteria briefly
described in Section II.1.4, as of 2001, amounts to proving termination of�D,R for a system R, that
is with the same set of rules13. We are now interested in boiling down termination of R to termination
of some�Di,Ri with Di ⊆ DP(R) and some relevant Ri ⊆ R only. I tackled this problem during my
PhD, supervised by Marché.

What one would like is to prove termination of the whole system by using the knowledge that (some
of) its subparts are terminating. Unfortunately termination is not a modular property, even when subparts
share no symbol, as shown in a famous example by Toyama in 1987 [157].

Example 7 Let us consider the following rewriting systems, not sharing any symbols:

R1 = {f(a, b, x)→ f(x, x, x)}

Π = {π(x, y)→ x, π(x, y)→ y}

System Π has no dependency pair, and R1 terminates as its dependency graph contains no strongly
connected part. However, the union R1 ∪Π yields an infinite rewriting sequence:
· · · → f(a, b, π(a, b))−→

R1

f(π(a, b), π(a, b), π(a, b))−→
Π
f(a, π(a, b), π(a, b))−→

Π
f(a, b, π(a, b))→ · · ·

One way to avoid this problem is to enforce strong constraints on relations and unions (linearity prop-
erties, local confluence, non-projective rules, constructor-based extension, strategies, restricted proper
extensions etc. [50, 101, 131, 58]). An important drawback is that it prevents from tackling most of the
systems one meets in practice, and it excludes most of the unions that occur naturally in programming.

Instead of restraining the scope of our study by putting strong constraints upon unions, we choose
to allow weakly constrained unions (so-called hierarchical) and consider a (slightly) restricted notion of
termination that is preserved under non-deterministic collapse: CE-termination.

Remark 6 The notion of simple termination, equivalent to termination preserved when one adds all
projections for every symbol in the signature, could be seen as an interesting candidate, as it is modular
for unions of composable finitely branching systems [79]. However, it is not modular for hierarchical
unions (which in particular motivated the definition of proper extensions [101]), and above that, it is

13Some very interesting results can however be obtained if one considers innermost rewriting [9].
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far too restrictive in practice. Many systems are not simply terminating, and that would forbid most
of the benefits one can expect from a dependency pair approach. In particular, CE-termination strictly
contains simple termination.

From a historical point of view, Rusinowitch [146] remarks that the infinite reduction of Example 7
is due to the projective behaviour of system Π. In fact, similar counter-examples may arise when one
deals with systems with a non-deterministic projective behaviour, more precisely when a term t may be
reduced to two distinct variables. Gramlich [77] defines then the notion of termination preserved under
non-deterministic collapse for which he obtains results. This is the property of terminating TRS that
remain terminating when one adds rules {C[x, y] → x;C[x, y] → y} for a context C (which express
exactly that some term t containing variables x and y can be reduced to one of those). This is equivalent
to adding system Π where π is fresh. That property is later renamed Collapse Extended termination
(CE-termination, for short) and studied by Ohlebusch [136]: a system R is said to be CE-terminating if
R ∪Π (where π is a fresh symbol) is terminating.

CE-termination enjoys a good behaviour with reference to unions of systems. It is a modular property
for unions of systems that do not share symbols [76, 136]. It is also modular for constructor-sharing [76]
or composable unions [103] of systems that are finitely branching (that is where any term has only a
finite number of reducts in one step). As it is not a severe restriction in practice (finite systems are
indeed finitely branching), we consider hereafter finitely branching systems only.

Remark 7 Further note that the basic estimation of dependency graphs EDG is coarse enough to allow
the proof of CE-termination, as arcs potentially added by Π are not pruned.

The common presentation of TRS is based on the union of sets of rules (over some signatures) which
are TRS by themselves. This is not well suited to the expression of their inner hierarchical structure for
at least the following two reasons: 1) It brings redundancy at the common subsystem definition level
when symbols or rules are shared, and 2) It does not keep track of the actual sequential construction and
thus does not enhance any incremental process (say for instance a termination proof). Both contribute
to separating rewriting from actual programming.

In order to give a general framework bringing the hierarchical structure of TRS to the fore, and so
as to provide automated methods to prove termination incrementally, I introduced in 2001 the notion of
rewriting modules, and relevant termination techniques [160, 159, 158].

From an operational point of view, a module consists of a set of “new” symbols together with the
rules that define them.

Definition 10 (Modules [160]) Let R1 be a term rewriting system over a signature F1. A module ex-
tending R1(F1) is a pair (F2, R2) such that:

1. F1 ∩ F2 = ∅ (signatures are disjoint);

2. R2 is a term rewriting system over F1 ∪ F2;

3. for every l→ r ∈ R2, Λ(l) ∈ F2.

One can easily see that R1 ∪ R2 is a TRS over F1 ∪ F2. We say then that system R1 ∪ R2 over
F1 ∪ F2 is a hierarchical extension of R1(F1) with module (F2, R2). We write such an extension:
R1(F1)← (F2, R2).

Two disjoint modules may extend the same base hierarchy.

Definition 11 (Independent extension [160]) We say that a module (F2, R2) extends a hierarchy
headed by (F0, R0) independently of a module (F1, R1) if: F1 ∩ F2 = ∅, (F0, R0) ← (F1, R1) ,
and (F0, R0)← (F2, R2).



Such an extension may be seen as a union of composable systems [131, 103, 137].
It is actually possible to express different kinds of classical extensions by means of extensions of

modules. For instance, we obtain a disjoint union (union of systems sharing no symbol) R1(F1) ∪
R2(F2) whenever (F1, R1) and (F2, R2) extend (∅, ∅) independently of each other.

We may also describe a constructor sharing union with modules. A union of two TRS R1(F1)
and R2(F2) is said to be a constructor sharing union if all symbols in F1 ∩ F2 are constructors for
both R1 and R2. Let us consider two systems R1(F1) and R2(F2) which only share a set of common
constructors C0 = F1 ∩ F2. The constructor shared union R1 ∪R2 is easily denoted with two modules
(F1, R1) and (F2, R2) independently extending the module of constructors (C0, ∅).

The notion of hierarchical extensions with common subsystem [136] is captured by left-associativity
of module extension.

The only condition on extensions is that new rules must have a new symbol at root position of their
left-hand side (see Definition 10). Thus, modules extensions subsume notions of heavily constrained hi-
erarchical extensions such as constructor-based extensions [50] (systems in which no left-hand side has
a symbol below the top that appears at the top of any left-hand side) and proper extensions [101, 102] (in-
volving constraints on right-hand sides’ subterms with reference to a dependency relation on symbols).

The intrinsic hierarchical structure of TRS naturally emerges from their formalisation in terms of
modules. In particular, this approach allows one to build TRS the same way programs are built: modules
after modules. It is also possible to split up a whole TRS in several modules.

Example 8 The following system R = R0 ∪R+ ∪R∗ describes addition and multiplication of natural
numbers in functional binary notation: # denotes 0N, (x)0 denotes the value of x multiplied by two and
(x)1 denotes the value of x multiplied by 2N plus 1N. In this formalism, 6N is written #110, that is the
usual binary notation with a # in front.

R0 = {#0→ #

R+ =


# + x → x x0 + y1 → (x+ y)1
x+ # → x x1 + y0 → (x+ y)1
x0 + y0 → (x+ y)0 x1 + y1 → ((x+ y) + #1)0

R× =

{
#× x → # x0× y → (x× y)0
x×# → # x1× y → (x× y)0 + y

The first (simplification) rule ensures that 2N × 0N is 0N, i.e. that naughts in front of numbers in
binary notation can be erased.

One may partition the original signature into three disjoint sets that reflect respectively binary num-
bers, addition, and multiplication:

F0 = {#, 0, 1} F+ = {+} F× = {×}.

System R may now be seen as an extension involving three modules:

(F0, R0)← (F+, R+)← (F×, R×).

Now adding rules for subtraction only consists in extending (F0, R0) by the relevant module
(F−, R−) independently of any other module.

F− {−}

R− =


x−# → x #− x → #
(x)0− (y)0 → (x− y)0 (x)0− (y)1 → ((x− y)− (#)1)1
(x)1− (y)0 → (x− y)1 (x)1− (y)1 → (x− y)0
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The module framework provides a dependency pair approach applicable to an incremental treatment
of the termination proof.

Definition 12 (Dependency pairs of module [160]) Let M = (F, R) be a module. A dependency pair
of module M is a pair of terms 〈l̂, r̂′〉 such that there is a rule l→ r ∈ R for which term r′ is a subterm
of r with Λ(r′) ∈ F defined in R.

We override DP(_) and denote by DP(M) the set of all dependency pairs of a module M .

Dependency pairs of modules obviously belong to the set of dependency pairs in the sense of Arts
& Giesl. Moreover, for a system R over T (F , X), and splitting the original signature F into FD ∪ FC
(respectively defined symbols and constructors), one obtains exactly the complete set of dependency
pairs DP(R) simply by considering the extension (FC , ∅)← (FD, R) and DP((FD, R)).

Chains of dependency pairs of modules rely on which rules occurring in the hierarchy may be
applied between DP(M)-steps, and not only on what is provided by the module M . In other words,
dependency chains become relative to some relevant set of rules. For a module M = (F, R) and an
arbitrary term rewriting system S, a dependency chain of M over S is a sequence of terms tj such that

ti
6=Λ−−→
S

?

uσ
Λ−−−−−−−−→

〈u,v〉∈DP(M)
vσ ≡ ti+1.

That is exactly�DP(M),S . It is said to be minimal if all proper subterms of every term in this sequence
are mortal for S.

Note that since S is an arbitrary TRS, it may be completely different from the original system R.
In particular, we may have S ⊃ R. As shown in Theorem 15, this allows to disregard rules locally
irrelevant to termination.

Dependency pairs of modules and relative dependency chains allow us to define some purely syn-
tactical tests so as to prove termination in an incremental fashion. The two main criteria obtained are the
following:

Theorem 14 (Urbain [160]) Let (F2, R2) be extending R1 (over F1); if R1 is CE-terminating, and
�DP((F2,R2)),R1∪R2∪Π is terminating, then R1 ∪R2 is CE-terminating.

Theorem 15 (Urbain [160]) Let (F2, R2) and (F3, R3) be extending R1 (over F1) independently; if
R1 ∪ R2 is CE-terminating, and �DP((F3,R3)),R1∪R3∪Π is terminating, then R1 ∪ R2 ∪ R3 is CE-
terminating.

Note that R2 is not involved in�DP((F3,R3)),R1∪R3∪Π.
Module-based termination criteria take indeed the full benefit of a really modular and incremental

approach together with the advantages of a dependency pair approach: proving termination with modules
amounts to solving fewer and simpler termination constraints than using a global approach.

Remark 8 Further note that some dependency pairs of modules may be pruned using graphs criteria,
provided that CE termination is preserved. As noticed in Remark 7, this is in particular always the case
with the simple approximation EDG.

Following the incremental development of a program, the proof search can be performed along
the hierarchy provided by the programmer, as in Example 8: step by step, module after module. An
alternative is to partition a whole system in modules that are minimal, in the sense that all functions they
contain are mutually recursive. Such a minimal split is easily computed and proves useful on systems
provided as a single set of numerous rules.



Effective Corollaries

Finding a relevant ordering pair (�, <) to complete the proof of termination requires that this ordering
behaves well with reference to non-deterministic collapse. In fact it is sufficient to ask that π(x, y) � x
and π(x, y) � y hold for a weakly monotonic extension of (�, <) to T (F ∪{π}, X). Those well-suited
orderings are said to be π-expandable. This is not a very restrictive property: all simplification orderings
are π-expandable, as well as their combination with AFS, or lexicographical composition [160].

Corollary 16 Let (F2, R2) be extending R1 (over F1); if

1. R1 is CE-terminating, and

2. there is a weakly monotonic π-expandable ordering (�,≺), such that: R1 ∪ R2 ⊆�, and
DP((F2, R2)) ⊆�,

then R1 ∪R2 is CE-terminating.

Corollary 17 Let (F2, R2) and (F3, R3) be extending R1 over F1 independently; if

1. R1 ∪R2 is CE-terminating, and

2. there is a weakly monotonic π-expandable ordering (�,≺), such that: R1 ∪ R3 ⊆�, and
DP((F3, R3)) ⊆�,

then R1 ∪R2 ∪R3 is CE-terminating.

Note that for Corollary 17, as for Theorem 15, the ordering fulfils no constraint with reference to R2.

Example 9 So let us consider again the system R0 = {#0 → #} describing natural numbers and
which clearly CE-terminates. We already defined some arithmetic on these integers, in particular addi-
tion with (F+, R+) which we modify slightly by adding an associativity rule:

R+ =


x+ # → x # + x → x
x0 + y0 → (x+ y)0 x0 + y1 → (x+ y)1
x1 + y0 → (x+ y)1 x1 + y1 → ((x+ y) + #1)0
x+ (y + z) → (x+ y) + z

Termination of R0 ← (F+, R+) is proven using dependency pairs and a polynomial interpretation.

DP((F+, R+)) =


〈x0+̂y0, x+̂y〉 〈x1+̂y1, (x+ y)+̂#1)〉
〈x0+̂y1, x+̂y〉 〈x+̂(y + z), x+̂y〉
〈x1+̂y0, x+̂y〉 〈x+̂(y + z), (x+ y)+̂z〉
〈x1+̂y1, x+̂y〉


[[#]] = 0
[[0]](x) = x+ 1
[[1]](x) = x+ 2
[[+]](x, y) = x+ y + 1
[[+̂]](x, y) = x+ 2y

With reference to the ordering defined using the π-expandable interpretation above, pairs of
DP((F+, R+)) strictly decrease while rules of R0 ∪ R+ ∪ π weakly decrease. Corollary 16 allows
to conclude on CE-termination.

When one adds subtraction, dependency pairs of modules together with polynomial-based orderings
are sufficient again to show that R0 ∪R− CE-terminates. Indeed, for

[[−̂]](x, y) = x [[−]](x, y) = x [[#]] = 0 [[0]](x) = x+ 1 [[1]](x) = x+ 1

pairs of (F−, R−) strictly decrease while rules in R0 ∪ R− weakly decrease. Corollary 17 yields that
R0 ∪R− ∪R+ CE-terminates.
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In order to compare integers, one needs boolean operators. Let us add a new module, namely
(FBool, RBool).

FBool {true; false;¬;∧; if}

RBool =

{
¬(true) → false x ∧ true → x if(true, x, y) → x
¬(false) → true x ∧ false → false if(false, x, y) → y

This system is free of dependency pairs, hence it trivially CE-terminates.
Comparisons can be defined in a module (Fge , Rge) extending both R0 and RBool.

