A Desktop Interface over
Distributed Document Repositories

Camelia Constantin

LIP6, Université Paris 6

_ Paris, France
Camelia.Constantin@lip6.fr

ABSTRACT

The demonstration is devoted to the desktop-level interac-
tions offered by CADOR, a content-based document manage-
ment system currently under development. CADOR provides
a rule-based language to query and manipulate large collec-
tions of documents distributed in repositories. The language
is able to define the content of Virtual File Systems (VFS)
as views over the document collections. This feature allows
users to combine their familiar interface and desktop-based
softwares with the powerful search and transformation tools
provided by the underlying system.

The demonstration shows how VFS views can be created
on-demand to present a desktop-based virtual document or-
ganization and how standard desktop interactions can be
captured and interpreted in terms of document manage-
ment operations: creation, updates, annotation, derivation
of new content thanks to transformation rules, sharing be-
tween users, etc. The example application is the manage-
ment of a large bibliographic database: users can, with a
few clicks, organize their bibliographic references, import
new references, share them with a group of co-authors and
automatically maintain a ready-to-use Bibtex file.

1. MOTIVATION

Managing documents is a daily concern for everyone work-
ing with computers to create, update, search and control
digital content. Personal computers do provide support for
document management, including rich desktop applications
to create and manipulate complex content, and the familiar
abstraction of hierarchical folders to organize document col-
lections. However, this support remains rigid and limited:
folder hierarchies are statically defined, regardless of the doc-
uments features, and it is hardly possible to maintain several
concurrent hierarchies for a same collection; search function-
alities are limited; collaborative features are not supported,
and dynamic behavior (e.g., validation workflows, or new
content derivation) is impossible to express.

Cédric du Mouza, Philippe Rigaux, Vir-
ginie Thion—Goasdoué, Nicolas Travers
~ CEDRIC, CNAM Paris, France
firstname.lasthame@cnam.fr

The goal of the CADOR project is to bring to the man-
agement of rich-content document collections the benefit
of DBMS techniques. This covers efficient and expressive
search (including search-by-content) capabilities, support of
distribution, concurrent/collaborative accesses, and a flex-
ible organization based on a clear separation between the
logical and the physical models, to name a few [1]. Adding
extended functions to document management should come
without additional cost for the end-user. In particular, his
familiar environment must be preserved, including the abil-
ity to directly edit documents with an appropriate desktop
application (e.g., a text editor) and the organization of col-
lections according to the paradigm of file systems organiza-
tions. CADOR addresses this by the ability to define Virtual
File Systems (VFS) as views over the underlying document
repositories. The approach has been suggested in a recent
past (see [2, 1]) but with limited query features. So as Share-
Point, GoogleDocs or LotusNotes which are static systems
made with only a distant desktop without automatic views
or natural file system management. In CADOR an unlimited
number of views can be defined over the same collection, en-
abling users to choose between several navigation patterns
to access the same document, and each user keeps its own
views on the same collection.

The goal of the demonstration is to illustrate the approach
benefits. We will show how a user can interact with the VF'S
on a standard desktop, including searches on collections [3,
4], and edition of documents with his favorite desktop editor.
Each user action over the VFS is captured by CADOR and
transmitted to a rule-based system that triggers, depending
on the specific application schema, content transformation,
complex access rights control, and maintenance of the vir-
tual directory hierarchies content. The demo also shows how
some familiar desktop-based interactions can be interpreted
and transposed as database operations over views. Finally,
the demo will explore some simple extensions of the stan-
dard file system behavior, allowing users to express advanced
searches whose result is displayed immediately in a virtual
folder hierarchy.

2. SYSTEM OVERVIEW

Figure 1 shows the general architecture of CADOR. At the
lowest level, the physical storage consists of key-value stores,
possibly distributed in the case of very large collections.
Each store acts as a repository for a set of document comply-
ing to our logical document model, to be presented next. An
instance of the model (e.g., a document) typically represents



some content (e.g., a PDF file) along with descriptive values
(e.g., annotations) and relationships with other documents
(composition, derivation, etc.). Repositories constitute a
logical storage unit to which access rights policies apply.
Documents can be copied from one repository to another,
and a document in a repository A can refer to another doc-
ument in a repository B through composition or derivation
relationship given by there document definition.

