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Optimal Power Allocation for the
Two-Way Relay Channel with Data Rate Fairness
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Abstract—This letter studies data rate fairness on the two-
way relay channel. It analytically determines the optimal power
values at both nodes and at the relay, that lead to a maximization
of the sum rate under the fairness constraint. Amplify-and-
Forward (AF) and Decode-and-Forward (DF) relaying protocols
are considered. For AF, the optimization problem is turned
into a single-variable convex optimization problem. For DF, rate
balancing between Multiple Access and broadcast phases must
be performed prior to setting nodes powers. Both optimized
protocols are compared with reference AF and DF in terms of
data rates through numerical simulations.

Index Terms—Two-way relay channel, power optimization,
fairness, amplify-and-forward, decode-and-forward.

I. INTRODUCTION

TWO-WAY relaying techniques achieve higher spectral
efficiency than conventional one-way relaying techniques

[1] [2]. On the two-way relay channel with two nodes and one
relay, bi-directional transmission requires two time intervals.
In the first time interval, both nodes jointly transmit their data
to the relay. The channel is then equivalent to a Multiple
Access Channel (MAC). In the second time interval, the relay
broadcasts the received data to both nodes. Each node removes
its own information, called self-interference, and decodes the
other node’s data. The relaying protocol may be Amplify-
and-Forward (AF) [3] [4], Decode-and-Forward (DF) [2], or
new protocols making use of recent advances on physical
layer network coding [5]. Bi-directional relaying may be an
interesting transmission scheme for providing symmetrical
data rates, since both nodes may play an identical role in
the transmission, provided that adequate power control is
performed. It could thus be used for real-time applications
like voice or video-conferencing.

In this letter, we investigate fairness in achievable data
rates for the SISO two-way relay channel. The objective is
to determine the optimal power allocation at both nodes and
at the relay that maximizes the sum rate, under a sum power
constraint, and under the following fairness constraint: the rate
from Node 𝐴 to Node 𝐵, 𝑅𝐴𝐵 , must be equal to the rate from
Node 𝐵 to Node 𝐴, 𝑅𝐵𝐴. To the best of our knowledge,
this problem has not been solved yet. AF and DF relaying
protocols are studied, in Sections II and III respectively. We
provide analytical solutions, and compare the performances
with equal power allocation in Section IV.
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The following notations are used: 𝑃𝐾 is the transmit power
and n𝐾 is an additive white Gaussian noise with variance 𝜎2,
with 𝐾 ∈ {𝐴,𝐵,𝑅} corresponding to one of the Nodes or
the relay. We consider a narrowband Time Division Duplex
system, where the channel coherence time is larger than two
time intervals, and where channel reciprocity holds, thanks to
accurate calibration of the radio-frequency electronic circuitry
[6]. The channel between Node 𝐾 ∈ {𝐴,𝐵} and the relay is
denoted as ℎ𝐾 . The sum power used in the two time intervals
is set to a fixed value, 𝑃sum = 𝑃𝐴 + 𝑃𝐵 + 𝑃𝑅.

II. AMPLIFY-AND-FORWARD

In the first time interval, Nodes 𝐴 and 𝐵 jointly transmit
to the relay. Data are transmitted using a Gaussian codebook.
The relay receives y𝑅 = ℎ𝐴x𝐴 + ℎ𝐵x𝐵 +n𝑅. In the second
time interval, the relay broadcasts 𝛾y𝑅, with an amplification
factor 𝛾:

𝛾 =

√
𝑃𝑅

∣ℎ𝐴∣2 𝑃𝐴 + ∣ℎ𝐵∣2 𝑃𝐵 + 𝜎2
(1)

Node 𝐴 receives y𝐴 = 𝛾ℎ𝐴
2x𝐴 + 𝛾ℎ𝐴ℎ𝐵x𝐵 + 𝛾ℎ𝐴n𝑅 +

n𝐴. The self-interference term, 𝛾ℎ𝐴
2x𝐴, is removed. Then

the Signal to Noise Ratio (SNR) at Node 𝐴 for the remaining
signal ŷ𝐴 = 𝛾ℎ𝐴ℎ𝐵x𝐵 + 𝛾ℎ𝐴n𝑅 + n𝐴 is:

SNR𝐴 =
𝛾2 ∣ℎ𝐴∣2 ∣ℎ𝐵∣2 𝑃𝐵

𝛾2 ∣ℎ𝐴∣2 𝜎2 + 𝜎2
(2)

Similarly, the SNR at Node 𝐵 is:

SNR𝐵 =
𝛾2 ∣ℎ𝐵∣2 ∣ℎ𝐴∣2 𝑃𝐴

𝛾2 ∣ℎ𝐵∣2 𝜎2 + 𝜎2
(3)

We will now determine the optimal power values, 𝑃𝐴, 𝑃𝐵 and
𝑃𝑅 that lead to fairness: SNR𝐴 = SNR𝐵 = SNR, and then
maximize the SNR. The corresponding sum rate is: 𝑅sum =
1
2 log2(1 + SNR𝐵) +

1
2 log2(1 + SNR𝐴) = log2(1 + SNR).