Fge {ge}

Rge =


ge(x0, y0) → ge(x, y) ge(x0, y1) → ¬ge(y, x)
ge(x1, y0) → ge(x, y) ge(x1, y1) → ge(x, y)
ge(x,#) → true ge(#, x0) → ge(#, x)
ge(#, x1) → false

CE-termination ofR0∪RBool∪Rge is shown by RPO with {ge > ¬ > (true, false)} directly. Remember
that, being a simplification ordering, RPO is π-expandable. One may then apply Theorem 15 and obtain
CE-termination of R0 ∪RBool ∪Rge ∪R+ ∪R−.

One may now define base 2 logarithm, rounded down. For technical reasons, it is easier to define
firstly a Log ′ such that Log ′(x) = Log(x) + 1 with convention Log ′(0) = 0.

FLog′ {Log ′}

RLog′ =

{
Log ′(#) → # Log ′(x1) → Log ′(x) + #1
Log ′(x0) → if(ge(x,#1),Log ′(x) + #1,#)

Dependency pairs of modules and the following polynomial interpretations suffice to prove CE-
termination.

DP((FLog′ , RLog′)) = {〈L̂og ′(x1), L̂og ′(x)〉 〈L̂og ′(x0), L̂og ′(x)〉}
[[#]] = 0 [[false]] = 0 [[+]](x, y) = x+ y [[if ]](x, y, z) = y + z
[[0]](x) = x+ 1 [[true]] = 0 [[ge]](x) = 0 [[Log ′]](x) = x

[[1]](x) = x+ 1 [[¬]](x) = 0 [[∧]](x, y) = x [[L̂og ′]](x) = x

Dependency pairs strictly decrease while rules in R0 ∪ R+ ∪ RBool ∪ Rge ∪ RLog′ weakly decrease.
CE-termination of R0 ∪R+ ∪RBool ∪Rge ∪RLog′ ∪R− follows from Corollary 17.

The ‘correct’ logarithm is computed using module (FLog , RLog) defined as FLog = {Log} and
RLog = {Log(x) → Log ′(x) − #1}. Since (FLog , RLog) has no dependency pair, Theorem 15 gives
CE-termination of R0 ∪R+ ∪R− ∪RBool ∪Rge ∪RLog′ ∪RLog .

A minimal split of the whole system (31 rules) lead to a hierarchy of 13 modules, of which 4 contain
no rule.

Proof Technique, Evolution towards Usable Rules

Suppose R2 is an irrelevant set of rules according to the previous theorems. The proof of Theorems 14
and 15 rely again on a translation of relations. They are based on an interpretation I , inspired from
another interpretation by Gramlich [76, 77], that translates steps in minimal chains �D,R1∪R2 over
terms in T (F , X) into steps in chains�D,R1∪Π over terms in T (F ∪ {π : 2,⊥ : 0}, X) which are finite
by assumption.

This approach has been fruitful. The proof technique is in turn adapted independently by Thiemann
et al. [154] and Hirokawa & Middeldorp [83] to define a notion of usable rules in the context of rewriting
without a given strategy14.

14A notion of usable rules is given by Arts & Giesl for innermost rewriting in [9].



Usable rules yield less constraints than corollaries 16 and 17, and do not require CE-termination
(but still use π-expandable orderings). They are stricly more powerful to prove termination of a given
system, and subsume our approach. In particular they allow arbitrary graph approximations, notably
those subtle enough to establish that there is no circuit in the graph for f(0, 1, x)→ f(x, x, x).

However, one might note that they require to compute the whole dependency graph (and not only a
graph per module), and thus they are less local and not incremental.

Finally note that theorems of this section and usable rules are completely formalised by Contejean
in the COCCINELLE library (Chapter III).

From Theory to Practice

All those results, as well as some of the next section, were developed with a constant thought for au-
tomation. Thanks to their generality as well as the purely syntactical tests provided, they are part of
the CiME 2 rewriting tool [35], which I have already mentioned a few times, and which I shall briefly
describe here.

Undertaken by Contejean, Marché, Monate and myself, the development of CiME 2 began in 1997
as a complete reorganisation of the historical CiME tool [34] with, in addition to completion techniques,
a priority set on termination and automation of termination proof discovery. It has been replaced with
CiME 3 in 2009, even though not all techniques have migrated yet.

CiME 2 provides a strongly typed programming language targeted to the study of term rewriting
systems (computation, completion, termination, etc.). It features a Diophantine constraint solver (finite
domains). The termination engine may discover suitable polynomial orderings (linear, simple, simple-
mixed or quadratic) using the techniques of Section II.2.1, as well as path orderings, for standard rewrit-
ing and C or AC-rewriting (see Section II.4.1). Term rewriting systems can be entered as a single set, or
as a hierarchy of modules. The user may then ask for a termination proof, possibly with a partition in
minimal modules. The available criteria include Manna-Ness, dependency pairs: marked or unmarked,
with or without dependency graphs (EDG).

While one may see REVE [109, 65] as the first tool offering the opportunity to search for termination
proof with full automation, CiME 2 may be considered as a pioneer of fully automated termination
proving for rewriting systems. It was notably the first tool to look with full automation for orderings
suitable for termination of systems with AC-symbols.

CiME 2 is used mainly in academia (see for example [7, 100]) for proofs of termination, possibly
modulo equational theories like associativity and commutativity (AC), proofs of confluence, completion
(Knuth-Bendix), including completion modulo equational theories. It is also used in other provers like
TALP [140] (U. Bielefeld) dedicated to termination proofs of well-moded logic programs, and, as we
shall see, in MU-TERM (U. Valencia) for termination of context-sensitive rewriting, MTT (U. Málaga)
for termination of MAUDE programs, etc.

II.4 Equational Theories, Strategies

II.4.1 AC Rewriting

In the practice of programming, it is common to use operations with an associative and commutative (AC
for short) behaviour. This is for example typically the case for some classical operations in arithmetics
(addition, multiplication, etc.), or logics (boolean disjunction, conjunction). . .

However, a direct expression of AC by means of rules (for instance, x + y → y + x when + is
AC) is impracticable since these rules do not terminate. Moreover, using rewriting rules for associa-
tivity, f(f(x, y), z) → f(x, f(y, z)) for instance, would also lead to non-termination when working
modulo commutativity (C) as the following rewriting sequence does not terminate: f(f(x, y), z) →
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f(x, f(y, z)) =C f(f(y, z), x) → · · · In order to preserve the termination property, rewriting over
AC-equivalence classes, namely rewriting modulo AC, is used.

There are several slightly different variants of AC-rewriting, see [122] for a detailed comparison.

Class rewriting is defined by s−−−−−→
l→r/AC

t if there are s′ and t′ such that s =AC s
′, t =AC t

′ and s′−−→
l→r

t′.

This definition is algorithmically complex because deciding whether a term s rewrites to another
modulo AC amounts to searching for an instance of a rule in any term AC-equivalent to s.

AC-extended rewriting, proposed by Peterson and Stickel [141], is a restricted definition where AC-
equivalence is allowed only at or below the position p of a term where one wants to match a rule:
s

p−−−−−→
AC\l→r

t if there is a substitution σ such that s|p =AC lσ and t = s[rσ]p.

There is a drawback in this restriction: rewriting is not necessarily coherent with AC in the sense
defined by Jouannaud and Kirchner [92] where s =AC t and t−−−→

AC\R
u should imply that there

exist v and w such that s−−−→
AC\R

?v =AC w←−−−
AC\R

?u. Indeed, there are rewrite systems R for which

→AC\R terminates whereas→R/AC does not [122] (for example a+ a→ (a+ b) + a).

However, one may make any rewrite system R AC-coherent by adding extended rules to R. That
is, for each rule f(s, t) → r where f is AC, adding the rule f(f(s, t), x) → f(r, x) where x is a
fresh variable.

Varyadic AC-rewriting is a variant of AC-extended rewriting that, in some sense, builds the extended
rules in the rewriting relation, by considering varyadic terms. It is defined by s

p−−−−−→
l→r/AC

t if there

is a substitution σ such that either

• s|p =AC lσ and t = s[rσ]p or

• l = f(l1, . . . , ln) where f is AC and for a new variable x, s|p =AC f(l1, . . . , ln, x)σ and
t = s[f(r, x)σ]p/AC.

Actually, when it comes to termination, the notion of rewriting used does not matter [70, 122]: for
any TRS R, the following statements are equivalent:

1. class rewriting with R is terminating;

2. varyadic AC-rewriting with R is terminating;

3. AC-extended rewriting with R augmented with its extended rules is terminating.

We consider hereafter varyadic AC-rewriting, and we denote rewriting steps by s
p−−−−−→

l→r/AC
t.

Rewriting modulo AC complicates termination proofs significantly. In particular, the orders involved
in proofs have to be AC-compatible, that is: AC-equivalent terms must be equivalent with reference to
the ordering. For years, the problem of finding suitable orderings has been widely studied [12, 14, 44,
94, 95, 145] but all propositions lead to simplification orderings, too restrictive in practice.

There has been several approaches to extend the dependency pair approach to the AC-case [104,
106, 122], which enhances feasibility of automating termination proofs of AC-rewriting. Giesl and
Kapur [70], propose in particular an extension of the dependency pair technique to rewriting modulo
an arbitrary theory (nevertheless satisfying some properties), and the specialisation of their work to AC
provides again another variant of the AC-dependency pair notion.



In 2005, Marché and I propose [123] a combination of AC-dependency pair techniques, CE-
termination, and hierarchical combinations so as to obtain, firstly, on a theoretical plan, new modu-
larity results on CE-termination modulo AC, and secondly, on a practical plan, powerful and incremental
methods for proving AC-termination of TRS of large size, suitable for automation.

The first step to achieve this is to consider dependency pair techniques for AC-rewriting.

AC-Dependency Pairs

There has been several extensions of the dependency pair criteria to AC-rewriting, with similar but
different definitions of AC-dependency pairs: Marché and I in 1998 [122], Kusakari & Toyama [106]
and Giesl & Kapur [70] in 2001, Kusakari, Marché and I again [104] in 2002. For some of those
generalisations, two variants of dependency pairs have been given: one for which root symbols are
distinguished (like in the standard case), and one for which root symbols stay in the original signature.

Variants without marks have been considered for two reasons. Firstly, dependency pair criteria with-
out marks are simpler, because marks require to introduce additional rules to handle some constraints
existing between f and f̂ when f is AC; these rules are called here marks-handling rules. Secondly,
the constraints given by those marks-handling rules usually impose that a symbol f and its marked copy
f̂ are considered equivalent in the term ordering eventually found. Indeed, in practice, the set of con-
straints to solve for proving termination of a given TRS may be significantly larger when one uses marks
than when one does not, with a larger search space (because the signature size is doubled), even without
AC-symbols. Hence the time and space used to solve them can be much larger. As a matter of fact, it
appears that, in practice, it is often sufficient to put marks only on non-AC symbols, see Remark 9.

The unmarked dependency pair definition Marché and I proposed in 1998 for varyadic AC-rewriting
is the following.

Definition 13 (Unmarked AC dependency pairs [122]) LetR be a rewriting system, letRext be the set
of extended rules of R in the sense of Peterson & Stickel, then the set of AC unmarked dependency pairs
of R (denoted by DPAC(R)) is the set of classical dependency pairs of R ∪Rext.

The definition of�D,S is adapted to the AC-case as follows: s�D,S t if there is a substitution σ such

that s
6=Λ ?−−−→
S/AC

s′ ≡ uσ
Λ−−−−−→

〈u,v〉∈D
t. If all proper subterms of s and t are mortal, this sequence is said to be

minimal. This definition leads to the following criterion for AC-rewriting.

Theorem 18 (Marché & Urbain [122]) R is terminating for AC-rewriting if and only if�DPAC(R),R is
terminating.

The extension to the dependency graph criterion is straightforward. However, computing EDG now
requires AC-unification.

In order to design criteria for incremental proofs of termination that work with any of those AC-
dependency pair notions, Marché and I defined an abstract notion of AC-dependency pairs, with some
required properties which are satisfied by all of the former AC-dependency pair notions, and which I
shall briefly describe.

Definition 14 (Abstract AC dependency pair [123]) An abstract AC dependency pair definition is a
function which, given a TRS R over a signature F = D ∪ C where D are defined symbols of R and
C are constructors, gives a set of pairs of terms denoted by 〈u, v〉 on signature D ∪ D̂ ∪ C, and an
additional rewrite relation→mh called marks-handling, satisfying:

i. For any dependency pair 〈u, v〉, Λ(u) and Λ(v) are in D̂. Moreover, there is a rewrite rule l → r

in R such that Λ(u) = Λ̂(l) (resp. Λ(u) = Λ(l) for non-marked case) and Λ(v) = f̂ (resp. f ) for
some f occurring in r.
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ii. →mh is generated by a finite set of rewrite rules Rmh such that for each l → r in Rmh, there
exists one AC-symbol f such that Λ(l) = Λ(r) = f̂ and strict subterms of l and r may contain f , f̂
and variables only. Note that this system is not required to terminate, and it is necessarily empty
if we do not use marks.

iii. R is terminating iff there is no infinite sequence of pairs 〈u1, v1〉, 〈u2, v2〉, . . . together with a
substitution σ such that for all i:

viσ

(
6=Λ−−−→
R/AC

∪ →mh

)?
ui+1σ

Moreover, that sequence may be chosen minimal, that is for which all proper subterms are mortal.
This corresponds to the notion of dependency chain.

It can be easily checked that properties (i) and (ii) are satisfied by existing concrete AC dependency
pair techniques [70, 104, 106, 122] (property (iii) is the main result of each corresponding paper):

• Kusakari & Toyama [106] consider fixed-arity terms. With their variant without marks, →mh is
empty; and with marks,→mh is generated by f̂(f̂(x, y), z)↔ f̂(f(x, y), z) and f̂(f̂(x, y), z)→
f̂(x, y) for each AC-symbol f .

• Marché & Urbain [122] consider flat terms. In the concrete variant without marks given Defini-
tion 13 and with Theorem 18,→mh is empty.

• Kusakari, Marché & Urbain [104] consider flat terms and marks, →mh is the reduction relation
generated by f̂(x, y, z)→ f̂(f(x, y), z) for each AC-symbol f .

• Giesl & Kapur [70] (when specialised to the AC-case) consider fixed-arity terms and marks,→mh

is generated by f̂(f(x, y), z)↔ f̂(x, f(y, z)) and f̂(x, y)↔ f̂(y, x) for each AC-symbol f .

• Marché & Urbain [36] implement a variant with flat terms, that uses marks for non-AC symbols
but no marks for AC-symbols, in other words: D̂ = {f̂ | f ∈ D − FAC} ∪ {f | f ∈ D ∩ FAC},
with→mh empty.

Remark 9 As soon as it is chosen not to use marks for AC-symbols, all the variants above become
equivalent. The last choice, marking non-AC symbols only, seems to be a good compromise, keeping the
power of having marked symbols for non-AC symbols and avoiding the complexity induced by marked
AC-symbols.

Modularity Results for AC-Rewriting

While the proof of modularity of CE-termination for composable systems in [103] is quite involved, and
extending it to rewriting modulo AC is probably a very hard task, the simple proof I gave in [160] is
much easier to extend.