Users
Wiews
S A
Graph Array Rl

Logical model, distributed rules and query language SE"“'ICG B
layar
Wirtual
do curment d 6
collection

Repc:.\;;';‘.ory c

Rep asitory B

Repository A
Distributad
storage @ ﬁ % @
Figure 1: Architecture of Cador

A document collection is the union of the documents located
in a set of repositories related to a common schema. The
model aims at capturing several distribution scenarios where
documents are exchanged in a collaborative space seen as a
global collection instance. A typical scenario is for instance
a setting with a central repository R holding the “current”
versions of the whole collection, with partial replications in
local user’s repositories. A document collection can be ma-
nipulated by a language, just like a relational database is
accessed and queried by SQL. In the case of document man-
agement, however, such “manipulations” go far beyond the
mere update and search features of a standard query lan-
guage. Our rule-based language (briefly presented in the
next section) aims at capturing, at an abstract level and
using a consistent syntax, the core operations that can be
applied to a large collection. This covers: (a) content-based
functionalities, including search-by-content, content trans-
formation, and derivation of new contents (e.g., a PDF file
from a set of WTEX sources), (b) distribution features: copy
from one repository to another, version management, sup-
port of conflict detection and reconciliation, cross-repository
references, etc.; (c) services encapsulation: the content of
documents is typically subject to specialized functions often
available as services in the distributed system; the language
offers an encapsulation mechanism able to wrap this services
as rules in the collection schema.

Finally, the upper level of the architecture consists of views,
expressed with the rule-based language. Although views in
CADOR capture a large class of collections filtering and re-
structuring, we focus in the context of this demonstration
on Virtual File Systems views. They put a collection (or a
subset of) in the form of folders hierarchy that can be pub-
lished on the desktop of end-users which naturally hides the
language declaration. The structure of these hierarchies is
content-driven. For instance a folder can be created for each
tag taken from a hierarchical taxonomy. The same collec-

tion can alternatively be organized on authorship, with one
folder for each author, possibly refined by a second level that
further splits the documents of an author on a secondary cri-
teria (say, the publication year), etc. These (virtual) folders
are populated by (virtual) files, their association being de-
termined by the rules defining the VFS view. A part of the
demonstration will illustrate the definition of views, along
with a discussion on the ability to express updates through
the views (e.g., tagging a document when it is dragged in a
specific directory).

Implementation. CADOR is implemented over the CouchDB
distributed document system' (where the administrator man-
ages distributed aspects) and uses the FUSE (File System in
User Space) interface? to create repositories, publish views
as folders and capture desktop interaction. The central part
of the demonstration relies on an implementation of the rule-
based language, briefly introduced in the next section.

3. FORMAL MODEL AND LANGUAGE FOR
DOCUMENT MANAGEMENT

The structure of documents complies to a variant of a classi-
cal object-oriented database model such as the one presented
in [5]. The manipulation language is inspired by the recent
trend of specifying distributed application with extensions
of DATALOG [6, 7]. For the demonstration, we limit the
presentation of our formalism to strict necessary.

3.1 The model

We consider the countably infinite disjoints sets Pred, Prop,
Rep, Func, AType, and I, V of, resp. predicate names,
property names, repository names, function names, type
names, identifiers and revisions (versions). We define a
type as being an instantiation of the following abstract syn-
tax 7 = Pred | AType | [7] | (p1 : 7,...,pn : T) where
p1, ..., pn are distinct properties of Prop. The expression
(p1: T,...,pn : T) denotes a document type. The expression
[7] denotes a list type. An atomic type (AType) is either
one of the standard types string, integer, ..., or any con-
tent type produced by desktop applications such as pdf,
bib, jpeg, dxf, etc.

We distinguish extensional and intensional predicates, and
we assume that the nature of a predicate is implicit from
the context. Type specification only allows references to
extensional predicates. In our model, predicates, whether
extensional or intensional, are typed. The schema of an
extensional predicate is a triplet (id : I, rev : V,value : 7),
where 7 is a document type. The schema of an intensional
predicate is simply some type 7. For simplicity, we blur the
distinction between the type of an extensional predicate and
the type of its value property, when no ambiguity arises.

EXAMPLE 1. A schema for the (value property of ) BibEntry

predicate is BibEntry(title : string, year : integer, pub : string,
authors : [Author]) where Author is a predicate defined as
Author(fname : string, name : string).

Atomic type instances are defined as usual. Identifiers (i.e.,

"http://couchdb.apache.org
Zhttp:/ /fuse.sourceforge.net




instances of I) are marked with an ampersand for clarity
(&1). An instance of a document is referred to by a com-
plex value compound of a key, a version, and a repository.
The definition of complex type instances follows standard
rules. Predicates embedded in complex types correspond
to references, and are instantiated by identifiers referring to
an instance of the predicate. Note that, unlike some loose
semi-structured models (e.g., XML DTDs), references in our
model are typed.

We call document an instance of a predicate P. Given a
collection schema {Py,- -, P,}, a collection is a set of docu-
ments, each instance of some P;,i € {1,--- ,n}. Note that a
same document (i.e., all versions of document sharing a same
id &7) may be replicated in several (possibly all) reposito-
ries. If R is a repository, then PQR denotes the subset of
P’s instances that reside at R.