A. Case ∣ℎ𝐴∣2 = ∣ℎ𝐵∣2
From eq. (2) and (3), SNR𝐴 = SNR𝐵 if 𝑃𝐴 = 𝑃𝐵 . Let

us denote ∣ℎ∣2 = ∣ℎ𝐴∣2 = ∣ℎ𝐵∣2 and 𝑃 = 𝑃𝐴 = 𝑃𝐵 . By
replacing 𝑃𝑅 by 𝑃sum−2𝑃 , and using eq. (1), we can express
the fair SNR as the following function of 𝑃 :

SNR =
∣ℎ∣4 𝑃 (𝑃sum − 2𝑃 )

𝜎4 + 𝜎2 ∣ℎ∣2 𝑃sum

(4)

The SNR is maximized when 𝑔′(𝑃 ∗) = 0, where 𝑔(𝑃 ) =
∣ℎ∣4 𝑃 (𝑃sum − 2𝑃 ). The optimal value is 𝑃 ∗ = 𝑃sum

4 . Conse-
quently, the optimal power allocation achieving fairness when
∣ℎ𝐴∣2 = ∣ℎ𝐵∣2 is: 𝑃 ∗

𝐴 = 𝑃 ∗
𝐵 = 𝑃sum

4 and 𝑃 ∗
𝑅 = 𝑃sum

2 .
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B. Case ∣ℎ𝐴∣2 ∕= ∣ℎ𝐵∣2
In that case, SNR𝐴 = SNR𝐵 is equivalent to :

𝛾2 =
𝑃𝐴 − 𝑃𝐵

∣ℎ𝐵∣2 𝑃𝐵 − ∣ℎ𝐴∣2 𝑃𝐴

(5)

𝑃𝑅 can be expressed as a function of 𝑃𝐴 and 𝑃𝐵 , using (1)
and (5):

𝑃𝑅 =
(𝑃𝐴 − 𝑃𝐵)

(
∣ℎ𝐴∣2 𝑃𝐴 + ∣ℎ𝐵∣2 𝑃𝐵 + 𝜎2

)
∣ℎ𝐵∣2 𝑃𝐵 − ∣ℎ𝐴∣2 𝑃𝐴

(6)

We can notice that there is no solution if ∣ℎ𝐵∣2 𝑃𝐵 =
∣ℎ𝐴∣2 𝑃𝐴. In all other cases, the fair SNR is equal to:

SNR =
(𝑃𝐴 − 𝑃𝐵) ∣ℎ𝐴∣2 ∣ℎ𝐵∣2(

∣ℎ𝐵∣2 − ∣ℎ𝐴∣2
)
𝜎2

(7)

Two different cases must be distinguished.
1) Case ∣ℎ𝐵∣2 > ∣ℎ𝐴∣2: The optimization problem corre-

sponding to sum rate maximization is then:

max{𝑃𝐴,𝑃𝐵} log2 (1 + SNR)

s.t. ∣ℎ𝐵∣2 𝑃𝐵 − ∣ℎ𝐴∣2 𝑃𝐴 > 0 (𝐶1)

s.t. 𝑃𝐴 > 𝑃𝐵 (𝐶2)

s.t. 𝑃𝐴 + 𝑃𝐵 + 𝑃𝑅 = 𝑃sum (𝐶3) (8)

where constraints (𝐶1) and (𝐶2) are necessary for 𝛾2, 𝑃𝑅 and
the SNR to be positive. Using (𝐶3) and eq. (6), 𝑃𝐵 can be
expressed as functions of 𝑃𝐴. We obtain:

𝑃𝐵 =
(𝜎2 + ∣ℎ𝐴∣2 𝑃sum)𝑃𝐴

𝜎2 + ∣ℎ𝐵∣2 𝑃sum + 2(∣ℎ𝐴∣2 − ∣ℎ𝐵∣2)𝑃𝐴

(9)

Eq. (7) shows that maximizing the SNR is equivalent to
maximizing the difference (𝑃𝐴 − 𝑃𝐵):

𝑃𝐴 − 𝑃𝐵 =

(
∣ℎ𝐵∣2 − ∣ℎ𝐴∣2

) (
𝑃sum𝑃𝐴 − 2𝑃 2

𝐴

)
𝜎2 + ∣ℎ𝐵∣2 𝑃sum + 2(∣ℎ𝐴∣2 − ∣ℎ𝐵∣2)𝑃𝐴

=
(
∣ℎ𝐵∣2 − ∣ℎ𝐴∣2

)
𝑓(𝑃𝐴) (10)

