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Abstract This paper deals with the unsupervised classification of univariate observa-
tions. Given a set of observations originating from a K -component mixture, we focus
on the estimation of the component expectations. We propose an algorithm based on
the minimization of the “K -product” (KP) criterion we introduced in a previous work.
We show that the global minimum of this criterion can be reached by first solving
a linear system then calculating the roots of some polynomial of order K . The KP
global minimum provides a first raw estimate of the component expectations, then a
nearest-neighbour classification enables to refine this estimation. Our method’s rele-
vance is finally illustrated through simulations of various mixtures. When the mixture
components do not strongly overlap, the KP algorithm provides better estimates than
the Expectation-Maximization algorithm.

Keywords Univariate mixture · Component expectations estimation · Unsupervised
classification

Mathematics Subject Classification (2000) 68T05

1 Introduction

In this paper we deal with unsupervised classification. Given a set of univariate
observations originating from K possible components, we focus on the estimation
of the component expectations. The number of components is supposed to be known
and the component expectations are all different. One method consists in estimating
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the probability density function (pdf), a mixture of K pdf, by associating a kernel
to each observation and adding the contributions of all the kernels (Parzen 1962).
A search of the pdf modes then leads to the component expectations. The drawback
of such a method is that it requires the selection of extra-parameters (kernel design,
intervals for the mode search). An alternative method consists in using the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977). The EM algorithm is the most
commonly used method when the mixture components belong to the same known
parameterized family. It is an iterative algorithm that looks for the mixture parameters
that maximize the likelihood of the observations. Each EM iteration consists of two
steps. The Expectation step estimates the probability for each observation to come
from each mixture component. Then, during the Maximization step, these estimated
probabilities are used to update the estimation of the mixture parameters. This pro-
cedure converges to a maximum (local or global) of the likelihood (Dempster et al.
1977).

If the mixture components do not belong to a common and known parameterized
family, the EM algorithm does not directly apply. Yet, if the component densities do
not overlap too much, some clustering methods can be used to cluster the data and
calculate the cluster means. In Fisher (1958) an algorithm is proposed to compute the
K -partition of the N ordered observations which minimizes the sum of the squares
within clusters. Instead of testing the

(N−1
K−1

)
possible partitions, some relationship

between k-partitions and (k + 1)-partitions is used to recursively compute the optimal
K -partition. The main drawbacks of this method are a high sensitivity to potential
differences between the cluster variances and a complexity in O(K N 2) (Fitzgibbon
et al. 2000).

The K -means algorithm (Hartigan and Wong 1977) is one of the most popular
clustering method. It is an iterative algorithm which groups the data into K clusters
in order to minimize an objective function such as the sum of squared Euclidean
point to cluster centroid distances. The main drawback of the popular K -means
or EM algorithms is the potential convergence to some local non-global extrema
of the criterion they use. Some solutions consist, for instance, in using smart ini-
tializations (see McLachlan and Peel (2000); Lindsay and Furman (1994) for EM,
Bradley and Fayyad (1998) for K -means) or stochastic optimization in order to
become less sensitive in the initialization (see Celeux et al. (1995), Pernkopf and
Bouchaffra (2005) for EM, Krishna and Murty (1999) for K -means). Another draw-
back of these methods is the convergence speed which can be very slow. A survey
of the clustering techniques can be found in Berkhin (2006) and in Xu and Wunsch
(2005).

In this contribution, we propose a non-iterative algorithm which mainly consists in
calculating the minimum of the “K -Product” (KP) criterion we first introduced in Paul
et al. (2006): if {zn}n∈{1,...,N } is a set of N observations in R

1 which originate from a
K -component mixture and if {xk}k∈{1,...,K } is any vector of R

K , we define the KP
criterion as the sum of all the K -terms products

∏K
k=1(zn − xk)

2 [see (2) below]. The
main motivation for using such a criterion is that, though it provides a slightly biased
estimation of the component expectations, its global minimum can be reached by first
solving a system of K linear equations then calculating the roots of some polynomial
of order K . Once these K roots have been obtained, a final clustering step assigns
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Components of an observed univariate mixture 203

each observation to the closest root and calculates the means of the resulting clusters.
Another advantage of the proposed method is that it does not require the specification
of any extra-parameters.