We keep the same definition of modules as in the non-AC case. A key point here is that AC behaves
nicely with reference to hierarchies of modules: AC-steps introduce no additional dependencies between
modules.

AC dependency pairs of modules are defined similarly to those of the non-AC case, that is: for a
module (F, R), the set of AC dependency pairs of module (F, R) is the set of AC dependency pairs of
R where all symbols not belonging to F are considered as constructors (in addition to the ones in F).

AC dependency chains are defined accordingly: an AC dependency chain of a module (F, R) over
a TRS S (with R ⊆ S) is a sequence of terms tj such that

ti

(
6=Λ−−−→
S/AC

∪ →mh

)?
uσ

Λ−−−−−−−−−−−−→
〈u,v〉∈DPAC((F,R))

vσ ≡ ti+1



denoted by ti �mh
DPAC((F,R)),S ti+1. This chain is said to be minimal if all proper subterms of every term

in the chain are mortal for S/AC.
Quite remarkably, a slight modification of the interpretation involved in the proof technique of [160]

allows to extend our modularity results to AC-rewriting easily. The main theorems and their effective
corollaries become:

Theorem 19 (Marché & Urbain [123]) Let (F2, R2) be extendingR1 over F1 where F1∪F2 contains
AC-symbols; if R1 is CE-terminating modulo AC, and �mh

DPAC((F2,R2)),R1∪R2∪Π is terminating, then
R1 ∪R2 is CE-terminating modulo AC.

Theorem 20 (Marché & Urbain [123]) Let (F2, R2) and (F3, R3) be extending R1 over F1 indepen-
dently; if R1 ∪ R2 is CE-terminating modulo AC, and �mh

DPAC((F3,R3)),R1∪R3∪Π is terminating, then
R1 ∪R2 ∪R3 is CE-terminating modulo AC.

The effective corollaries now require orderings that are also compatible with AC (and non-increasing
on mark-handling steps), in particular Corollary 17 is extended to AC-rewriting as follows:

Corollary 21 Let (F2, R2) and (F3, R3) be extending R1 over F1 independently; if

1. R1 ∪R2 is CE-terminating modulo AC, and

2. there is a weakly monotonic π-expandable ordering (�,≺), AC (and marks) compatible, such
that:
R1 ∪R3 ⊆�, and DPAC((F3, R3)) ⊆�,

then R1 ∪R2 ∪R3 is CE-terminating modulo AC.

Finally, the extension to rewriting modulo AC of a previous result by Kurihara & Ohuchi [103] is
obtained directly:

Theorem 22 (Marché & Urbain [123]) CE-AC termination is a modular property for unions of com-
posable finitely branching TRS.

Example 10 Instead of binary arithmetic, we may choose another efficient representation, proposed
by Contejean, Marché and Rabehasaina [37]: ternary notation. This is implemented as a module
(Fint, Rint) where signature Fint contains the constant #, and unary symbols 1, 0 and j which will
be used as postfix operators. Intuitively, # represents 0, (x)0 represents 3x, (x)1 represents 3x + 1
and (x)j represents 3x − 1. As for Example 9 the rule part contains only one rule Rint = {#0 → #}
(which clearly CE-terminates) to encode the relation between those constructors.

We define addition with extending module (F+, R+) with F+ = {+} where + is associative and
commutative,

R+ =


x+ # → x
x0 + y0 → (x+ y)0 x0 + y1 → (x+ y)1 x1 + y1 → (x+ y + #1)j
x0 + yj → (x+ y)j xj + yj → (x+ y + #j)1 x1 + yj → (x+ y)0

Termination of Rint ∪ R+ is proven using our results, with dependency graphs. The compatible inter-
pretation:

[[#]] = 0 [[0]](x) = [[1]](x) = [[j]](x) = x+ 1 [[+]](x, y) = x+ y

removes a first pair from the whole graph, and the interpretation

[[#]] = [[0]](x) = 0 [[1]](x) = [[j]](x) = 1 [[+]](x, y) = x+ y
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finishes the proof for the remaining component, formed by pairs 〈xj + yj + z, (x+ y + #j)1 + z〉 and
〈x1 + y1 + z, (x+ y + #1)j + z〉.

Now we prove termination of the extension with the module below, defining multiplication, as well
as opposite and subtraction as auxiliary operations:

R× =


x×# → # x0× y → (x× y)0 opp((x)0) → (opp(x))0
opp(#) → # x1× y → (x× y)0 + y opp((x)1) → (opp(x))j
x− y → x+ opp(y) xj × y → (x× y)0− y opp((x)j) → (opp(x))1

Knowing that Rint ∪R+ CE-terminates, the following polynomial interpretation is sufficient to fulfil the
remaining constraints required for termination of Rint ∪R+ ∪R×:

[[#]] = 0 [[0]](x) = [[1]](x) = [[j]](x) = x+ 1
[[opp]](x) = [[ôpp]] = x [[+]](x, y) = [[−]](x, y) = x+ y [[×]](x, y) = xy + x+ y

Note that the termination proof given in [37] was a hand-made proof, involving a composition of com-
plicated polynomial interpretations as well as ad-hoc reasoning. The first automatic termination proof
of Rint ∪ R+ ∪ R× was given by Borralleras & Rubio [21], and the above is another quite simple and
automated proof.

Now, we may define bags, then sum and product of elements in a bag of integers. Our fourth module
is independent of the others, and defines bags, using signature FBag which contains the constant ∅ to
denote the empty bag, the unary symbol {_} to build singletons, and the union ∪ which is AC. Its rule
part consists of RBag = {∅ ∪ x→ x}, which clearly CE-terminates.

Our fifth module defines the sum of elements of a bag of integers:

RΣ =
{

Σ(∅) → # Σ({x}) → x Σ(x ∪ y) → Σ(x) + Σ(y)

Applying Corollary 21, the polynomial interpretation

[[#]] = [[∅]] = [[0]](x) = [[1]](x) = [[j]](x) = 0 [[+]](x, y) = x+ y

[[{_}]](x) = [[Σ]](x) = [[Σ̂]](x) = x [[∪]](x, y) = x+ y + 1

suffices to prove the termination of the set of all rules introduced so far. In particular, no additional
constraint on multiplication is required, since (FΣ, RΣ) extends (F+, R+) independently of (F×, R×).

We may now introduce a last module defining product of elements of a bag of integers:

R⊗ =
{ ⊗

(∅) → #1
⊗

({x}) → x
⊗

(x ∪ y) →
⊗

(x)×
⊗

(y)

Applying again Corollary 21, the polynomial interpretation:

[[#]] = [[∅]] = 0 [[0]](x) = [[1]](x) = [[j]](x) = [[opp]](x) = 0
[[∪]](x, y) = x+ y + 1 [[+]](x, y) = [[×]](x, y) = x+ y

[[−]](x, y) = x [[{_}]](x) = [[
⊗

]](x) = [[
⊗̂

]](x) = x

is enough to prove the termination of the set of all rules introduced, again no constraint on Σ is required.
Finally, we establish the termination of the whole system (containing 23 rules, 3 AC-symbols and 6

modules) by using polynomial interpretations only. As far as we know, any former method would need a
more complicated ordering: other approaches may need for instance lexicographical composition which
is difficult to search for automatically, and because of rule x1 + y1 → (x + y + #1)j one cannot use
ACRPO [145]. All those interpretations were found in a few seconds by CiME in a fully automated way.



Another interesting example is the following system by Deplagne, for which the techniques pre-
sented above and their implementation in CiME allowed to obtain the first known proof of termination.
It comes from his study of sequent calculus modulo [45] to which we refer for further details.

The considered TRS (53 rules and 2 AC-symbols) is in two parts, given in Figure II.3. The first one,
R1, provides explicit substitutions for quantifiers, while the second one,R2, describes a congruence over
a sequent calculus. Operators {s_} and {f_} denote respectively singletons of sequents and singletons
of formulas. The union operators of these sets are AC and are denoted respectively by ‘•’ and by ‘,’.

The termination proof for TRS R1 ∪ R2 was discovered by CiME in a few seconds, with full au-
tomation. The system was in fact decomposed by CiME into a hierarchy of 19 modules, 9 of which
yielding no constraint. Note that the proof search strategy used no mark on AC-symbols and estimated
dependency graphs in conjunction with polynomial interpretations.

These examples emphasise how hierarchical proof techniques and their extensions to the AC-case,
open the way to termination proofs of systems that come from real applications and practical examples.
Let us go further on this way.

II.4.2 Context-Sensitive Rewriting

Another paradigm well-suited to model programming languages is context-sensitive (CS) rewriting
where the use of a local strategy blocks or enables rewriting steps at certain positions (see [114, 115] for
a detailed study).

In CS rewriting, a replacement map (a mapping µ : F → P(N) satisfying µ(f) ⊆ {1, . . . , k},
for each k-ary symbol f of a signature F) is used to discriminate the argument positions on which the
rewriting steps are allowed (µ-replacing positions); rewriting at Λ is always possible.

Example 11 The following system from Borralleras [20] zips two lists of integers into a single one that
contains quotients of the two components:

sel(0,cons(x, xs)) → x
minus(x,0) → x

quot(0,s(y)) → 0
zWquot(nil, x) → nil
zWquot(x,nil) → nil

head(cons(x, xs)) → x

sel(s(n),cons(x, xs)) → sel(n, xs)
minus(s(x),s(y)) → minus(x, y)
quot(s(x),s(y)) → s(quot(minus(x, y),s(y)))

from(x) → cons(x,from(s(x)))
tail(cons(x, xs)) → xs

zWquot(cons(x, xs),cons(y, ys))→ cons(quot(x, y),zWquot(xs, ys))

with µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f ∈ F .
As only the first argument of cons can be rewritten, this prevents the infinite sequence from(x)→

cons(x,from(s(x)))→ cons(x,cons(s(x),from(s(s(x)))))→ · · ·

Dependency pair criteria for context-sensitive rewriting were proposed in 2006 by Alarcón, Gutiér-
rez and Lucas [3, 4]. I worked in collaboration with Gutiérrez and Lucas on the extension of the notion
of usable rules to CS rewriting [82]. As a result, we proposed a well-suited notion of usable rules, and we
established that their classical notion [73, 83] was sound for the restricted class of strongly conservative
context-sensitive systems.

Usable Rules for CS Rewriting

A straightforward extension of usable rules (with direct dependency) is indeed unsound for general
systems. The problem comes in particular from migrating variables, i.e., variables that occur at non-µ-
replacing positions in left-hand sides of rules but at µ-replacing positions in right-hand sides, and thus
that possibly activate symbols hidden at non-µ-replacing positions in right-hand sides.
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ef(x)[y]t → ef(x[y]t) Pe(x)[y]f → Pe(x[y]t)
(f ∨ g)[s]f → (f [s]f) ∨ (g[s]f) ¬(f)[s]f → ¬(f [s]f)
(f ∧ g)[s]f → (f [s]f) ∧ (g[s]f) x[i]td → x

(f ⇒ g)[s]f → (f [s]f)⇒ (g[s]f) 1[x · s]t → x
∃(f)[s]f → ∃(f [1 · (s ◦ ↑)]f) f [i]fd → f
∀(f)[s]f → ∀(f [1 · (s ◦ ↑)]f) (f [s]f)[t]f → f [s ◦ t]f

(x[s]t)[t]t → x[s ◦ t]t id ◦ s → s
↑ ◦ (x · s) → s (s ◦ t) ◦ u → s ◦ (t ◦ u)
(x · s) ◦ t → (x[t]t) · (s ◦ t) s ◦ id → s

1 · ↑ → id (1[s]t) · (↑ ◦ s) → s

R2



a,5 → a
a, a → a
a • ♦ → a
a • a → a

¬(¬(f)) → f
f ∧ f → f
f ∨ f → f
f ⇒ g → ¬(f) ∨ g
∃(f) → ¬(∀(¬(f)))

(a, {f¬(f)}) ` b → a ` ({ff}, b)
{f¬(f)} ` b → 5 ` (b, {ff})

a ` ({f¬(f)}, b) → (a, {ff}) ` b
a ` {f¬(f)} → (a, {ff}) ` 5

(a, {ff ∧ g}) ` b → (a, {ff}, {fg}) ` b
{ff ∧ g} ` b → ({ff}, {fg}) ` b

a ` ({ff ∨ g}, b) → a ` ({ff}, {fg}, b)
a ` {ff ∨ g} → a ` ({ff}, {fg})

{sa ` ({ff ∧ g}, b)} → {sa ` ({ff}, b)} • {sa ` ({fg}, b)}
{sa ` {ff ∧ g}} → {sa ` {ff}} • {sa ` {fg}}

{s(a, {ff ∨ g}) ` b} → {s(a, {ff}) ` b} • {s(a, {fg}) ` b}
{s{ff ∨ g} ` b} → {s{ff} ` b} • {s{fg} ` b}

{s(a, {ff}) ` ({ff}, b)} → ♦
{s(a, {ff}) ` {ff}} → ♦
{s{ff} ` (b, {ff})} → ♦
{s{ff} ` {ff}} → ♦

{sa ` b} • {s(a, f) ` (g, b)} → {sa ` b}
{sa ` b} • {s(a, f) ` b} → {sa ` b}
{sa ` b} • {sa ` (b, f)} → {sa ` b}
{sa ` 5} • {s(a, f) ` b} → {sa ` 5}
{sa ` (b, f)} • {s5 ` b} → {s5 ` b}
{sa ` b} • {s5 ` b} → {s5 ` b}
{sa ` b} • {sa ` 5} → {sa ` 5}
{sa ` b} • {s5 ` 5} → {s5 ` 5}

Figure II.3. Sequent calculus modulo, parts I & II.



Consider R = {f(c(x), x) → f(x, x), b → c(b)} from [5] together with µ(f) = {1, 2} and
µ(c) = ∅. Regarding C = {〈f̂(c(x), x), f̂(x, x)〉}, the set of classical usable rules is empty because
f̂(x, x) contains no symbol in F . We could wrongly conclude to µ-termination, but we have the infinite
minimal (R,C, µ̂)-chain:

f̂(c(b), b)−→
C
f̂(b, b)

6=Λ−−→
Rµ

f̂(c(b), b)→ · · ·

We need an appropriate notion of dependency between symbols. The idea is to take into account
symbols occurring at non-µ-replacing positions in the left-hand sides of the rules: for R = (F , µ,R)
a CS system, we say that f ∈ F directly µ-depends on g ∈ F , written f Dd,µ g, if there is a rule
l → r ∈ R with f = Λ(l) and either (1) g occurs in r at a µ-replacing position, or (2) g occurs in l at a
non-µ-replacing position.

Note that condition (2) is not too restrictive in programming practice because most programs are
constructor systems, which means that no defined symbol occurs below the root in the left-hand side of
the rules.