Since ∣ℎ𝐵∣2 > ∣ℎ𝐴∣2, this corresponds to maximizing 𝑓(𝑃𝐴).
Constraint (𝐶1) can also be turned into a function of 𝑃𝐴,

by replacing 𝑃𝐵 with its expression in (9):

𝑃𝐴 <
𝜎2 + ∣ℎ𝐵∣2 𝑃sum

2
(
∣ℎ𝐵∣2 − ∣ℎ𝐴∣2

) (11)

Constraint (𝐶2) becomes 𝑓(𝑃𝐴) > 0. The denominator of
𝑓(𝑃𝐴) is necessarily positive from eq. (11). Thus, (𝐶2) is
equivalent to 𝑃𝐴 < 𝑃sum

2 . This constraint is stronger than (11)

since 𝑃sum
2 − 𝜎2+∣ℎ𝐵 ∣2𝑃sum

2(∣ℎ𝐵 ∣2−∣ℎ𝐴∣2) =
−(𝜎2+∣ℎ𝐴∣2𝑃sum)
2(∣ℎ𝐵 ∣2−∣ℎ𝐴∣2) < 0.

The initial optimization problem (8) can consequently be
written as the following optimization problem in 𝑃𝐴:

max𝑃𝐴

𝑃sum𝑃𝐴 − 2𝑃 2
𝐴

𝜎2 + ∣ℎ𝐵∣2 𝑃sum + 2(∣ℎ𝐴∣2 − ∣ℎ𝐵∣2)𝑃𝐴

s.t. 𝑃𝐴 <
𝑃sum

2
(𝐶′

1) (12)

Let us study the convexity of function of 𝑓(𝑃𝐴) =
𝑎𝑃𝐴+𝑏𝑃 2

𝐴

𝑐+𝑑𝑃𝐴

with 𝑎 = 𝑃sum, 𝑏 = −2, 𝑐 = 𝜎2 + ∣ℎ𝐵∣2 𝑃sum and
𝑑 = 2(∣ℎ𝐴∣2 − ∣ℎ𝐵∣2). Its second derivative is:

𝑓
′′
(𝑃𝐴) = −2𝑐(𝑎𝑑− 𝑏𝑐)

(𝑑𝑃𝐴 + 𝑐)3

Since 2𝑐(𝑎𝑑−𝑏𝑐) = 4(𝜎2+ ∣ℎ𝐵∣2 𝑃sum)(𝜎
2+ ∣ℎ𝐴∣2 𝑃sum) > 0,

𝑓
′′

is of the opposite sign of 𝑔(𝑃𝐴) = (𝑑𝑃𝐴+𝑐)3. 𝑔(𝑃𝐴) > 0

if 𝑃𝐴 < 𝜎2+∣ℎ𝐵 ∣2𝑃sum

2(∣ℎ𝐵 ∣2−∣ℎ𝐴∣2) . This is always true since constraint

(11) holds. Consequently, in the allowed variation area for
𝑃𝐴, 𝑓

′′
(𝑃𝐴) < 0, so function 𝑓 is concave. The optimization

problem (12) is thus convex, and has a unique global optimum.
It is equal to the solution of 𝑓

′
(𝑃 ∗

𝐴) = 0 that verifies constraint

(𝐶′
1). Since 𝑓

′
(𝑃𝐴) =

𝑏𝑑𝑃 2
𝐴+2𝑏𝑐𝑃𝐴+𝑎𝑐
(𝑑𝑃𝐴+𝑐)2 , the potential solutions

are the two roots of the numerator. Both roots are real, but
only one of them fulfills constraint (𝐶′

1). The global optimum
of problem (12) is:

𝑃 ∗
𝐴 =(
𝜎2 + ∣ℎ𝐵∣2 𝑃sum

)
−
√
(𝜎2 + ∣ℎ𝐵∣2 𝑃sum)(𝜎2 + ∣ℎ𝐴∣2 𝑃sum)

2
(
∣ℎ𝐵∣2 − ∣ℎ𝐴∣2

)
(13)

The optimal values of 𝑃𝐵 , deduced from eq. (9), is:

𝑃 ∗
𝐵 =

−
(
𝜎2 + ∣ℎ𝐴∣2 𝑃sum

)
+

√
(𝜎2 + ∣ℎ𝐵∣2 𝑃sum)(𝜎2 + ∣ℎ𝐴∣2 𝑃sum)

2
(
∣ℎ𝐵∣2 − ∣ℎ𝐴∣2

)
(14)