The rest of the paper is organized as follow: In Sect. 2 the observation model is
presented and the criterion is defined. In Sect. 3 the global minimum of the criterion is
theoretically calculated. In Sect. 4 a K -product based algorithm for estimating the com-
ponent expectations is described and the EM algorithm is recalled. Section 5 presents
simulation results which illustrate the performance of the algorithm for different mix-
tures: mixtures of three, six and nine components have been simulated with various
parameter configurations (common/different mixing proportions, common/different
variances, Gaussian/non-Gaussian component densities). Finally, conclusions and
perspectives are given in Sect. 6.

2 Observation model and criterion definition

Let {gk : R
1 → R

+ : z → gk(z)}k∈{1,...,K } be a set of K probability density functions
with different expectations ak := ∫ +∞

z=−∞ zgk(z)dz ∈ R
1 and let {πk}k∈{1,...,K } be a set

of K nonnegative weights (prior probabilities) that sum up to one. The multimodal
probability density function (pdf) of the random observable variable Z is a finite
mixture given by:

fZ (z) =
K∑

k=1

πk gk(z). (1)

Note that the form of the densities gk is usually not known by the statistician and that
the gk do not necessarily belong to the same parameterized family.

Now let {zn}n∈{1,...,N } be a set of N realizations of Z with pdf (1). In the following
we always assume that N is greater than K and that the number of different realiza-
tions is greater than K − 1. Our purpose is to estimate the K component expectations
a1, . . . , aK from the set of observations {zn}n∈{1,...,N }. The estimation of the com-
ponent expectations is based on the minimization of the new K -product (KP) criterion
J (x) defined by:

J : R
K → R

+ : x →
N∑

n=1

K∏

k=1

(zn − xk)
2. (2)

Note the difference with one form of the K -means algorithm that amounts to minimi-
zing the criterion (3) defined by:

G : R
K → R

+ : x →
N∑

n=1

min
k∈{1,...,K }(zn − xk)

2. (3)

The KP criterion (2) is nonnegative for any vector x. The first intuitive motivation
for defining this criterion is its behavior in the limit case when all the variances of
the pdfs gk are null. In this limit case, all the observations are equal to one of the ak .
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Therefore, if a := (a1, a2, . . . , aK )t is the vector of the component expectations, we
have J (a) = 0. J (x) will be minimum if and only if x is equal to a or any of its K !
permutations. In the general case, when the component variances are strictly positive,
the KP minimum remains a useful approximation of the component expectations.
A refined estimation of the component expectations, based on the K -product minimum,
is detailed in Sect. 4. Our second motivation for defining the KP criterion (2) is that
it will have K ! minima that are the K ! permutations of one single vector which can
be reached by solving a linear system of equation, then finding the roots of some
polynomial of order K . This is shown in Sect. 3.

3 Global minimum of the KP criterion

We first present in Sect. 3.1 some useful definitions which are needed in Sect. 3.2 to
calculate the global minimum of J .

3.1 Some useful definitions

To any observation zn in R
1 we associate the vector zn defined by:

zn := (zK−1
n , zK−2

n , . . . , 1)t ∈ R
K . (4)

The vector z and the Hankel matrix Z are then respectively defined by:

z :=
N∑

n=1

zK
n zn ∈ R

K (5)

Z :=
N∑

n=1

znzt
n =

(
N∑

n=1

z2K− j−l
n

)

j,l=1,...,K

∈ R
K×K . (6)

The matrix Z is regular if the number of different observations in {z1, . . . , zK } is
greater than K − 1 (an explanation is given in Appendix A).