The notion of µ-dependency allowed us to define usable rules well-suited to context-sensitive rewrit-
ing, and to propose the effective related theorem (Definition 8 and Theorem 1 in [82]). These results
were successfully implemented in the automated tool MU-TERM [2, 116], which gave the first automated
proof of Example 11.

A Class of Systems for Classical Usable Rules

It is worth noticing that our usable rules contain the classical ones, and are generally much more numer-
ous. To preserve efficiency, we identified a class of systems where classical usable rules can be safely
used.

A strongly conservative rule is a rule with no migrating variable and where µ-replacing positions
and non-µ-replacing positions do not share variables, in left-hand side, as well as in right-hand side.
Strongly conservative systems consist solely of strongly conservative rules.

Gutiérrez, Lucas and I established that the straightforward use of classical usable rules [73, 83] is
sound for the class of strongly-conservative systems (Theorem 2 in [82]). In fact, we show that if the
dependency pairs in a part of the graph and the corresponding classical usable rules are strongly conser-
vative, then the latter are the only rules to consider. This allows to use both our notion and the weaker
but computationally cheaper classical one in different parts of a dependency graph. This is typically
the case for Example 11, where two of the three cycles can be safely handled by the straightforward
approach while the last one requires our improved notion.

Since then Alarcón et al. [1] have introduced another notion of CS dependency pairs which is closer
to the usual case than the one we used. Their notion of usable rules is comparable, but does not improve
over ours [81].

Finally, note that in the context of project A3PAT, basic context-sensitive dependency pairs were
formalised in the COCCINELLE library (see Chapter III).

II.4.3 Membership Equational Programs

In addition to evaluation strategies like CS, sophisticated equational languages such as ELAN [19],
MAUDE [27], OBJ [75], CAFEOBJ [67], HASKELL [89]. . . , enjoy advanced features such as polymor-
phism, higher-order, rewriting modulo, conditions and use of extra variables in conditions, partiality,
and expressive type systems. However, many of those features are, at best, only partially supported by
current termination tools (for instance MU-TERM, CiME, APROVE, TTT [83], TERMPTATION [22],
etc.) while they may be essential to ensure termination.

In collaboration with Durán, Lucas, Marché and Meseguer, I studied termination techniques for
membership equational programs [54, 55].
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We defined a sequence of theory transformations that can be used to bridge the gap between expres-
sive equational programs, such as MAUDE programs, and termination tools, and proved these transfor-
mations to be sound.

Transformations for Automation of Operational Termination

In Membership Equational Logic (MEL) the two basic types of atomic predicates are equalities t = t′,
and memberships t : s stating that a term t has sort s. There is a basic level of typing by kinds; and a
more sophisticated one by sorts, this is achieved by deduction using theory axioms.

Operationally, and assuming ‘good’ executability properties, equalities t = t′ can be treated as
rewrite rules t → t′. Rewriting with equations as rules can furthermore be made context-sensitive by
providing a replacement map. In this way we arrive at the notion of a context-sensitive membership
rewrite theory (CS-MRT), which is the operational form of a membership equational program. Roughly
speaking, there are two kinds of rules: rewriting rules l→ r | c, and membership rules t : k | c, where c
is a list of conditions of the form si → ti or si : ki. Note in particular that in a CS-MRT rewriting and
computation of memberships t : s are recursively intertwined because application of a conditional equa-
tion may require satisfying memberships in its conditions, and application of a conditional membership
may likewise require satisfying equalities in its conditions.

This leads to specific termination behaviours. Consider, for example, the following membership
equational program, expressed in MAUDE as follows:

fmod INF is
protecting NAT .
sort Inf .
subsort Inf < Nat .
var N : Nat .
cmb s(N) : Inf if s(s(N)) : Inf .

endfm

Because of conditional membership cmb s(N) : Inf if s(s(N)) : Inf ., this program does
not terminate. However, no rewriting is involved in its nontermination. This means that the standard
termination notions are insufficient for dealing with termination of MEL programs. For this reason,
we use a proof-theoretic termination notion, called operational termination [119], developed by Lucas,
Marché and Meseguer, that faithfully captures the termination of conditional MEL programs, that is,
of CS-MRT. Intuitively, a MEL program is operationally terminating if all its well-formed proof trees,
for an axiomatised description of the relation, are finite. For example, the nontermination of the INF
program above is witnessed by the infinite proof tree,

. . .

s(s(s(N))):Inf
s(s(N)):Inf
s(N):Inf

The notion of operational termination is useful to clarify termination issues with conditions, as a condi-
tional specification may have a terminating rewrite relation and still be nonterminating by ‘looping’ in
evaluating the condition.

We tackle the problem of (operational) termination for membership equational programs by using
a sequence of transformations that map the original program into increasingly simpler ones, each hav-
ing the property that termination of the original program at each step ensures termination of the input
program, until we reach a transformed program that can be entered into a termination prover.

We apply two transformations steps, a general description of which is given below, and that we prove
to be both sound. See [55] for full technical details.



Transformation A eliminates sorts and memberships, resulting in an unsorted context-sensitive and
conditional rewrite theory. We add a truth value >, an unary operator isk(_) for each sort k, and
rules that compute sort/membership checks. One can then add adequate conditions to mimic those
checks. Modulo technical details to disambiguate overloading and handle typing of variables, the
idea is to get in particular rules like:

• isk(f(x1, · · · , xn))→ > | {iski(xi)→ >}1≤i≤n for each f : k1 · · · kn → k ∈ F
• s → t | {iski(xi) → >}1≤i≤n, c′1, . . . c′n for each conditional rule s → t | c1, . . . , cn where

the xi : ki are the variables involved, and where c′j = iskj (uj)→ > if cj is uj : kj , and the
rewrite condition otherwise.

• isk(s) → > | {iski(xi) → >}1≤i≤n, c′1, . . . c′n for each membership rule s : k | c1, . . . , cn
where the xi : ki are the variables involved, and the c′j are as above.

We prove in particular in [55] that µ operational termination of the obtained conditional system
implies (µ) operational termination of the original membership one.

We conjecture that this transformation is complete.

Transformation B eliminates conditions, possibly with extra variables. This transformation is based
on a technique by Ohlebusch [138, 139] for deterministic conditional systems of type 3, that is
systems consisting of rules l → r | c such that Var(r) ⊆ Var(l) ∪ Var(c) (type 3) and such that
for c = s1 → t1, · · · , sn → tn, Var(si) ⊆ Var(l) ∪

⋃i−1
j=1 Var(tj) (deterministic)15. As defined

by Ohlebusch, each conditional rule l → r|c with n conditions in c is transformed into n + 1
unconditional rules using U inductively defined as:

U(l→ r) = {l→ r}
U(l→ r | s→ t, c) = {l→ u(s, ~x)} ∪ U(u(t, ~x)→ r | c)

where u is a fresh new symbol added to the signature, and ~x = Var(l)∩(Var(t)∪Var(r)∪Var(c)).

We extend this transformation to our needs. In addition to U, we allow context-sensitive rewriting
by extending the replacement map µ into µ′ defined as µ′(Ui) = {1} for all Ui that are introduced
to deal with the conditional part of each rule in R (that is, only the first argument of U can be
evaluated), and µ′(f) = µ(f) for all f ∈ F .

We prove in particular in [55] that µ′-termination of the obtained system implies (µ) operational
termination of the original conditional one.

Further note that this transformation is not complete.

These transformations are implemented in the tool MTT dedicated to the proof of termination for
MAUDE programs16. MTT performs transformations A and B (several variants and technical opti-
misations are available) and then uses an external solver, like MU-TERM, CiME or APROVE, for the
termination proof of the resulting unconditional system.

Example 12 Consider the MAUDE specification from [55], which computes the length of a finite list.

fmod LengthOfFiniteLists is
sorts Nat NatList NatIList .
subsort NatList < NatIList .
op 0 : -> Nat .
op s : Nat -> Nat .
op zeros : -> NatIList .

15This tranformation is similar to Marchiori’s unravelings [125, 126].
16MTT is available at http://www.lcc.uma.es/~duran/MTT
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op nil : -> NatList .
op cons : Nat NatIList -> NatIList [strat (1 0)] .
op cons : Nat NatList -> NatList [strat (1 0)] .
op length : NatList -> Nat .
vars M N : Nat .
var IL : NatIList .
var L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
eq length(cons(N, L)) = s(length(L)) .

endfm

NatList and NatIList are intended to classify finite and infinite lists of natural numbers, respec-
tively. Operator cons is overloaded, and is declared with evaluation strategy (1 0). It can be used
both for building finite and infinite lists of natural numbers. The interpretation of this strategy annota-
tion is as follows: the evaluation of an expression cons(h,t) proceeds by first evaluating h and then
trying a reduction step at the top position (represented by 0). Evaluation on the second argument t is
forbidden because index 2 is missing in the annotation. Note that NatList is a subsort of NatIList.
This system is terminating but both the strategy for cons and the use of sorts (especially NatList and
NatIList instead of a single one) are crucial to achieve this terminating behaviour. By removing either
the strategy annotation or the sort information we would get a non-terminating program: On the one
hand, if reductions were allowed on the second argument of cons, then the evaluation of zeros would
never terminate. On the other hand, an attempt to evaluate length(xs) will not terminate if length
‘accepts’ infinite lists xs like, e.g., zeros; this is forbidden by specifying that length only accepts lists
of sort NatList, i.e., finite lists.

The corresponding context-sensitive membership rewriting theory is as follows:

fmod LengthOfFiniteListsMRT is
kind [Nat].
kind [NatIList] .
op 0 : -> [Nat] .
op s : [Nat] -> [Nat] .
op zeros : -> [NatIList] .
op nil : -> [NatList] .
op cons : [Nat] [NatIList] -> [NatIList] [strat (1)] .
op length : [NatIList] -> [Nat] .
cmb L : NatIList if L : NatList .
mb 0 : Nat .
cmb s(N) : Nat if N : Nat .
mb zeros : NatIList .
mb nil : NatList .
cmb cons(N,IL) : NatIList if N : Nat /\ IL : NatIList .
cmb cons(N,L) : NatList if N : Nat /\ L : NatList .
cmb length(L) : Nat if L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L)) if N : Nat /\ L : NatList .

endfm

An interesting optimisation consists in collapsing a conditional part without extra variables
like iss1(x1) → > ∧ · · · ∧ issk(xk) → >, of a conditional rule, into a single expression
and(iss1(x1),and(· · · , issk(xk)) · · · )→ > by introducing a binary operator and defined by

op and : S S -> S .
eq and(tt,T) = T .



Moreover, if the right-hand side of the conditional rule is >, one may replace it with the previous
expression, resulting in an unconditional rule: l→ and(iss1(x1),and(· · · , issk(xk)) · · · ).

After Transformation A with the aforementioned collapsing, and transformation B, program
LengthOfFiniteLists can be shown to be terminating by proving the µ-termination of the system:

and(tt,T) -> T
isNatIList(IL) -> isNatList(IL)
isNat(0) -> tt
isNat(s(N)) -> isNat(N)
isNat(length(L)) -> isNatList(L)
isNatIList(zeros) -> tt
isNatIList(cons(N,IL)) -> and(isNat(N),isNatIList(IL))
isNatList(nil) -> tt
isNatList(cons(N,L)) -> and(isNat(N),isNatList(L))
isNatList(take(N,IL)) -> and(isNat(N),isNatIList(IL))
zeros -> cons(0,zeros)
length(nil) -> 0
length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)
uLength(tt,L) -> s(length(L))

where µ(isNat) = µ(isNatList) = µ(isNatIList) = ∅, µ(and) = µ(cons) =
µ(uTake1) = µ(uTake2) = µ(uLength) = {1} and µ(f) = {1, . . . , ar(f)} for all other symbols f .
The µ-termination of this system can be automatically proved with APROVE or MU-TERM.

Up to this point, we proposed techniques and approaches aimed to prove termination of programs.
Starting from vanilla first-order rewriting, we extended our concerns to rewriting modulo AC, and to
systems of rules containing membership and conditions, that is, much closer to widespread programming
languages, as illustrated by Example 12. Moreover, we developed techniques that are not limited to toy
problems, but level to sizeable examples as one sees in practice, for instance termination for µ-CRL

specifications of hundreds of rules (provided by Arts), or discovery of termination proofs for intricate
calculi (Figure II.3), and for which human verification is out of reach.

All our contributions are implemented in automated provers, large pieces of software with many
thousands lines of code. Can we trust their results? I shall describe in the next chapter the approach
we developed in the A3PAT project dedicated to bridge the gap between skeptical proof assistants and
automated provers.
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Chapter III

An Architecture for Certification of Automated
Proofs

III.1 Trustworthy Decision Procedures

Verification of programs and specifications may involve a significant amount of formal methods to guar-
antee required properties for complex or critical systems. In the context of proving, users rely on proof
assistants with which they interact, step by step, until the proof is totally and mechanically verified.
However, formal proof may be costly, and as proof assistants often lack automation, there is an increas-
ing need to use fully automated tools providing powerful (and intricate) decision procedures. Although
some proof assistants can check the soundness of a proof, the results of automated provers are often
taken as is, even if the provers may be subject to bugs. Since application fields include possibly critical
sectors such as security, code verification, cryptographic protocols, etc., reliance on verification tools is
a crucial issue.

Automated provers and proof assistants do not mix easily. One of the strengths of proof assistants
like COQ [152] is a highly reliable procedure that checks the soundness of proofs. For instance, COQ

or ISABELLE/HOL [135] have a small and trustworthy kernel. In COQ, the kernel type-checks a proof
term to ensure the soundness of a proof. Those assistants need to check mechanically the proof of
each property used. Certified-programming environments based on these proof assistants find this an
additional guarantee. However, this means that the proof assistant has to check a property proven by an
external procedure before accepting it. Therefore, such a procedure must return a proof trace checkable
by the assistant.

In 2005 the French National Agency for Scientific Research (ANR) gave me the opportunity to
coordinate the A3PAT project1 aimed to bridge the gap between proof assistants yielding formal guar-
antees of reliability, and highly automated tools one has to trust, and thus to fulfil the important need for
externalisation of proofs using rewriting techniques. In its initial state, with a large spectrum, A3PAT
gathered 10 research scientists, (associate and full) professors from 4 laboratories (partners): CÉDRIC

(CNAM), LRI-PCRI (CNRS), LABRI (Bordeaux I), project MARELLE (INRIA Sophia-Antipolis), as
well as 3 post-doctoral positions, two of whom (Forest and Paskevich) were under my supervision. I
shall describe the project and how we want to provide both enhanced automation for proof assistants (by
proof delegation), and formal certificates for automatically generated proofs (by mechanical checking
of proof traces). As I shall explain, our proof structure, based on inference rules, is highly modular, and
constitutes a good base for a multi-certifier platform.

There are several pieces of work to be mentioned with reference to communication between au-
tomated provers and COQ. Amongst them, the ZÉNON theorem-prover [17], based on tableaux, pro-
duces COQ proof terms as certificates. ELAN enjoys techniques to produce COQ certificates for rewrit-
ing [134]. Bezem describes an approach regarding resolution [15]. However, these systems do not tackle
the problem of termination proofs.