3.2 The language

Our language is derived from DATALOG on complex val-
ues [5], and includes the specification of repositories in rules
as first-class citizen. A rule is an expression of the form

H@Ro(llo) L= Ql@R1(U1), ey Qn@Rn(un)

with H € Pred, R; C Rep, Q; C (Pred U Func), and u; is
a free value (possibly containing variables) with appropriate
types and arities. Documents are instantiated in a reposi-
tory as facts using rules of the form HQRq(uo). For instance,
assuming that &mt is the id of the Author M. Thelwall:

BibEntry@R(id: &ThelwallO9,
title: ’Introduction to Webometrics’, year: 2009,
publisher: ‘Claypool Publishers’, authors: [&mt]) :-

Queries are expressed with variables (denoted $x) that map
to documents. Each variable occurring in the head rela-
tion H(uo) must occur in the body’s relations ({Q:(u:)|1 <
i <n}). Functions permit to refer to services, and must
satisfy the following safety constraint: for each i € [0..n],
if Q:@Qr;(u;) has the form F@r(p} : 71,...,p} : Tk, p] :
Thil,-++, P ¢ Thim) Where F' € Func, then each p} is ei-
ther a constant or a variable bounded in a positive atom
that occurs before F' in the body. The safety constraint
allows us to consider a function, with its input (*) and out-
put (7) arguments, as a predicate for the evaluation of a
rule. We also introduce the shortcut Qi(ui) (resp. H(wo))
for Q;@local(u;) (resp. HQlocal(up)). The following is an
example of a query that retrieves the citation of publica-
tions featuring Alan Turing as an author (note the Citation
function encapsulating a service call at Citeseer).

ans($c) :- BibEntryOR($e), $a in $e.authors, $a.fname=’Alan’,

$a.lname=’Turing’, Citation@Citeseer($e, $c$)

The formalism permits an administrator to manage distributed

data and collections, views and content derivation. We now
discuss these aspects in association with the description of
the demonstration outline.

4. DEMONSTRATION

The demonstration simulates the cooperative work of re-
searchers working on a set of bibliographic references. The
user goal is first to browse, tag and classify bibliographic
references, and second to automatically obtain some useful
derived information, for instance bibliographic files contain-
ing Bibtex references, ready to be used in a BETEX source.

4.1 The distribution scenario

The demonstration setting is summarized in Figure 2. The
distributed document collection gathers in the virtual space
a collection of references to scientific publications (called
“bibliographic entries”, or simply bibentries). Bibentries
are distributed in three repositories: DBLP which contains
all DBLP references, userA and userB. A fourth repository
represents a content derivation service, Entry2Bibtex, that
transforms a bibentry to a Bibtex character string.

Web
view

Search, tag & edit

i N Navigation (read-only) interface Search, tag & edit
through a Web interface Folder - File - Bibtex & PDF files via the Desktop

. Bibentr Bibentry
Entry2Bi Y o
[ nt ibtex Tags & PDF j [ Tags & PDF Bibentry

@Bibserv @userA @userB @DBLP

Figure 2: The distributed setting

Two views are proposed to users. The Web view publishes
documents from the repositories to a Web interface that can
be used to search bibentries, to tag them with controlled
terms, and to upload PDF files. These operations are sup-
ported by a Desktop application (e.g., a Javascript app. em-
bedded in a browser) that operates over the Web view. The
second view is the Desktop view, publishing bibentries as
files in one or several folder hierarchies. It permits to nav-
igate in the views whose content reflects tagging and up-
loading actions, and, in a more advanced mode, as an al-
ternative to the search and tagging functionalities of the
Web application. In this case, adding a new entry should
be as simple as dragging a file in a window, and this should
transparently trigger the underlying machinery of classifica-
tion, derivation, replication, etc. Based on this setting, the
demonstration operates in three parts, detailed below.

4.2 Publish and derive bibliographic data

Our collection schema includes, in addition to BibEntry and
Author described types, the extensional predicates T'ag(name :
string) which stores tags used for annotating documents,
and Tagged(entry : BibEntry, tags : [T'ag], content : pdf)
which stores the association between a Bibentry and the
tags and optional file provided by a local user. Moreover,
the collection schema features a service Entry2Bibtex that,
giving a BibEntry, generates the associated bibtex string.
The service is modelled as a predicated Entry2Bibtex(in™ :
BibEntry, outbibtex™ : string). The Web view relies on an
intentional predicate named TaggedEntry defined from the
preceding predicates and function as:

TaggedEntry(entry: &$e, tags : $tags,
content : $pdfFile, bibtex : $b
) :- BibEntry@DBLP($e),
Tagged($e.id, $tags, $pdf),
Entry2Bibtex@Bibserv ($e, $b)