Now let y = (y1, . . . , yK )t be a vector of R
K . We define the polynomial qy(α) of

order K as:

qy(α) := αK −
K∑

k=1

αK−k yk α ∈ R
1. (7)

If r = (r1, . . . , rK )t is the vector of C
K containing the K roots r1, . . . , rK of qy(α)

the factorial form of qy(α) is:
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qy(α) =
K∏

k=1

(α − rk)

= αK − (r1 + · · · + rK )αK−1 + · · · + (−1)K (r1 × r2 × · · · × rK )

= αK −
K∑

k=1

αK−kwk(r),

where wk(r) is the Elementary Symmetric Polynomial (ESP) in the variables
r1, . . . , rK defined by:

wk(r) := (−1)k+1
∑

{ j1,..., jk }∈{1···K }k

1� j1<···< jk�K

r j1 · r j2 · · · · r jk . (8)

For instance, for K = 3, we have:

w1(r) = r1 + r2 + r3

w2(r) = −(r1r2 + r2r3 + r1r3)

w3(r) = r1r2r3.

If we introduce the ESP vector of r, w(r), defined by:

w(r) := (w1(r), . . . , wK (r))t , (9)

the relationship between the roots and coefficients of qy(α) becomes:

y = w(r) ⇔ qy(rk) = 0 ∀k ∈ {1, . . . , K }. (10)

3.2 The minimum of the KP criterion

The global minimum of J is given by Theorem 1:

Theorem 1 If ymin is the solution of Zymin = z [where z and Z have been defined in
(5) and (6)] and if xmin is a vector containing, in any order, the K roots of qymin

(α)

[defined in (7)], then xmin belongs to R
K and xmin yields the global minimum of J.

The proof is given in Appendix B.

4 Estimation of the component expectations

In Sect. 4.1 we describe a K -product based algorithm to estimate the expectations of
the K components of an observed univariate mixture. The classical EM algorithm is
then described in Sect. 4.2.
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Table 1 KP algorithm and complexities of single steps

Step 1: Calculate a minimum of J

Calculate Z and z O(N K )

Calculate ymin by solving Zymin = z O(K 2)

Calculate the roots (x1,min, . . . , xK ,min) of qymin (α) O(K 2)

Step 2: Clustering and cluster mean estimation

Assign each zn to the closest xk,min O(N K )

Calculate the K centroids of the resulting clusters O(N )

4.1 K -product algorithm

The proposed algorithm for estimating the component expectations consists of two
steps. In the first step, the minimum of the function J (x) [see (2)], xmin = (x1,min, . . . ,

xK ,min)
t , is calculated, giving a first raw estimate of the set of component expectations.

This first estimate is slighly biased: let us consider, for instance, a Gaussian mixture
with K = 2 balanced components (π1 = π2 = 0.5) with expectations −a and a and
with a common standard deviation σ . When the number of observations, N , tends to
infinity, the (asymptotic) solution of Zymin = z is ymin = (0, a2 + σ 2)t and the roots
of qymin

(α) are:

xmin = (x1,min, x2,min) =
⎛

⎝−a

√

1 + σ 2

a2 , a

√

1 + σ 2

a2

⎞

⎠ �= (−a, a).

Therefore, in a second step, each observation zn is assigned to the nearest xk,min,
K clusters are formed, and the cluster means are calculated. These cluster means
provide the final estimation of the component expectations. The steps of the algorithm
and their complexities are summarized in Table 1. Some implementation of the KP
algorithm can be designed with complexity O(N K + K 2), which is equivalent to
O(N K ) since N is greater than K .

A free version of a Matlab 7.0.4 implementation of the KP algorithm is available
on request to the authors. In the first step, the linear system solving is based on the
Cholesky factorization of the symmetrical matrix Z. The complexity is O(K 3), but
could be reduced to O(K 2) by using the Hankel property of Z [see Bojanczyk et al.
(1995) for instance]. The roots of qymin

(α) are then calculated with Matlab function
“roots”, which builds the companion matrix of qymin

(α) then finds its eigenvalues with
a Q R factorization method. The complexity is O(K 3), but could be reduced to O(K 2)

by using some faster roots finding algorithms [see Uhlig (1999) for instance].