1http://a3pat.ensiie.fr
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Regarding certification of termination proofs, several libraries have been developed, amongst which
COCCINELLE [29], but also CoLoR [23] and IsaFoR [155]. CoLoR is a library for COQ formalising
theorems in a pure deep fashion. On the one hand, proof scripts for CoLoR are very short. On the
other hand, some pure deep theorems may be difficult (costly) to compile, as their premises may include
completeness properties, for instance graph-related theorems. CoLoR can manage orderings based on
polynomials and matrices, DP criteria and relative termination. It also provides some results for termi-
nation modulo AC.

IsaFoR is a very recent library for ISABELLE/HOL. Its standalone certifier module is obtained by
extraction, that is an automatically generated Haskell program (using the code-generation feature of ISA-
BELLE/HOL). The extracted certifier is thus very efficient for checking termination proofs. However,
its results have to be accepted as axioms (unchecked) by proof assistants. IsaFoR can manage orderings
based on polynomials, and most DP refinements like usable rules [154], subtle graph approximations,
etc. It features also some techniques to certify non-termination proof.

It should be noticed that the A3PAT approach neither subsumes nor is subsumed by the techniques
of CoLoR or the newcomer IsaFoR. In fact, CoLoR even uses some of our developments.

III.2 Satellite-Based Architecture

The main purpose of proof assistants is to check proofs mechanically and not to discover them. Using
satellite tools to which the proof assistant may delegate proofs is an interesting way to add automation
to proof assistants. It does not add to the complexity of critical kernels, and it helps in delegating costly
computations to highly specialised and efficient tools. The proof assistant is then left with what it is best
at: checking that the given proof is correct.

The architecture of A3PAT is summarised in Figure III.1. It involves two main components: the
CiME 3 rewriting tool (embedding a certification engine that generates proof scripts) and the COC-
CINELLE library which formalises most of the properties needed.

The sequence of events is as follows. There are various scenarios for start: a development in a proof
assistant, a verification of specifications for instance, needs a proof of termination for a rewriting system.
The proof assistant may delegate this particular proof to an external (satellite) prover, like CiME 3 or
APROVE. Alternate case: a user of some termination automated prover may want a certificate for a
termination proof, etc.

Once a proof has been discovered, it is encoded in a well-suited XML format and submitted to the
certification engine in CiME 3, which generates a script for COQ. COQ scripts may of course be a
bit obscure. However, regarding termination proofs, the only parts that have to be human readable in
scripts are: the definition of the system, and a theorem stating that the aforementioned system defines a
well-founded relation.

Note that, as the trace (XML) format is compact, some more computations may be performed by
CiME 3 to generate specialised instantiations of lemmas and functions.

In order to certify the proof, COQ must compile the axiom-free script. This task usually requires
formal definitions and theorems gathered in the COCCINELLE library.

III.2.1 The COQ Proof Assistant

The COQ proof assistant is based on type theory and features:

1. A formal language to express objects, properties and proofs in a unified way; all these are repre-
sented as terms of an expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [39].
λ-abstraction is denoted by fun x:T => t, and application is denoted by t u.
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Figure III.1. Certification architecture.

2. A proof checker which checks the validity of proofs written as CIC-terms. In this framework, a
term is a proof of its type, and checking a proof consists in typing a term. The correctness of the
tool relies on this type checker, which is a small kernel of 5 000 lines of Objective Caml code.

A very powerful feature of COQ is the ability to define inductive types to express inductive data
types and inductive properties. For example the following inductive types define the data type nat of
natural numbers, O and S (successor) being the two constructors2, and the property even of being an
even natural number.

Inductive nat : Set := | O : nat | S : nat → nat.
Inductive even : nat → Prop := | even_O : even O
| even_S : ∀n : nat, even n → even (S (S n)).

Hence the term even_S (S (S O)) (even_S O (even_O)) is of type even (S (S (S (S O))))

so it is a proof that 4 is even.

Termination in COQ

The termination property is defined in the COQ standard library as the well-foundedness of an ordering.
Hence we model rewriting systems as orderings in the following. This notion is defined using the
accessibility predicate: a term t : A is said to be accessible for an ordering < if all its predecessors are,
inductively, and < is well-founded if all terms of type A are accessible (R y x stands for y < x):

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=
| Accintro : (∀ y : A, R y x → Acc R y) → Acc R x

Definition well_founded (A : Type) (R : A → A → Prop) :=
∀ a : A, Acc R a.

This inductive definition contains both the base case (when an element has no predecessor with reference
to R) and the general inductive case.

For example, in a relation R on bool defined by R true false, true is accessible because it
has no predecessor, and so is false because its only predecessor is true. Hence Acc R true and
Acc R false are provable, hence well-founded R is provable.

2Note that this notion of constructors is different from the one introduced in Section II.1.4.

47



If R is the rewrite relation modelling a system R, we should write R u t (which means u < t) when a
term t rewrites to a term u. For the sake of readability I shall use as much as possible the COQ notation:
t -[R]> u (and t -[R]*> u for t→∗ u) instead.

The desired final theorem stating that R is terminating has the following form:

Theorem well_founded_R: well_founded R.

Proofs of this theorem are supposed to be discovered by an automated prover, and generated in COQ

syntax by the certifier tool, all with full automation. The only things the user has to check is firstly that
the generated relation R corresponds to R, and secondly that the generated COQ files do compile.

Shallow or Deep Embedding?

In order to prove properties on our objects (terms, rewriting systems, polynomial interpretations. . . ), we
have to model these objects in the proof assistant by defining a theory of rewriting. There are classically
two opposite ways of doing this: shallow embedding and deep embedding.

When using shallow embedding, one defines ad hoc translations for the different notions, and proves
criteria on the translation of each considered system. For instance, term rewriting systems can be pre-
sented as inductive definitions with one constructor per rule. When using deep embedding, one defines
generic notions for rewriting and proves generic criteria on them, and then instantiates notions and cri-
teria on the considered system.

Both embeddings have advantages and drawbacks. On the plus side of shallow embedding are: an
easy implementation of rewriting notions, and the absence of need for meta notions (as substitutions,
etc.). For example, a definition of critical pairs and Newman’s lemma is almost straightforward this
way, allowing (simple) proofs of confluence with little effort. On the minus side, one cannot certify a
criterion but only its instantiation on a particular problem, which often leads to large scripts and proof
terms. Regarding deep embedding, it usually leads (not always as we explain below) to simpler scripts
and proof terms since one can reuse generic lemmas (take for instance our RPO) but at the cost of a
rather technical first step consisting in defining the generic notions and proving generic lemmas.

We chose an hybrid approach where some notions are deep (Σ-algebra, RPO) and others are (also)
shallow (rewriting system, dependency graphs, polynomial interpretations). In fact, using both embed-
dings in a single proof is not a problem, moreover it is possible to take full benefit of both.

III.2.2 COCCINELLE

COCCINELLE is the formal library upon which we rely for certification using COQ. Developed by
Contejean in the context of A3PAT, its main purpose is to model (in COQ) universal algebras, that is
terms built on arbitrary signatures, as well as the usual notions defined in this framework. Amongst
them, rewriting and equational theories generated by a set of rules/equations (seen as pairs of terms) are
the key relations over terms, used to model computations and equality.

The links between COCCINELLE and CiME 3 are of two distinct natures. Firstly, COCCINELLE

models (some of) the structures and algorithms implemented in CiME 3, but also states theorems on
them. There is for example, a modelling of lists and filtering functions with reference to a property, but
this model comes with some additional statements, in particular: the function actually computes what is
intended: an element is filtered if and only if it belongs to the list given as an argument, and the wanted
property holds for it. COCCINELLE is hence used to certify the modelling of some crucial algorithms
used in CiME 3, such as matching modulo associativity-commutativity (AC) [30], unification, RPO
orderings, etc.

The second link may exist between COCCINELLE and any tool that produces traces in the relevant
format (Section III.2.4). COCCINELLE provides some generic theorems that can be combined with the
trace to prove some specific properties, such as the termination of a rewriting system in a given term



algebra. COCCINELLE together with the part of CiME 3 that turns an XML trace into a COQ file can be
seen as a trace compiler, which transforms a trace into a COQ certificate.

Amongst other examples, COCCINELLE has been successfully used by Castéran and Contejean to
prove the accessibility of ordinals less than Γ0 in the COQ library Cantor, thanks to its RPO [25], and by
Stratulat for the integration of implicit induction in certified environments [150].

Terms and Relations over Terms

The modelling of terms is kept as simple as possible:

Inductive term : Set :=
| Var : variable → term
| Term : symbol → list term → term.

A term is either a variable (Var) or a function symbol applied to a list of arguments (Term).
The main relation defined over terms is a single step of rewriting. Using a constructor Var, instead

of COQ’s universal quantifier, allows to represent a (finite) rewriting system as a finite first-order data,
actually a list of pairs of terms. For example, the following rewriting system:{

plus(x, zero) → x
plus(x, succ y) → succ(plus(x, y))

can be represented by the (deep) object:

[ (Term plus [Var x; Term zero []], Var x);
(Term plus [Var x; Term succ [Var y]],

Term succ [Term plus [Var x; Var y]]) ]

or by the (shallow) COQ inductive relation:

Inductive Peano (relation term) :=
| Plus_zero : ∀t, Peano t (Term plus [t; Term zero []])
| Plus_succ :
∀ t t’, Peano (Term succ [Term plus [t; t’]])

(Term plus [t; Term succ [t’]])

The first representation allows to reason by induction on the number of rules in the system, and de-
fine some functions that compute on it, for example a function that returns a list of dependency pairs.
The second representation allows to use facilities and features COQ offers on inductive definitions, for
example inversion.

Both representations are useful, and once the equivalence between them is proven (on a given rewrite
system), both can be used, according to the wanted property.

The definition of rewriting is done in two steps: since the variables are implicitly universally quanti-
fied, a rule between terms t1 and t2 yields all the pairs (t1σ, t2σ) obtained by instantiating the variables
by any substitution σ.

Inductive axiom (R : relation term): relation term :=
| instance : ∀t1 t2 sigma, R t1 t2 →
axiom R (apply_subst sigma t1) (apply_subst sigma t2).

It is possible then to perform the replacement of t1σ by t2σ under a context, which is either empty
(at_top), or deep (in_context).

Inductive one_step (R : relation term): relation term :=
| at_top : ∀t1 t2, axiom R t1 t2 → one_step R t1 t2
| in_context :

∀ f l1 l2, one_step_list (one_step R) l1 l2 →
one_step R (Term f l1) (Term f l2).
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The usual rewriting relation is the transitive closure of the one_step relation, and the equational
theory is its reflexive, symmetric and transitive closure. Thanks to this formalisation, Contejean proved
all the usual trivial facts on rewriting and equational theories gathered in the COCCINELLE specification
file term_algebra/equational_theory_spec.v.

Available Developments

Available developments include:

• the RPO relation with status, proven to be an ordering, compatible with instantiation and addition
of context, and to be well-founded when the underlying precedence over symbols is well-founded.
The RPO relation can be decided thanks to a COQ function that computes a boolean result.

• dependency pair criteria, both marked and unmarked versions, with Dershowitz’s improvement;

• dependency graphs, extended subterm (Section II.1.4);

• modularity (Section II.3), usable rules [83, 154];

• rewriting under some strategies (innermost [72], context-sensitive [3]) is modelled, and the corre-
sponding versions of the DP criterion are proven;

• Gramlich’s criterion [78] showing plain termination when innermost termination is proven.

III.2.3 CiME 3

Our tool CiME 3 can be used as a satellite prover for the COQ proof assistant. Evolving from the CiME
family3, it consists of

• A rewriting toolbox, with a termination engine, and

• A proof compiler, generating COQ proof scripts.

The rewriting toolbox provides numerous techniques and procedures on term algebras: matching,
unification, rewriting, and completion, either for free algebras or modulo equational theories [34] with
commutative or associative and commutative operators, with unit elements, etc. It enjoys also a termina-
tion engine for first-order rewriting systems. Note that not all techniques at work in CiME 2 have been
implemented in CiME 3 yet.

Certified termination criteria include:

• Manna-Ness, lexicographic composition of orderings,

• dependency pair criteria, marked or unmarked, with Dershowitz’s improvement;

• dependency graphs, extended subterm criterion.

Certified termination orderings include:

• polynomial interpretations (Section II.2.1),

• various matrix interpretations [57, 42],

• full RPO with status [47] (including comparison with status ‘lex’ of symbols with different arities)
and AFS refinements [9].

3http://cime.lri.fr



Some other techniques are not trace-producing yet, even though they are completely formalised in the
COCCINELLE library (narrowing, innermost refinements [9], modules, usable rules etc.). Note that for
efficiency reasons, the termination engine may use an external SAT-solver to find orderings, à la [6, 66].

When CiME 3 finds a proof, it may either call directly the proof compiler to produce a COQ script
for certification, or produce an XML trace to be used later by our proof compiler (or another one).

CiME 3 accepts several input languages, depending on how one wants to use it: in batch mode or in
interactive session.

Interactive sessions require the tool’s dedicated programming language. The example below shows
a basic interactive session with CiME 3. The answers of the top-level are given in slanted font. We
firstly define a signature, a term algebra for Peano arithmetic:

CiME> let F_peano =
signature "O : constant; s : unary; plus : binary;";

F_peano : signature = signature "s : 1; plus : 2; O : 0"

CiME> let X = variables "x,y,z";
X : variable_set = variables "z,x,y"

CiME> let A_peano = algebra F_peano ;
A_peano : F_peano algebra = algebra F_peano

We define then terms and term rewriting systems on this algebra:

CiME> let R_peano = trs A_peano "
plus(x,O) -> x ;
plus(x,s(y)) -> s(plus(x,y)) ;";

R_peano : F_peano trs = trs A_peano ...

Now we may check the termination of the system:

CiME> termination R_peano;
[...information depending on verbosity...]
- : bool = true

and produce an XML trace:

CiME> xml_proof_trace R_peano;
<?xml version="1.0" encoding="UTF-8"?>
<PROOF>

<SIGNATURE>
...

</PROOF>
- : unit = ()

or directly a COQ certificate:

CiME> coq_certify_proof R_peano;
...
Lemma wf :
well_founded (algebra.EQT.one_step

R_peano_deep_rew.R_peano_rules).
....
- : unit = ()

Note that the last lemma of the script is the well-foundedness of the given relation.
Termination proof search may be driven by heuristics. Heuristics are described with a small tactic

language defined by the grammar below:
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heuristic ::= Solve [ heuristic_list ]
| Then [ heuristic_list ]
| Use criterion
| Repeat heuristic

heuristic_list ::= heuristic
| heuristic ; heuristic_list

criterion ::= DP | DPM | SCC | RMVx | MN ...