The initial part of the demonstration shows how this in-
tentional content can be modified with an application that



permits to add a pdf or a tag to the entry. The Desktop
view will be shown with a second computer. It will reflect
any action performed on the Web view by expanding the
content of virtual folders. If, for instance, userA annotates
bibentries with tags taken from the set {vldb11, podsii},
the Desktop view of userB shows a VFS structured like il-
lustrated in Figure 3.

tags

_— T~

vldb11 podsll

A N /N

bibentryl.bib bibentryl.pdf bibentry2.bib  bibentry2.bib bibentry4.bib

Figure 3: A Desktop view based on tags

The folders that represent tags contain Bibtex entries, auto-
matically generated, and pdf files if the (optional) pdf con-
tent has been uploaded. Under userA viewpoint, these fold-
ers behave just like any standard read-file file system object.
At this moment, the demonstration does not allow updates.

4.3 Defining views

The second part of the demonstration unveils the view mech-
anism that supports the Desktop view. It actually relies on
two built-in intensional predicates: Folder(name : string,
parent : Folder) and File(name : string, extension : string,
content : blob, folder : Folder) that respectively model the
standard directory and file artifacts. The demonstration
shows how a new VFS can be defined though folders in the
Desktop. Here is for instance the definition of the tags VFS
shown on the figure above. First we instantiate a fact that
corresponds to the root folder (note that we assume that the
view content is put in the local — unspecified — repository).

Folder (name: ’tags’, parent: null) :-

Then, for each tag, we create a second directory level with
the rule:

Folder (name: $t.name, parent: $il) :-
Folder (id: $il, name: ‘tags’, null), Tag($t)

PDF files are included in the tag folder if present:

File($e.title, ’pdf’, $e.pdf, $il) :-
Folder (id: $il, name: $t), TaggedEntry ($e),
$t in $e.tags, $b.pdf not null

Bibtex are viewed as text files just the same:

File($b.title, ‘bib’, $e.bibtex, $il) :-
Folder (id: $il,name: $t), TaggedEntry ($e),
$t in $e.tags

Any modification or new definition of a VFS in the Desktop
view is reflected by the presence of new folders and files on
the Desktop. This part of the demonstration emphasizes
the dynamic aspect of the file system which now becomes
an “intelligent” part of the information space, in both its
organization and content.

4.4 Performing update through views with the
Desktop

The final part of the demonstration shows more advanced
aspects of the Desktop view. The challenge is to model
updates of the underlying collection as standard desktop in-
teractions. This includes:

e Search (including search by content). The view defini-
tions above show that the content of a (virtual) folder
can be determined by the path from the root. We will
show a complementary approach where a file contain-
ing a query, in a folder, determines the folder content.
By modifying the pattern, the folder’s content evolves
dynamically. Search by content can be achieved the
same way, by putting in a folder a sample document
that defines the folder population as, e.g., the k nearest
documents from the underlying collection.

o Creation and update of documents. Document tem-
plates will be automatically provided in a folder from
the schemas of the collection. From such a template,
new documents can be edited, and inserted in the
repository each time the Save menu item is operated.

e Annotation. Documents can be automatically tagged,
based on the folder they reside in (e.g., a document
inserted in the directory turing/1936 is automatically
annotated as an Alan Turing’s author, published in
1936). The demonstration shows a drag/drop mecha-
nism that tags documents.

Note that any modification in the collection is automatically
reported in VFS views. In particular, derivation rules are
automatically triggered and reflected by the interface: cre-
ating new documents entails for instance an insertion in the
Bibtex file in the VFS views.

5. REFERENCES

[1] S. Ames, C. Maltzahn, and E. L. Miller, “QUASAR:

Interaction with File Systems Using a Query and

Naming Language,” Univ. of California, Santa Cruz,

Tech. Rep., 2008.

S. Brandt, C. Maltzahn, N. Polyzotis, and W.-C. Tan,

“Fusing Data Management Services with File Systems,”

in PDS, 2009, pp. 42-46.

[3] S. Ames, N. Bobb, K. Greenan, O. Hofmann, M. W.
Storer, C. Maltzahn, E. L. Miller, and S. A. Brandyt,
“LiFS: An Attribute-rich File System for Storage Class
Memories,” in MSST, 2006.

[4] Y. Song, Y. Choi, H. Lee, D. Kim, and D. Park,
“Searchable Virtual File System: Toward an Intelligent
Ubiquitous Storage,” in GPC, 2006, pp. 395-404.

[5] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison-Wesley, 1995.

[6] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein,

D. Maier, and R. C. Sears, “Dedalus: Datalog in Time

and Space,” Univ. of California, Berkeley, Tech. Rep.,

2009.

S. Abiteboul, M. Bienvenu, A. Galland, and

E. Antoine, “A Rule-Based Language for Web Data

Management,” in PODS, 2011.

[2

[7