4.2 EM algorithm

Assuming that the mixture components have a Gaussian pdf, the standard EM algo-
rithm proceeds as follows (Dempster et al. 1977): if β̂

(ite)
n,k is the estimated probability

that zn comes from component k and if π̂
(ite)
k , â(ite)

k and σ̂
2,(ite)
k are respectively, the
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estimated prior, expectation and variance of component k at iteration ite, then the
estimates at iteration ite + 1 are provided by the two following steps:
Expectation step:

β̂
(ite+1)
n,k =

π̂
(ite)
k√

2πσ̂
(ite)
k

exp

(

− 1
2

(
zn−â(ite)

k

σ̂
(ite)
k

)2
)

K∑

k=1

π̂
(ite)
k√

2πσ̂
(ite)
k

exp

(

− 1
2

(
zn−â(ite)

k

σ̂
(ite)
k

)2
) .

Maximization step:

π̂
(ite+1)
k =

∑N
n=1 β̂

(ite+1)
n,k

N

â(ite+1)
k =

∑N
n=1 β̂

(ite+1)
n,k zn

∑N
n=1 β̂

(ite+1)
n,k

σ̂
2,(ite+1)
k =

∑N
n=1 β̂

(ite+1)
n,k

(
zn − â(ite+1)

k

)2

∑N
n=1 β̂

(ite+1)
n,k

.

This iterative procedure converges to a (local or global) maximum of the likelihood

function
∏N

n=1

{
∑k

k=1
πk√
2πσk

exp

(
− 1

2

(
zn−ak

σk

)2
)}

. The main drawback of the EM

algorithm is the potential convergence to some non-global maximum of the likelihood.
In particular, this version of EM may converge to very unbalanced parameters, with,
on the one hand, some small classes with a small variance and a small prior proba-
bility, and, on the other hand, some large classes with a large variance and a large
prior probability. One possibility to decrease the risk of bad convergence consists in
assuming a common variance σ 2 and a common prior probability πk = 1

K to all the
mixture components. In this case only K + 1 parameters have to be estimated, the K
component expectations a1, . . . , aK and the common variance σ 2. In this “constrai-
ned” version of the EM algorithm the update of the estimated mixture parameters is
provided by the two following steps:
Expectation step:

β̂
(ite+1)
n,k =

exp

(

− 1
2

(
zn−â(ite)

k
σ̂ (ite)

)2
)

∑K
k=1 exp

(

− 1
2

(
zn−â(ite)

k
σ̂ (ite)

)2
) .

Maximization step:

â(ite+1)
k =

∑N
n=1 β̂

(ite+1)
n,k zn

∑N
n=1 β̂

(ite+1)
n,k

σ̂ 2,(ite+1) = 1

N

K∑

k=1

N∑

n=1

β̂
(ite+1)
n,k

(
zn − â(ite+1)

k

)2
.
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5 Simulations

5.1 Simulation scenarios and performance criterion

In our simulations several types of Gaussian mixtures have first been considered.
The number K of components is three (scenario A), six (scenario B), and nine (sce-
nario C). In scenario A, the set of component expectations is equal to {0, 1, 2}. In
scenario B, the set of component expectations is equal to {0, 1, 2, 4, 5, 6} (i.e. with
differences 1 and 2). In scenario C the set of component expectations is equal to
{0, 1, 2, 4, 5, 6, 8, 9, 10} (i.e. with differences 1 and 2). For each scenario “X”, four
cases have been studied: common variance and common mixing weight (scenario X1),
different variances and common mixing weight (scenario X2), common variance and
different mixing weights (scenario X3) and different variances and different mixing
weights (scenario X4). A summary of all the scenarios is given in Tables 2, 3 and 4.
The number of observations (N ) per simulation run is 100 in scenario A, 200 in sce-
nario B and 300 in scenario C. A non-Gaussian case has also been investigated in
scenario Bbis described in Table 5: The expectations, variances and prior probabilities
are the same than in scenario B, but three components have a uniform density (with
expectations 0,2,5) and three components have a Laplace density (with expectations
1,4,6).