The Use command applies the criterion given in argument, Solve tries to apply a list of heuristics on a
goal until one succeeds, Then takes a list of heuristics to be applied in sequence and that must succeed
on each step, finally Repeat repeatedly applies a heuristic until it fails.

The commands of the following example say to use the dependency pair criterion with marks (DPM)
and then to repeat the sequence SCC ; RMVx where SCC tries to apply an instance of the GRAPH

rule with a decomposition into strongly connected components which is indeed compatible, and RMVx
(called on each of the resulting subsets) tries to find a pair 〈t, u〉 on which rule RMVERTEX applies, as
described in Section II.1.4.

let h = heuristic
"Then [Use DPM; Repeat Then [ Use SCC ; Use RMVx ]]";

set_heuristic "h";

It is also possible to drive the ordering constraints solving by selecting which orderings to try. This
can be specified using the command orderparams with a list of ordering specification (bound or type
of polynomials, dimensions of matrices, class of AFS, etc.).

All this can also be done in batch mode. We have to give the input format (amongst cime, trs,
srs, xml, cpf) and the output format (amongst cime, trs, srs, xml, cpf, coq). The following
example produces an CPF certificate certif.xml from a given TRS, specified in the R.trs file,
using the information about orderings, heuristics, etc., provided in file info.cim:

cime -icime info.cim -itrs R.trs -ocpf certif.xml

Finally, the next example is an invocation of CiME3 for the compilation of a CPF file
termination_trace.xml (which may come from the CiME 3 termination engine or from another
tool) into a COQ source file coq_certificate.v

cime -icpf termination_trace.xml -ocoq coq_certificate.v

III.2.4 Trace Language

Defining an efficient trace language is a challenging task. If we restrict to CiME alone, such a language
may be used for objects as different as proof of termination, of confluence, of equality, etc. At the same
time, it must keep the verbosity low: those proofs contain so many implicit steps that just emitting their
sequence is illusory.

An important point is that the language must be designed to be as modular as possible, with no
global declaration, in order to ease the composition of traces produced by different automated provers.

We started to define a first version of a trace language at the beginning of the A3PAT project. The
overall structure of our original XML trace is similar to the inference tree mentioned in Section II.1.3.
It is designed to be as concise as possible, while carrying all information that can be used by CiME to
compute a proof script. For example, all technical functions depending on the dependency graph will be
computed and instantiated by CiME. There is no trace left of a structure of graph in COQ, just sufficient
lemmas, thanks to the techniques we proposed in [40] (see Section III.3).



The XML file lists the system, the applied criteria and gives the relevant orderings to solve the termi-
nation problem. An interesting tag is <PROPERTY>, which allows the combination of criteria. It has two
mandatory attributes, criterion which contains the name of the (inference rule) criterion applied and
prop which expresses the type of problem being solved. For instance <PROPERTY criterion="dp"

prop="sntrs"> means that the DP criterion has to be used to prove that the given system is terminat-
ing. The remaining trace contains the system, and the <PROPERTY> embedding the proof trace of the
generated subproblems.

This format is not CiME dependent, it is general enough to allow other provers’ proofs to be certified
by our approach. In particular, APROVE can output traces for COQ certification with A3PAT.

CPF

However, in order to facilitate interaction between provers and certifiers, the A3PAT and
CeTA/IsaFoR [155] teams4 recently decided to start the design of an extensible common proof format
(CPF). While slightly more verbose, its overall structure is close to CiME’s XML format. CiME sup-
ports CPF in addition to its own XML trace format, and other provers like APROVE and TTT2 [99] also
support it, at least partially. A detailed description of CPF is available on http://cl-informatik.
uibk.ac.at/software/cpf/.

CPF is now the official trace language for the termination competition [124] (certifying category).

III.3 Proof Techniques, the Case of Graphs

Certifying techniques as involved as one may find in the termination proof area amounts to defining
efficient proof approaches, especially in the context of constructive proofs.

This is particularly the case when computationally complex structures like graphs are involved.
Some properties may require heavy computations and particularly involved algorithmics, and may be
very difficult to overcome for a proof assistant (even with the help of dedicated libraries). For instance
Theorem 2, the graph criterion of [69], states that one has to find a suitable ordering “for each circuit
[. . . ] in the graph”. That means that the property has to be shown for each cycle separately, and moreover
that one has to prove that all cycles have been considered. Applying directly such a theorem is currently
out of reach regarding the size of graphs that occur in the practice of termination proof.

Courtieu, Forest and I proposed in 2008 a first approach for certifying proofs using this theorem [40]
which proves to be very efficient in practice.

The key point of our approach is that the graph will be defined implicitly. As it is the case for
proof discovery, we do not apply Theorem 2 as is, but rather rely on a compatible decomposition (Sec-
tion II.1.4). We never actually model a graph, we just use a set of vertices and a relation between them
to build it implicitly as we prove the relevant property on its parts, in a hierarchical fashion. Regarding
termination proofs: vertices will be dependency pairs, a pair p1 will be in relation with a pair p2 if p1p2

may occur in a dependency chain.
Graph refinement theorems are proved for each instance, by shallow embedding. We generate a

direct proof for each application of rules GRAPH and RMVERTEX. This proof is done by induction
on the possible dependency chains in the initial graph. In particular this induction follows a graph that
is now implicit. It proceeds, in fact, along the directed acyclic graph (DAG) of strongly connected
components, which is the compatible decomposition we use.

All in all, the graph is only useful to find the suitable decomposition.

4With additional comments from the CoLoR team.
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III.3.1 Formalisation of Hierarchical Decomposition

We work directly on dependency chains which we model by inductive relations. Using inductive types,
reasoning on all possible dependency chains can be done by induction on the definition of the relation.

For example, suppose we have a strongly connected component SCC defined by the set of pairs:

SCC = {〈plus(s x,y), plus(x,y)〉, 〈plus(x,s y), plus(x,y)〉}.

The corresponding dependency chain relation is generated as follows (notations are simplified):

Inductive SCC : term → term → term:=
SCC0: ∀V0 V1, x -[R]*> s(V0) → y -[R]*> V1

→ plus(x,y) -[SCC]> plus(V0,V1)
| SCC1: ∀V0 V1, x -[R]*> V0 → y -[R]*> s(V1)

→ plus(x,y) -[SCC]> plus(V0,V1)

Note that SCC y x is exactly equivalent to x�SCC,R y. In particular: head reduction by R is disallowed
by construction. Further note that this relation is not defined constructively: the set of terms x such
that x -[R]*> S(V0) is not defined explicitly, and actually it cannot be computed in general. In our
methodology the approximation lies, during reasoning, in the way we discard terms t that cannot reduce
to u. The currently generated proofs implement EDG [9], this can be easily extended to EDG*, and
actually be parameterised by an approximation.

Sub-DAG of Dependency Chains

Consider the following graph that corresponds to the relation given above:

0 1

The strongly connected part of SCC restricted to pair 〈plus(s x,y), plus(x,y)〉 is modelled by the
following relation, which corresponds to 0 :

Inductive SCC0 : term → term → term:=
SCC00: ∀V0 V1, x -[R]*> S(V0) → y -[R]*> V1

→ plus(x,y) -[SCC0]> plus(V0,V1)

An application of RMVERTEX that removes only pair 〈plus(s x,y), plus(x,y)〉 will generate a
module (labelled as weak) dedicated to the remaining pairs, for which termination will in turn have to be
proven, recursively. Termination of reductions in SCC will then be obtained by well-founded induction.

An application of GRAPH will present a graph G as a set of components Ci that can be seen as a
compatible DAG (hierarchy). When the relations restricted to the Ci have been proven to be terminating,
it remains to prove the following lemmas:

Lemma Acc_S0: ∀x y, C0 x y → Acc G x.
...
Lemma Acc_Sn: ∀x y, Cn x y → Acc G x.

The proof of Acc_Si may use any Acc_Sj for j<i.
The key point is that inductions on the paths in the graph can be simulated by a judicious generation

of intermediate lemmas (basically by topological sort) that propagate the desired property along the arcs.
With this technique, our tool was the first one to certify, in a few seconds, termination proofs of

systems (from the TPDB http://www.termination-portal.org/wiki/TPDB) involving graphs
consisting of more than a thousand arcs5 (See Figure III.2), or of more than 150 vertices6.

To our knowledge, it is the only effective certification technique for big graphs in COQ.
5TPDB: TRS/TRCSR/ExSec11_1_Luc02a_iGM.trs
6TPDB: TRS/TRCSR/PALINDROME_complete-noand_FR.trs



M_half(active(X)) ; M_half(X)

M_half(mark(X)) ; M_half(X)

M_first(X1,active(X2)) ; M_first(X1,X2)

M_first(active(X1),X2) ; M_first(X1,X2)

M_first(X1,mark(X2)) ; M_first(X1,X2)

M_first(mark(X1),X2) ; M_first(X1,X2)

M_dbl(active(X)) ; M_dbl(X)

M_dbl(mark(X)) ; M_dbl(X)

M_add(X1,active(X2)) ; M_add(X1,X2)

M_add(active(X1),X2) ; M_add(X1,X2)

M_add(X1,mark(X2)) ; M_add(X1,X2)

M_add(mark(X1),X2) ; M_add(X1,X2)

M_s(active(X)) ; M_s(X)

M_s(mark(X)) ; M_s(X)

M_sqr(active(X)) ; M_sqr(X)

M_sqr(mark(X)) ; M_sqr(X)

M_recip(active(X)) ; M_recip(X)

M_recip(mark(X)) ; M_recip(X)

M_cons(X1,active(X2)) ; M_cons(X1,X2)

M_cons(active(X1),X2) ; M_cons(X1,X2)

M_cons(X1,mark(X2)) ; M_cons(X1,X2)

M_cons(mark(X1),X2) ; M_cons(X1,X2)

M_terms(active(X)) ; M_terms(X)

M_terms(mark(X)) ; M_terms(X)

M_mark(half(X)) ; M_mark(X)

M_mark(half(X)) ; M_half(mark(X))

M_mark(half(X)) ; M_active(half(mark(X)))

M_mark(nil) ; M_active(nil)

M_mark(first(X1,X2)) ; M_mark(X2)

M_mark(first(X1,X2)) ; M_mark(X1)

M_mark(first(X1,X2)) ; M_first(mark(X1),mark(X2))

M_mark(first(X1,X2)) ; M_active(first(mark(X1),mark(X2)))

M_mark(dbl(X)) ; M_mark(X)

M_mark(dbl(X)) ; M_dbl(mark(X))

M_mark(dbl(X)) ; M_active(dbl(mark(X)))

M_mark(add(X1,X2)) ; M_mark(X2)

M_mark(add(X1,X2)) ; M_mark(X1)

M_mark(add(X1,X2)) ; M_add(mark(X1),mark(X2)) M_mark(add(X1,X2)) ; M_active(add(mark(X1),mark(X2)))

M_mark(0) ; M_active(0)

M_mark(s(X)) ; M_mark(X)

M_mark(s(X)) ; M_s(mark(X))

M_mark(s(X)) ; M_active(s(mark(X)))

M_mark(sqr(X)) ; M_mark(X)

M_mark(sqr(X)) ; M_sqr(mark(X))

M_mark(sqr(X)) ; M_active(sqr(mark(X)))

M_mark(recip(X)) ; M_mark(X)

M_mark(recip(X)) ; M_recip(mark(X))

M_mark(recip(X)) ; M_active(recip(mark(X)))

M_mark(cons(X1,X2)) ; M_mark(X1)

M_mark(cons(X1,X2)) ; M_cons(mark(X1),X2)

M_mark(cons(X1,X2)) ; M_active(cons(mark(X1),X2))

M_mark(terms(X)) ; M_mark(X)

M_mark(terms(X)) ; M_terms( mark(X))

M_mark(terms(X)) ; M_active(terms(mark(X)))

M_active(half(dbl(X))) ; M_mark(X)

M_active(half(s(s(X)))) ; M_half(X) M_active(half(s(s(X)))) ; M_s(half(X))

M_active(half(s(s(X)))) ; M_mark(s(half(X)))

M_active(half(s(0))) ; M_mark(0) M_active(half(0)) ; M_mark(0)M_active(first(s(X),cons(Y,Z))) ; M_first(X,Z) M_active(first(s(X),cons(Y,Z))) ; M_cons(Y,first(X,Z))

M_active(first(s(X),cons(Y,Z))) ; M_mark(cons(Y,first(X,Z)))

M_active(first(0,X)) ; M_mark(nil) M_active(add(s(X),Y)) ; M_add(X,Y) M_active(add(s(X),Y)) ; M_s(add(X,Y))

M_active(add(s(X),Y)) ; M_mark(s(add(X,Y)))

M_active(add(0,X)) ; M_mark(X)

M_active(dbl(s(X))) ; M_dbl(X) M_active(dbl(s(X))) ; M_s(dbl(X))M_active(dbl(s(X))) ; M_s(s(dbl(X)))

M_active(dbl(s(X))) ; M_mark(s(s(dbl(X))))

M_active(dbl(0)) ; M_mark(0) M_active(sqr(s(X))) ; M_dbl(X)M_active(sqr(s(X))) ; M_sqr(X) M_active(sqr(s(X))) ; M_add(sqr(X),dbl(X)) M_active(sqr(s(X))) ; M_s(add(sqr(X),dbl(X)))

M_active(sqr(s(X))) ; M_mark(s(add(sqr(X),dbl(X))))

M_active(sqr(0)) ; M_mark(0) M_active(terms(N)) ; M_s(N)M_active(terms(N)) ; M_terms(s(N)) M_active(terms(N)) ; M_sqr(N)M_active(terms(N)) ; M_recip(sqr(N)) M_active(terms(N)) ; M_cons(recip(sqr(N)),terms(s(N)))

M_active(terms(N)) ;M_mark(cons(recip(sqr(N)),terms(s(N))))

Figure III.2. A practical example from TPDB, consisting of 47 rules, 85 vertices, 1015 arcs.

Deeper Graph Approaches

We proposed recently a deepened version of this implicit graph approach [31], and implemented it in
COCCINELLE. The presentation of the relevant connections is given as a function the good properties
of which are easy to check, and which is computed by the satellite tool while compiling the proof trace.
This function may be then taken as a premise in deep versions of theorems. It allows for more local
checks of compatibility.

The formalisation in [31] is very similar to the proposal of Thiemann & Sternagel [155]. Concerning
the splitting of the graph, both statements are roughly equivalent. A minor difference is that in our
setting, the splitting is given as a total function from pairs to integers (having in mind a component rank
in the graph), whereas in the other, it is an explicit partition given as a list of sets of pairs, sets that
have to be checked as disjoint, which is not necessary in our case (we may even define the function as a
relation, provided that all images fulfil the compatibility inequalities).
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III.4 Formal Proofs and Criteria

Criteria can be used in formal proofs as instances of generic theorems proven once and for all (deep
embedding) or as ad-hoc COQ definitions (shallow embedding).

Example of Deep Embedding: RPO

The COCCINELLE library formalises RPO in a generic way, and proves it to be well-suited for ordering
pairs. RPO is defined using a precedence (a decidable strict ordering over symbols) and a status (mul-
tiset/lexicographic) for each symbol. The library contains a functor building an RPO from a module of
type Term and a precedence. It builds the usual properties of RPO (monotonicity, stability) and a proof
that if the precedence is well-founded, then so is the RPO. Proofs of termination using RPO are very
easy to generate as it is sufficient to generate the precedence, the proof that it is well-founded and to
apply the functor. A COQ function returning a boolean decides the RPO relation.

This is to date the only full RPO used by certifiers, embedded in particular in CoLoR.

It is worth noticing that the generic RPO uses a strict precedence and a comparison from left to right
in the lexicographic case. This is not a restriction: a simple translation from terms into terms, mapping
equivalent symbols onto a same symbol, and performing desired permutations (of the subterms under a
given symbol with status lex) is both monotonic and stable. Hence the relation defined by comparing
the translations of terms by the generic RPO still has the good properties. This can be done during AFS
phases, defined as fixpoints, and applied at comparison time.

Example of Shallow Embedding: Polynomials

In our framework a polynomial interpretation is currently defined as a recursive function on terms.
From an interpretation such as the following:

[[#]] = 0; [[0]](x) = x+ 1; [[1]](x) = x+ 2; [[+]](x, y) = y + x+ 1; [[+̂]](x, y) = 2y + x

one can produce a measure: term→ Z:

Fixpoint measure t { struct t } := match t with
| (Term plus [x5; x4]) => P_plus (measure x5) (measure x4)
| (Term O [x4]) => P_O (measure x4)
| (Term I [x4]) => P_I (measure x4)
| (Term # []) => P_#
| _ => A0
end.

where A0 is the lower bound. The shallow definition of relevant polynomials is straightforward:

Definition P_plus (x4:Z) (x5:Z) := 1* x4 + 1* x5 + 1.
Definition P_O (x4:Z) := 1* x4 + 1.
...

Polynomials and the measure function are separated for efficiency reasons, as a few properties can be
proven on measure without complete knowledge of actual polynomials.

Remark that no marked symbol is defined in the signature. Since they can only appear at root
position, it is sufficient to wrap the recursive measure by a special call:

Definition marked_measure t := match t with
| (Term plus [x5; x4]) => P_Marked_plus (measure x5) (measure x4)
| _ => measure t
end.



Thus, although the definition of terms is a deep embedding, the measure is defined as a shallow
embedding7. It is a recursive function on terms directly, and does not refer to a data type of polynomials,
substitutions or variables (x4 above is a COQ variable, it is not a rewriting variable which would have
been of the form Var n). This choice makes our proofs simpler to generate. In a deep embedding
we would need a theory for polynomials, and a generic theorem stating that a polynomial on positive
integers with positive factors is monotonic. But actually this property instantiated on measure above
can be proven by an easy induction on t.

The approach involves a procedure to compare even non-linear polynomials that results from tech-
niques in Section II.2.1, that is with nonnegative coefficients; it allows for efficient termination proofs
using these kinds of interpretations.

Example 13 We look again at the Ackermann-Péter function of Example 6, let us recall system R:

u11(Aout(v0)) → Aout(v0) u22(Aout(v0)) → Aout(v0)
u21(Aout(v0), v1) → u22(Ain(v1, v0)) Ain(O, v0) → Aout(S(v0))
Ain(S(v0), O) → u11(Ain(v0, S(O))) Ain(S(v0), S(v1)) → u21(Ain(S(v0), v1), v0)

We may discover an alternate termination proof, using both polynomial orderings and RPO, that is
mixing shallow and deep embedding in a mechanical certification.

The system yields 6 dependency pairs building the following EDG:

1 : 〈û21(Aout(V0), V1), Âin(V1, V0)〉
2 : 〈û21(Aout(V0), V1), û22(Ain(V1, V0))〉
3 : 〈Âin(S(V0), O), û11(Ain(V0, S(O)))〉
4 : 〈Âin(S(V0), O), Âin(V0, S(O))〉
5 : 〈Âin(S(V0), S(V1)), û21(Ain(S(V0), V1), V0)〉
6 : 〈Âin(S(V0), S(V1)), Âin(S(V0), V1)〉

12

3

4

5

6

Pairs 2 and 3 are not in strongly connected components. The following polynomial interpretation defines
(�1, <1) and, with RMVERTEX, takes care of pair 4.

[[Aout]](X0) = 0 [[u11]](X0) = 0 [[u21]](X0, X1) = 0
[[Ain]](X0, X1) = 1 [[u22]](X0) = 0 [[O]] = 1

[[S]](X0) = X0 + 1 [[û21]]1(X0, X1) = X1 +X0 [[Âin]]1(X0, X1) = X0

The remaining strongly connected component consists of pairs 1, 5 and 6. Pairs 5 and 6 are pruned
using (�2, <2) defined with the conjunction of

• an AFS permuting arguments of u21 and û21, and projecting u22, u11 and Aout to their first
argument,

• an RPO with the precedence O = Aout < S = u22 < Ain = Âin = u21 = û21 < u11 and all statuses
set to lex left-right.

The remaining�{1},R leads to an empty problem as there is no circuit left in the graph.
These steps are summarised on the proof tree (guards and trivial steps omitted):

7In particular polynomials are almost (and could be) completely handled by the trace generation part of CiME since our
library COCCINELLE focuses on deep embedding.
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GRAPH

RMVERTEX(�1, <1)

GRAPH

RMVERTEX*(�2, <2)

GRAPH
∅

SN(�{1},R)
Decomp(∅)

SN(�{1,5,6},R)
· · ·

SN(�{1,5,6},R)
Decomp({1, 5, 6} · · · )

SN(�{1,4,5,6},R)
· · ·
· · ·

DP
SN(�{1,2,3,4,5,6},R)

SN(→R)

Decomp({1, 4, 5, 6} · · · )

The proof trace, as a CPF (XML) file, follows the same structure of rule applications The system is given

<proof> ...
<input>

<trsInput> <trs> ... </trs> </trsInput>
</input>

then the DP specifying�DP(R),R:

<dpTrans>
<dps> ... </dps>

which is proven to be terminating using GRAPH. Termination proof of�{1,4,5,6},R is described.

<dpProof>
<depGraphProc>

<component>
<dps> ... <!-- DP #1,4,5,6 --> ... </dps>

Pair 4 is removed by a polynomial interpretations, application of RMVERTEX (redPairProc).

<dpProof>
<redPairProc>
<orderingConstraintProof>
<redPair>

<interpretation> <type> <polynomial> ... </polynomial> </type>
...

</interpretation>
</redPair>

</orderingConstraintProof>

The remaining�{1,5,6},R is then proven to be terminating, using GRAPH. . .

<dps> ... <!-- DP #1,5,6 --> ... </dps>
<dpProof>
<depGraphProc>

<component>
<dps> ... <!-- DP #1,5,6 --> ... </dps>

. . . and RMVERTEX with an RPO, leaving no circuit in the remaining�{1},R.

<dpProof>
<redPairProc>
<orderingConstraintProof>
<redPair>
<pathOrder>

...
</pathOrder>

</redPair>
</orderingConstraintProof>
<dps> ... <!-- DP #1 --> ... </dps>
<dpProof>
<depGraphProc>
<component>
<dps> ... <!-- DP #1 --> ... </dps>
<realScc>false</realScc>

</component>
</depGraphProc>



What remains in the file is the closure of rules until the first GRAPH, the trivial branches addressing
the non-cycling pairs 2 and 3, and we are done.

Finally, one obtains a .v file that can be compiled by COQ, using COCCINELLE, in few seconds,
thus certifying the proof. Let us have a look at its structure (most terms, and proofs are omitted).

The two pairs outside connected component, and the component {1,4,5,6}: DP_R_scc2

Inductive DP_R_non_scc0 : term → term → Prop :=
(* <Ain(s(m),0),u11(Ain(m,s(0)))> *) .

Lemma acc_DP_R_non_scc0 :
∀ x sigma,
In x (List.map (apply_subst sigma)

[(Term u11 [(Term Ain [(Var 1); (Term s [(Term 0 [])])])])]) →
Acc (sdp.Rcdp_min R_rules DP_R) x.

... Qed.

Inductive DP_R_non_scc1 : term → term → Prop :=
(* <u21(Aout(n),m),u22(Ain(m,n))> *).

Lemma acc_DP_R_non_scc1 :
∀ x sigma,
In x (List.map (apply_subst sigma)

[(Term u22 [(Term Ain [(Var 1); (Var 2)])])]) →
Acc (sdp.Rcdp_min R_rules DP_R) x.

... Qed.

Inductive DP_R_scc2 : term → term → Prop :=
(* <Ain(s(m),s(n)),u21(Ain(s(m),n),m)> *)
(* <Ain(s(m),s(n)),Ain(s(m),n)> *)
(* <u21(Aout(n),m),Ain(m,n)> *)
(* <Ain(s(m),0),Ain(m,s(0))> *) .

Note that the lemmas above are the actual presentation of lemmas mentioned in Section III.3. They state
that any instance of a DP right-hand side in the relevant scc (component or not) is accessible.

The component is now split in {1,5,6} and {4}. . .

Module WF_DP_R_scc2.
Inductive DP_R_scc2_weak : term → term → Prop :=

(* <Ain(s(m),s(n)),u21(Ain(s(m),n),m)> *)
(* <Ain(s(m),s(n)),Ain(s(m),n)> *)
(* <u21(Aout(n),m),Ain(m,n)> *) .

Inductive DP_R_scc2_strict : term → term → Prop :=
(* <Ain(s(m),0),Ain(m,s(0))> *) .

. . . and {1,5,6} is itself split in {1} and {5,6}. The former is proven to be terminating. We can see one
module per application of GRAPH and RMVERTEX.

Module WF_DP_R_scc2_weak.
Inductive DP_R_scc2_weak_scc0 : term → term → Prop :=

(* <Ain(s(m),s(n)),u21(Ain(s(m),n),m)> *)
(* <Ain(s(m),s(n)),Ain(s(m),n)> *)
(* <u21(Aout(n),m),Ain(m,n)> *) .

Module WF_DP_R_scc2_weak_scc0.
Inductive DP_R_scc2_weak_scc0_weak : term → term → Prop :=

(* <u21(Aout(n),m),Ain(m,n)> *).

59



Inductive DP_R_scc2_weak_scc0_strict : term → term → Prop :=
(* <Ain(s(m),s(n)),u21(Ain(s(m),n),m)> *)
(* <Ain(s(m),s(n)),Ain(s(m),n)> *).

Module WF_DP_R_scc2_weak_scc0_weak.
Inductive DP_R_scc2_weak_scc0_weak_non_scc0: term → term → Prop :=

(* <u21(Aout(n),m),Ain(m,n)> *).

Lemma acc_DP_R_scc2_weak_scc0_weak_non_scc0 :
∀ x sigma,
In x (List.map (apply_subst sigma)

[(Term Ain [(Var 1); (Var 2)])]) →
Acc (sdp.Rcdp_min R_rules DP_R_scc2_weak_scc0_weak) x.

... Qed.

Lemma wf :
well_founded (sdp.Rcdp_min R_rules DP_R_scc2_weak_scc0_weak).
... Qed.
End WF_DP_R_scc2_weak_scc0_weak.

After relevant definitions of orderings, {1,5,6} is proven to be terminating, then all termination lemmas
are proven, using previous ones as premises, as described in Section III.3. Notice in particular the
organisation of lemmas acc_DP... which deal with the graph structure.

Lemma wf :
well_founded (sdp.Rcdp_min R_rules DP_R_scc2_weak_scc0).
... Qed.
End WF_DP_R_scc2_weak_scc0.

Lemma acc_DP_R_scc2_weak_scc0 :
∀ x sigma,
In x (List.map (apply_subst sigma)

[(Term u21 [(Term Ain [(Term s [(Var 1)]); (Var 2)]); (Var 1)]);
(Term Ain [(Term s [(Var 1)]); (Var 2)]);
(Term Ain [(Var 1); (Var 2)])]) →

Acc (sdp.Rcdp_min R_rules DP_R_scc2_weak) x.
... Qed.

Lemma wf :
well_founded (sdp.Rcdp_min R_rules DP_R_scc2_weak).
... Qed.
End WF_DP_R_scc2_weak.

Lemma wf : well_founded (sdp.Rcdp_min R_rules DP_R_scc2).
... Qed.
End WF_DP_R_scc2.

Lemma acc_DP_R_scc2 :
∀ x sigma,
In x (List.map (apply_subst sigma)

[(Term u21 [(Term Ain [(Term s [(Var 1)]); (Var 2)]); (Var 1)]);
(Term Ain [(Term s [(Var 1)]); (Var 2)]);
(Term Ain [(Var 1); (Var 2)]);
(Term Ain [(Var 1); (Term s [(Term 0 [])])])]) →

Acc (sdp.Rcdp_min R_rules DP_R) x.
... Qed.



Lemma wf : well_founded (sdp.Rcdp_min R_rules DP_R).
... Qed.
End WF_DP_R.

Lemma wf : well_founded (one_step R_rules).
... Qed.

Experiments

The following table summarises our experiments with CiME 3, on a 3GHz, 16GB computer running
Debian Linux, using the following proof discovery strategy: lexicographical composition of orderings
(rule removal) that is Manna-Ness using (linear and simple) polynomials over integers (coef. bounded
by 3) and full RPO, composed with DP, dependency graphs, subterm and various orderings: full RPO
with AFS, polynomials over integers and over matrices (3 × 3, coef. bounded by 1). This run does not
use parallel constraint solving. Time limits are 10s for polynomials, 25s for RPO, 15s for matrices. We
used MINISAT2 to solve orderings constraints8. Tests were run on 1391 problems of the TPDB in the
TRS category. With this strategy that matches the currently implemented certification techniques, CiME
3 produces 654 termination proofs, that is 654 CPF files. Note that the termination engine is restricted
here to match the available techniques in the certification engine. The table below summarises discovery
times, with an average time of 5.1s. Actually the 612 fastest discoveries (that is 93.6% of the proofs) are
obtained with an average time of 2s.

Proven < 2s < 10s < 30s
654 445 (68%) 612 (93.6%) 641 (98%)

The next step is to translate CPF files into .v inputs for COQ, and to compile them in order to have the
proofs certified. Translation and compilation times are summarised below. The timeout is set to 500s.
There are no failures, non-certified proofs come from timeout at compile time, mostly because of huge
and intricate graphs that involve many subproofs.

Certified < 10s < 20s < 60s < 120s < 500s Timeout
632 334 (51%) 433 (66.2%) 541 (82.7%) 593 (90.7%) 632 (96.6%) 22 (3.4%)

Av. time 5.8s 7.4s 12.6s 19.1s 47.2s

Note that this set of examples includes, in particular, a µ-CRL specification of communicating processes
(377 rewriting rules) or transformations of context-sensitive programs (several problems each containing
more than 50 rules and leading to dependency graphs of about 1000 arcs and 80 vertices, see Figure II.3).
As already mentioned, these problems are handled well by our approach.