Table 2 Simulations, scenario A: expectations, probabilities, and variances of the Gaussian mixture
components

Expectation Scenario A1 Scenario A2 Scenario A3 Scenario A4

Variance Prior Variance Prior Variance Prior Variance Prior

0 σ 2 1
3 σ 2 1

3 σ 2 0.4 σ 2 0.4

1 σ 2 1
3

σ2

2
1
3 σ 2 0.4 σ2

2 0.4

2 σ 2 1
3 σ 2 1

3 σ 2 0.2 σ 2 0.2

Table 3 Simulations, scenario B: expectations, probabilities, and variances of the Gaussian mixture
components

Expectation Scenario B1 Scenario B2 Scenario B3 Scenario B4

Variance Prior Variance Prior Variance Prior Variance Prior

0 σ 2 1
6 σ 2 1

6 σ 2 0.2 σ 2 0.2

1 σ 2 1
6

σ2

2
1
6 σ 2 0.2 σ2

2 0.2

2 σ 2 1
6 σ 2 1

6 σ 2 0.1 σ 2 0.1

4 σ 2 1
6

σ2

2
1
6 σ 2 0.2 σ2

2 0.2

5 σ 2 1
6 σ 2 1

6 σ 2 0.2 σ 2 0.2

6 σ 2 1
6

σ2

2
1
6 σ 2 0.1 σ2

2 0.1
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Table 4 Simulations, scenario C: expectations, probabilities, and variances of the Gaussian mixture
components

Expectation Scenario C1 Scenario C2 Scenario C3 Scenario C4

Variance Prior Variance Prior Variance Prior Variance Prior

0 σ 2 1
9 σ 2 1

9 σ 2 2
15 σ 2 2

15

1 σ 2 1
9

σ2

2
1
9 σ 2 2

15
σ2

2
2
15

2 σ 2 1
9 σ 2 1

9 σ 2 1
15 σ 2 1

15

4 σ 2 1
9 σ 2 1

9 σ 2 1
15 σ 2 1

15

5 σ 2 1
9

σ2

2
1
9 σ 2 3

15
σ2

2
3
15

6 σ 2 1
9 σ 2 1

9 σ 2 1
15 σ 2 1

15

8 σ 2 1
9 σ 2 1

9 σ 2 2
15 σ 2 2

15

9 σ 2 1
9

σ2

2
1
9 σ 2 2

15
σ2

2
2
15

10 σ 2 1
9 σ 2 1

9 σ 2 1
15 σ 2 1

15

Table 5 Simulations, scenario Bbis: expectations, probabilities, variances and density forms of the
non-Gaussian mixture components

Density Expectation B1bis B2bis B3bis B4bis

Variance Prior Variance Prior Variance Prior Variance Prior

Uniform 0 σ 2 1
6 σ 2 1

6 σ 2 0.2 σ 2 0.2

Laplace 1 σ 2 1
6

σ2

2
1
6 σ 2 0.2 σ2

2 0.2

Uniform 2 σ 2 1
6 σ 2 1

6 σ 2 0.1 σ 2 0.1

Laplace 4 σ 2 1
6

σ2

2
1
6 σ 2 0.2 σ2

2 0.2

Uniform 5 σ 2 1
6 σ 2 1

6 σ 2 0.2 σ 2 0.2

Laplace 6 σ 2 1
6

σ2

2
1
6 σ 2 0.1 σ2

2 0.1

In each simulation run, we compare the performance of our algorithm to the stan-
dard EM and the constrained EM algorithms described in Sect. 4.2. Yet we only present
here the results of the constrained EM since, in the investigated scenarios, the perfor-
mances of the contrained EM are always superior to the performances of the standard
EM, even when the true mixture components have different variances and/or different
prior probabilities. To initialize the EM algorithms in our simulations, the K initial
component expectations â(0)

k were randomly chosen from a uniform distribution in the

range [min(zn), max(zn)]. For each n, β̂(1)
n,k is set to one if â(0)

k is the closest component

expectation to the observation zn , and β̂
(1)
n,k is set to zero otherwise. This initialization

is repeated until each cluster contains at least one observation. Then the EM starts
with a maximization step. The algorithm is stopped if all estimated parameters do not
change between two EM steps or if a maximal number of 100 iterations is reached.
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Fig. 1 Estimation performances on scenario B1 with σ = 0.1. Ten thousand simulation runs have been
performed. For each simulation run, 200 observations have been generated. er is the maximal distance
between the ordered vector of true component expectations and the ordered vector of estimated component
expectations