Some criteria take more time to certify than others; the overall time is thus a function of the proof
search strategy. Nevertheless, the times for proof search, and for certification (with an average of 12.6s
for 82.7% of the proofs), are reasonably small for CiME 3 to be used as a practical tool in everyday
development involving term rewriting systems and proof assistants, even if they cannot really compare
with checking times by an extracted tool like CeTA.

Some Comments

The termination competition has given us the opportunity to uncover some problems within some auto-
matic provers and the recent introduction of certifiers has allowed for an interesting evolution towards
increasingly more reliable tools. This is particularly noticeable when dealing with complex and sizeable

8http://minisat.se/MiniSat.html

61



systems where one could not envisage a human input for verification. In this context, the creation of a
common trace format encourages a prover to claim to be the one which produces the greatest number
of accurate certified proofs. I believe that what motivates the certifiers is to be party to this claim by
playing their part in providing the largest range of certified methods.

One is, nevertheless, entitled to question the merits and the benefits of a competition between cer-
tifiers. What, indeed, can we learn from it? At present, certifiers are given credit according to the
proofs which they have validated, in other words as they formalise criteria that are distinct, essentially
according to the provers’ proving strategy. To research RPO and applications of the subterm criterion
will benefit A3PAT whereas to research arctic matrices and usable rules will benefit CeTA, and both op-
tions will disadvantage CoLoR. The conclusion which can be drawn from the results is that it highlights
more an option to research proofs, for a whole of problems from a database, rather than a measure for
comparison of tools.

I am personally of the view that the future lies more with platforms that will allow verification by
different certifiers and with competitions pointing to the safest provers. This is what we are working
towards with team CeTA.

Collateral benefits

There is an interesting side effect of mechanisation that should be emphasised. A benefit of abstract
formalisations is that keeping them as general as possible may lead to relaxing premises of theorems.
This is particularly noticeable in the context of constructive proofs, as most proofs of the literature are
classical. Developing a formal mechanical model of former results thus amounts to thinking the proofs
anew. There are two particular examples from the A3PAT projects: the first full formalisation of the
subterm criterion [83] for which we proposed an extension [31], and an extended notion of matrix-based
interpretations by Courtieu, Gbedo and Pons [41, 42].

As always, all deliverable of the project (tools, libraries, manuals, etc.) are available from the A3PAT
web page: http://a3pat.ensiie.fr under the CeCILL-C license.



Chapter IV

Conclusion and Perspectives

This past decade has been very active with reference to automated and formal proof. In various compe-
titions like CASC, the competition affiliated to the Conference on Automated Deduction (CADE), SMT,
affiliated to the conference on Computer-Aided Verification (CAV), or the already mentioned Termina-
tion competition, this can be monitored with two indicators: the number of problems solved, and the fast
increasing number of tools engaged.

Automation of Termination Proofs

Regarding automated provers for termination of rewriting alone, the pioneer tools (mainly CiME [36]
and APROVE [71]) have been joined by many newcomers, implementing new techniques or dedicated to
specific areas (strategies, complexity, etc.): TTT [83], TTT2 [99], MU-TERM [116], TERMPTATION [22],
TORPA [161], JAMBOX1, etc. We contributed to motivate this activity by defining incremental and mod-
ular termination techniques, termination approaches for systems modulo AC, context-sensitive systems,
conditional systems with membership, techniques to discover orderings, etc. The constant care for au-
tomation made us implement our results, in particular in CiME.

In the context of a dependency pair approach, one of the very active points regards new ways to
remove rules, or to instantiate the rule RMVERTEX, that is to prune irrelevant pairs. To this end, new
orderings have been introduced, yet there is still an important need for similar improvements regarding
the expressive features I mentioned. For example, matrix-based interpretations are very hard to make
compatible with AC without losing most of their termination power. It is even unclear how one can
define interpretations that are not linear.

Automation and Mechanisation

Project A3PAT contributed significantly to adding automation to proof assistants, using both deep and
shallow embeddings, and implementing a scheme of satellite tools. It focuses primarily but is not limited
to the certification of termination proofs, and successful experiments target unification/disunification
problems (using an external oracle for occur-check) , and proofs of confluence (for now with termination
and local confluence).

Interesting perspectives come from certification. It is of course very important to certify as many
techniques as possible, in all extensions of rewriting that we met in practice: modulo theories, with
strategies, with conditions, etc. Many termination proofs cannot be certified yet. For instance proofs
involving strategies or techniques based on strategies (like switching to innermost for special classes
of systems) are not supported by current certifiers2. Regarding orderings, path orderings for AC-
termination are not formalised, etc. Here again, I shall emphasise that formalisation could lead to
weakening the premises and developing new criteria.

1http://joerg.endrullis.de/jambox.html
2Even if the relevant formalisations already exist. This is the case for context-sensitive dependency pairs or innermost

techniques, implemented in COCCINELLE, but not yet operational in A3PAT.
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As mentioned in Chapter III, there are now three approaches for certification of termination proofs,
namely A3PAT, CeTA and CoLoR, which do not subsume each other. What to do when a proof is
discovered using criteria that are not all supported by one of the approaches? I stated on page 52 that
the trace language was designed to be as modular as possible, and as a matter of fact, CeTA and A3PAT
are developing the trace language CPF in such a way that we are very close now to being able to build
a platform that can use several certifiers simultaneously, on distinct applications of criteria, in the proof
tree. Such a platform would be very interesting and would increase the number of problems certified to
be terminating, as it would not restrict certified proofs to the techniques implemented in one certifier or
another. Thus it would contribute to raise the level of confidence in automated provers.

Finally, the possibility of delegating a proof of termination opens an interesting way to automate
termination proofs for functions. Whether one uses Function or Fixpoint, defining a function in
COQ presently involves a mandatory decreasing argument that ensures termination. This argument may
be structurally decreasing, one may also reason about its proof of decrease. Adding an automated way
to provide such an argument would be a considerable help throughout developments with such a proof
assistant, and that has to be further investigated.

To Other Paradigms3

Although I did not mention them in the body of this dissertation, some of my parallel research interests,
while not being in the mainstream of this document, contribute to programs verification.

In 2001 I was appointed to a post-doctoral position in the European project IST VerifiCard, in the
task that aimed at the proof of Java programs with the help of the COQ proof assistant. To this end, I
was involved in the initial development of the KRAKATOA tool [121].

One of the challenges was that Java programs are imperative style programs, that is adapted to
a Floyd-Hoare approach [64, 84], while the Curry-Howard based assistant COQ is well-suited to the
verification of functional programs. To help bridge this gap, Filliâtre proposed an original technique [59,
60] that is the base of the tool WHY [61, 62]. WHY is a stand-alone tool aimed to produce verification
conditions for programs written in its own language specially designed for program certification. This
language is functional with limited imperative features, namely exceptions and references. The tool
acts as a verification conditions generator, involving a calculus of weakest preconditions: the original
program is correct if the produced formulas are valid.

To tackle the verification of Java programs, we developed an approach that is multi-provers, and on
three levels. This approach is made concrete with the tool KRAKATOA, and is detailed in [121].

Firstly, annotated Java/Javacard programs are translated into entries for WHY. This is the task for
which KRAKATOA [121] is dedicated. Programs submitted to KRAKATOA are Java programs that have
been annotated in JML (Java Modelling Language4). In particular, the JML annotations typically state
some class invariant, pre-conditions and the post-conditions that are supposed to hold at the end of a
call if pre-conditions where valid at call time. The result is a program in the language of WHY, that is
functional with exceptions and references.

We defined at that time two logical models for applets. A high-level model, based on values, and
a memory model that allows the handling of addresses. The memory model is based on the work of
Burstall [24] and Bornat [18]. Roughly speaking, each non-static field of a class is modelled by a
table indexed with addresses. See [121] for details. We claim that the resulting code enjoys the same
semantics as the original program.

Once the original annotated program is translated, WHY produces verification conditions out of this
functional code. Finally, the proof of validity for these conditions are left to various provers (HARVEY,
SIMPLIFY, etc.), or to a mechanised assistant for an interactive proof (COQ, ISABELLE/HOL, etc.).

3. . . and beyond! [108]
4http://www.cs.iastate.deu/~leavens/JML/index.shtml



Amongst the first tools dedicated to formal verification of programs written in widely used lan-
guages, KRAKATOA has been successfully applied to the study of Javacard applets [26] provided by
industrial partners (Gemalto, etc.). The original approach served as a basis for other verification tools,
and was adapted to the analysis of programs written in C (Caduceus [62]).

The fact that several tools (automated or interactive) may be used to prove different verification
conditions for a single program makes it very difficult to obtain an axiom-free formal certification. As a
matter of fact, it is somehow a general case of the combination of termination provers mentioned above,
this time making cohabit various types of proofs, from various provers (SMT, etc.); it strongly advocates
the concern of automation for proof assistants. Investigating approaches for multi-provers certification,
possibly based on proof traces/certificates, is indeed a challenging perspective.

Imperative Style

The journey I proposed focused on termination for first-order term rewriting, that is close to the func-
tional declarative style. However a wide variety of techniques can enrich this approach and adapt it to
further programming paradigms. For instance, proving the termination of while loops in imperative
languages raises very interesting issues. Depending on guards of the loop, and the nature of side ef-
fects in its body, some termination techniques might borrow arguments from unexpected domains, like
linear algebra and fix-point theorems [156]. Mahboubi, Melquiond and I are currently working on the
certification of similar techniques. In addition, we expect to achieve, thanks to their formalisation, an
extension of the aforementioned techniques to less restrictive guards or bodies.

Distributed Computing

The past decade has also witnessed the coming of a widely distributed and complex information, for
instance with the Internet. Technological breakthroughs regarding computers and networks have made
it possible for the success of large scaled distributed applications. In this extremely connected world,
distributed algorithms are an essential part. For example, a system running across several sites needs
distributed algorithms to ensure basic services and properties.

In most situations, this is highly significant, as deficient distributed systems may induce very serious
consequences: one possible instance is a huge database over several sites where remote operations may
corrupt integrity, or in a system for which fault tolerance is crucial. However, distributed algorithms
remain very difficult to develop and to certify, even for experts. They involve many problems unique
to their distributed nature, and to which the developer must pay attention, both in specification and
conception phases. This is particularly the case when processes have a local knowledge only, and they
are supposed to converge towards a global property (that is of the whole network): leader election, fault
tolerance, termination, etc.

Since distributed algorithms issues may appear in critical applications (for example regarding fault
tolerant behaviours), producing safe distributed algorithms is a key issue. So far, the correctness of, for
example, the rapidly emerging sensor networks has been partially explored either via restrictive simu-
lations and experiments or via analytical tools built on top of restrictive assumptions (e.g. the nodes
characteristics and status do not change during the whole system execution, etc.). These assumptions
might be completely unrealistic in actual networks and thus disastrous in practice. I do believe that me-
chanical and automated tools have to be involved, so as to obtain certified local and global properties of
such systems, and that mechanical certification of distributed processes is a key challenge for the future.

In this context, again, an interesting solution would be a framework dedicated to specification and
proof-based development. Defining such an environment requires the discovery of adequate semantics
for the specifications and definitions. A critical part is then the provision of well-suited proof techniques
and automated generation of verification conditions for a skeptical proof assistant, and (semi-) automated
tools to discharge them as much as possible.
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I tackled this topic recently, with the coordination of project Pactole, which aims to provide basis
for such a formal provable framework, using recent advances in automated proving and related areas in
order to prove the correctness of localised distributed protocols in dynamic mobile sensor networks.

Rewriting techniques may appear at an early stage in a certification chain, depending on the model
one may study: in Local Computation systems for instance, but also in alternate approaches based on λ-
calculi (in this case, conditional rules are involved). Later on, when it comes to the definition of (semi-)
decision procedures, efficient rewriting techniques may prove useful when extended to the context of
distributed processes.

We focus on Local Computation systems and in particular on their graph rewriting model [112,
113, 13] and its extensions: dynamic network, probabilistic behaviours, etc. This model enjoys high
abstraction (thanks to rewriting) and yielded important results.

In this context, termination of a distributed algorithm boils down to the termination of its translation
as a label rewriting system over some graphs. Currently, it may be noticed that termination is proven
by hand, by guessing an adequate measure decreasing with each rewriting step. From a rewriting expert
point of view, this is simply an adaptation of the Manna-Ness criterion applied with a polynomial or-
dering. A first step is to automate the search of a Manna-Ness measure within an automated prover that
already contains the search for polynomial orderings. A second step is to extend state-of-the-art termi-
nation criteria for term rewriting system (dependency pairs, modularity, etc.) and orderings (matrices,
etc.) to label graph rewriting. A translation of graph rewriting into AC-rewriting could be helpful at this
stage, in order to simulate the ‘unordered character’ of (non-oriented) graphs, where it makes no sense
to state that a vertex is above or below another one. Because of the arbitrary structure of the graphs, it
may not be possible to obtain extensions in the general case, a solution would be to investigate special
topologies such as rings, grids, etc. Formal certificates are of course wanted, and dedicated libraries will
have to be extended accordingly.

Invariants are another class of required properties: liveness, soundness, self-stabilisation, etc. There
have been a few attempts regarding liveness and term rewriting systems. Arts proposes to verify liveness
properties of communicating processes specified in µ-CRL [80]. His approach consists in translating the
µ-CRL specification in a system for which termination implies liveness of the processes. Specifications
may contain many rules, nevertheless modular techniques manage to prove some of them to be termi-
nating with full automation. Arts and Giesl address verification of liveness for Erlang processes using
rewriting systems [10]. Giesl and Zantema tackle liveness using strategies [74]. These approaches, as
well as those of Koprowski and Zantema [98], are restricted to liveness, however it would be very inter-
esting to have such translations of other properties of distributed computation into properties of rewriting
systems, moreover in the graph rewriting frameworks in which we are interested.

Soundness involves some interpreted functions and predicates which are beyond the scope of tools
like CiME. However, some SMT-provers, like Alt-Ergo5, are able to deal with such properties in the
context of sequential program verification. An important work of formalisation is required to define, in
such tools, certifiable procedures for distributed-specific theories.

An environment for proof and development of trustworthy distributed algorithms will have to link
together results on model definition, generation of verification conditions, automated proof and its cer-
tification. Existing platforms (Visidia [132], Netquest [111], etc.) constitute interesting candidates for
visualisation and simulation of the specified algorithms. The challenge is to equip them with languages
powerful enough to specify properties in the scope of our studies, and with proof mechanisms for as-
sisted and automated certification, thus defining a complete certification chain.

The techniques we contributed to developing during the past decade, regarding automation, regard-
ing certification, and the experience gained on program verification, are surely undeniable benefits to
reach this objective on this new path.

5Development started within the A3PAT project, http://alt-ergo.lri.fr
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