To get rid of the permutation ambiguity, the estimation performance is evaluated as
follows: If a is the vector of the true component expectations and âr is the vector of
the estimated component expectations at simulation run r , the performance criterion
er is defined as the maximal absolute distance between the true and estimated ordered
vector of component expectations:

er := ∥∥sort(a) − sort(âr )
∥∥∞ ,

where sort(x) is the ordered permutation of x and ‖·‖∞ is the infinity norm in R
K .

5.2 Simulation results

The distribution of er is displayed in Fig. 1 and summarized in Table 6 for the sce-
nario B1 (K = 6) with σ = 0.1 and 10,000 simulation runs. The KP minimum
yields a biased estimation: er is greater than 0.1 for 86% of the runs. Then the full KP

Table 6 Histogram of er on scenario B1 with σ = 0.1

Method Value of er

[0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.5] [0.5, 1] >1

KP minimum 14% 79% 7% 0% 0% 0%

Full KP 100% 0% 0% 0% 0% 0%

Constrained EM 39% 0% 0% 0% 1% 60%
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algorithm (calculation of the KP minimum followed by nearest-neighbour classifica-
tion) provides a perfect set of estimates (er is always less than 0.1). On the contrary
the constrained EM algorithm converges to a wrong set of modes for 61% of the runs.
In this case, the constrained EM gets stuck at a non-global maximum of the likelihood.
Typically one estimated component expectation is located in the middle of two true
component expectations, while two other estimated component expectations are close
to the same true component expectation.

In Fig. 2 we present the constrained EM and KP performances for scenario A
(K = 3) with different values of σ . The two methods have equivalent performances,
with a slight superiority of the constrained EM when the true mixture components
have the same prior probabilities (scenarios A1 and A2) and a slight superiority of KP
otherwise. Note that the KP performances are almost independent on the configuration
of the prior probabilities (common/different) and on the configuration of the mixture
component variances (common/different).

The results in scenarios B (K = 6) and C (K = 9) are displayed in Figs. 3
and 4. For small values of σ , the KP algorithm yields more accurate estimates then
the constrained EM algorithm: when σ is greater than 0, there is a risk that the
constrained EM converges to a wrong set of estimated component expectations. On
the contrary, the KP algorithm provides perfect estimates for some non-null values
of σ : In scenario B (resp. scenario C), er always remains less than 0.1 if σ is
less than 0.1 (resp. 0.05). Yet, if the mixture components strongly overlap (σ >

0.25), the EM algorithm has a small but non-null probability to converge to the
correct set of component expectations. In such a situation several restarts of the
constrained EM with different initializations will finally provide a correct set of
component expectations. On the contrary, when the component densities strongly
overlap, the bias of the KP minimum is too large and the final nearest-neighbour
classification step fails to separate the observations which originate from different
components.

The results for the non-Gaussian scenario Bbis are finally displayed in Fig. 5: the
relative performance of the two methods is roughly the same than in the Gaussian case.
More simulations and theoretical studies are required to conclude on the non-Gaussian
case, but we expect the KP algorithm to provide correct estimates for any form of the
component densities as soon as the component densities do not strongly overlap.
Indeed, the definition of the KP criterion does not make any assumption on the form
of the component densities.

In all the investigated scenarios the KP algorithm appears to be an appropriate tool
to estimate component expectations if the component densities do not strongly overlap.
It does not need several restarts or stochastic optimization procedure and it does not
involve any extra-parameters. This makes the KP algorithm an efficient method for
any on-line and/or complexity constrained applications.

6 Conclusion

Given a set of observations originating from a K -component univariate mixture,
we focused on the estimation of the component expectations when the number K

123



212 N. Paul et al.

Fig. 2 Performances of the
constrained EM (EMc, dotted
lines) and KP (full lines)
algorithms on scenario A for
different values of σ . For each
value of σ and for each
sub-scenario 10,000 simulation
runs have been performed. For
each simulation run, 100
observations have been
generated. er is the maximal
distance between the ordered
vector of true component
expectations and the ordered
vector of estimated component
expectations. The performance
criteria are the observed
frequencies for er to be smaller
than 0.1 (top), smaller than 0.2
(middle) and greater than 0.5
(bottom)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

sigma

P
(e

r<
0.

1)

EM
c
 and KP performances on scenario A

KP − scenario A1
EM

c
 − scenario A1

KP − scenario A2
EM

c
 − scenario A2

KP − scenario A3
EM

c
 − scenario A3

KP − scenario A4
EM

c
 − scenario A4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

sigma

P
(e

r<
0.

2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

sigma

P
(e

r>
0.

5)

123



Components of an observed univariate mixture 213

Fig. 3 Performances of the
constrained EM (EMc, dotted
lines) and KP (full lines)
algorithms on scenario B for
different values of σ . For each
value of σ and for each
sub-scenario 10,000 simulation
runs have been performed. For
each simulation run, 200
observations have been
generated. er is the maximal
distance between the ordered
vector of true component
expectations and the ordered
vector of estimated component
expectations. The performance
criteria are the observed
frequencies for er to be smaller
than 0.1 (top), smaller than 0.2
(middle) and greater than 0.5
(bottom)
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Fig. 4 Performances of the
constrained EM (EMc, dotted
lines) and KP (full lines)
algorithms on scenario C for
different values of σ . For each
value of σ and for each
sub-scenario 1,000 simulation
runs have been performed. For
each simulation run, 300
observations have been
generated. er is the maximal
distance between the ordered
vector of true component
expectations and the ordered
vector of estimated component
expectations. The performance
criteria are the observed
frequencies for er to be smaller
than 0.1 (top), smaller than 0.2
(middle) and greater than 0.5
(bottom)
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Fig. 5 Performances of the
constrained EM (EMc, dotted
lines) and KP (full lines)
algorithms on scenario Bbis for
different values of σ . For each
value of σ and for each
sub-scenario 1,000 simulation
runs have been performed. For
each simulation run, 200
observations have been
generated. er is the maximal
distance between the ordered
vector of true component
expectations and the ordered
vector of estimated component
expectations. The performance
criteria are the observed
frequencies for er to be smaller
than 0.1 (top), smaller than 0.2
(middle) and greater than 0.5
(bottom)
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of components is known. We proposed a method based on the minimization of the
“K -product” criterion first introduced in Paul et al. (2006). We have shown that the
global minimum of this criterion can be reached with a linear least square minimiza-
tion followed by a roots finding algorithm. This minimum is used to get a first raw
estimate of the component expectations, and a final nearest-neighbour classification
enables to refine the estimation. The proposed method is not iterative, its complexity
is O(N K ) and it does not require the specification of any extra parameter. Simulations
have illustrated the performance and superiority of the KP algorithm in compari-
son with the EM algorithm when the mixture component densities do not strongly
overlap.

We focused on the univariate case and our current research deals with the mul-
tivariate case. If the observations zn belong to R

d , if {xk}k∈{1,...,K } is any set of K
vectors of R

d , the KP criterion is now defined as the sum of all the K -terms products∏K
k=1 ‖zn − xk‖2

Rd . The minima of such a criterion and some algorithms to find these
minima are currently being studied. We also investigate the case of an unknown num-
ber of components. For this we are currently studying the location of the KP minimum
when the assumed number of components (Ktest) is different from the true number of
components in the observed mixture.

Acknowledgments The authors would like to thank B. Scherrer, M. Bellanger, G. Saporta, JP. Nakache,
the ADAC editor and the anomynous reviewers for their constructive comments that helped in improving
this manuscript.

Appendix A: Non-singularity of Z

In Appendix A we explain why the matrix Z of size K × K , defined in (6) is regular
if the number of different observations is greater than K − 1. Z can be written as the
following matrix product:

Z = VVt ,

where V is a K × N Vandermonde Matrix defined by:

V �= (z1, z2, . . . , zN ) ,

and zn has been defined in (4). Let us assume that the K first observations are different.
The determinant of the K × K Vandermonde matrix (z1, z2, . . . , zK ) is equal to∏

1≤i< j≤K (z j − zi ), which is different from zero. The rank of V is then equal to K ,
so the rank of Z is equal to K and Z is regular. 
�

Appendix B: Proof of Theorem 1

In Appendix B we prove Theorem 1. Let F be the function defined by:

F : C
K → R

+ : x →
N∑

n=1

K∏

k=1

‖zn − xk‖2
C
.
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The restriction of F to R
K is the function J from (2) since the observations zn are

real:
∀x ∈ R

K : F(x) = J (x). (11)

Now let H be the function defined by:

H : C
K → R

+ : y →
N∑

n=1

∥∥∥zK
n − zt

ny
∥∥∥

2

C

.

We show that the function H applied to the ESP of a vector x in C
k is equal to the

function F applied to x: Consider, for x ∈ C
K :

F(x) =
N∑

n=1

∥∥∥
∥∥

K∏

k=1

(zn − xk)

∥∥∥
∥∥

2

C

. (12)

Developping (12) by using definition (8) and including definitions (4) and (9) leads
to:

F(x) =
N∑

n=1

∥
∥∥∥∥

zK
n −

K∑

k=1

zK−k
n wk(x)

∥
∥∥∥∥

2

C

=
N∑

n=1

∥∥∥zK
n − zt

nw(x)

∥∥∥
2

C

= H(w(x)). (13)

The global minimum of H(y) is the linear least square solution ymin given by:

ymin = argmin
y∈CK

{
N∑

n=1

∥∥
∥zK

n − zt
ny

∥∥
∥

2

C

}

. (14)

Developping (14) by using definitions (5) and (6) and remembering that the coefficients
of Z and z are real:

ymin = argmin
y∈CK

{
yH Zy − 2Re{yH }z

}

Zymin = z, ymin ∈ R
K . (15)

The Hankel matrix Z is regular since the number of different observations is greater
than K − 1 (Appendix A). System (15) therefore has exactly one solution. Since Z
belongs to R

K×K and z belongs to R
K , ymin belongs to R

K . Now let xmin=(x1,min, . . . ,

xK ,min)
t be a vector containing, in any order, the K (potentially complex) roots of

qymin
(α). One can show that the following holds:

(i) xmin is a global minimum of F
(ii) xmin ∈ R

K

(iii) xmin is a global minimum of J
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Property (i) is a direct consequence of (13) since, for each x ∈ C
K :

F(x) = H(w(x)) ≥ min {H(y)} = H(ymin).

According to (10), ymin = w(xmin) and we have, for all x ∈ C
K :

F(x) ≥ H(w(xmin)), thus

F(x) ≥ F(xmin),

which proves (i). Property (ii) can be shown by contradiction: If xmin does not belong
to R

K , then for one of the xk,min we have xk,min �= Re{xk,min} and, since all the
observations zn are real:

∀n ∈ {1, . . . , N } : ∥∥zn − xk,min
∥∥

C
>

∥∥zn − Re{xk,min}
∥∥

C
,

which leads to:
F(xmin) > F(Re{xmin}).

This is impossible since xmin is a global minimum of F . This proves property (ii). We
finally have to prove (iii): since xmin ∈ R

K we have, using (11):

F(xmin) = J (xmin). (16)

Furthermore, according to (11), for all x ∈ R
K :

J (x) = F(x) ≥ min
x

{F(x)} = F(xmin) = J (xmin),

according to property (i) and (16). This proves (iii), and properties (ii) and (iii) directly
lead to Theorem 1. 
�
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