Equations (13) and (14) show that 𝑃 ∗
𝐴 + 𝑃 ∗

𝐵 = 𝑃sum
2 . This

implies that the optimal relay power is always equal to 𝑃 ∗
𝑅 =

𝑃sum
2 . Thus, the relay gets twice more power than Nodes 𝐴 and

𝐵, in order to achieve data rate fairness.
2) Case ∣ℎ𝐴∣2 > ∣ℎ𝐵∣2: That case can be treated similarly

to the previous one, by writting the initial optimization prob-
lem (8) as a convex optimization problem in 𝑃𝐵 . The expres-
sion of the global optimum, 𝑃 ∗

𝐵 , is still (14). Consequently,
𝑃 ∗
𝐴 and 𝑃 ∗

𝑅 are also unchanged.

III. DECODE-AND-FORWARD

The rate region of the two-way relay channel, using Decode-
and-Forward, has been determined in [2]:

𝑅𝐴𝐵 ≤ 1

2
min

{
log2

(
1 + ∣ℎ𝐴∣2 𝑃𝐴

𝜎2

)
, log2

(
1 + ∣ℎ𝐵 ∣2 𝑃𝑅

𝜎2

)}

𝑅𝐵𝐴 ≤ 1

2
min

{
log2

(
1 + ∣ℎ𝐵 ∣2 𝑃𝐵

𝜎2

)
, log2

(
1 + ∣ℎ𝐴∣2 𝑃𝑅

𝜎2

)}

𝑅𝐴𝐵 +𝑅𝐵𝐴 ≤ 1

2
log2

(
1 + ∣ℎ𝐴∣2 𝑃𝐴

𝜎2
+ ∣ℎ𝐵 ∣2 𝑃𝐵

𝜎2

)

(15)

where the last inequality is due to the joint data rate require-
ment on the MAC.

In order to maximize the sum rate under the sum power
and fairness constraints, 𝑃𝑅 is set to the minimum value such
that the broadcast link does not decrease each point-to-point
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Fig. 1. 𝑃𝐴, 𝑃𝐵 and 𝑃𝑅 variations as functions of 𝜅2.
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Fig. 2. Point-to-point data rate comparison.

rate. From the first two equations of (15), it is equal to: 𝑃𝑅 =

max
{

∣ℎ𝐴∣2
∣ℎ𝐵 ∣2𝑃𝐴,

∣ℎ𝐵 ∣2
∣ℎ𝐴∣2𝑃𝐵

}
.

Then, data rate fairness 𝑅𝐴𝐵 = 𝑅𝐵𝐴 can only be achieved
if ∣ℎ𝐴∣2 𝑃𝐴 = ∣ℎ𝐵∣2 𝑃𝐵 . By introducing this constraint and
𝑃𝑅 expression in the sum power, we obtain the optimal power
allocation:

𝑃 ∗
𝐴 =

𝑃sum

𝐷 ∣ℎ𝐴∣2
, 𝑃 ∗

𝐵 =
𝑃sum

𝐷 ∣ℎ𝐵∣2
, 𝑃 ∗

𝑅 = max {𝑃 ∗
𝐴, 𝑃

∗
𝐵}

with 𝐷 =
1

∣ℎ𝐴∣2
+

1

∣ℎ𝐵∣2
+ max

{
1

∣ℎ𝐴∣2
,

1

∣ℎ𝐵∣2
}

(16)

The individual rates are: 𝑅𝐴𝐵 = 𝑅𝐵𝐴 = 1
2 log2

(
1 + 𝑃sum

𝐷𝜎2

)
.

However, since log2
(
1 + 𝑃sum

𝐷𝜎2

) ≥ 1
2 log2

(
1 + 2 𝑃sum

𝐷𝜎2

)
, the

MAC joint data rate constraint always sets the limit for the
achievable sum data rate. It is finally equal to :

𝑅sum = 2𝑅𝐴𝐵 = 2𝑅𝐵𝐴 =
1

2
log2

(
1 + 2

𝑃sum

𝐷𝜎2

)
(17)

We can notice that in the particular case when ∣ℎ𝐴∣2 = ∣ℎ𝐵∣2,
eq. (16) simplifies to the Equal Power Allocation (EPA)
solution: 𝑃 ∗

𝐴 = 𝑃 ∗
𝐵 = 𝑃 ∗

𝑅 = 𝑃sum
3 .

IV. SIMULATION RESULTS

A. Power variations for Amplify-and-Forward

The variations of the power values depending on 𝜅2 =
∣ℎ𝐴∣2
∣ℎ𝐵 ∣2 , for different levels of 𝜎2

∣ℎ𝐵 ∣2 , are given on Fig. 1. The

optimal relay power is always 𝑃 ∗
𝑅 = 𝑃sum

2 . Consequently,
in order to achieve fairness, power must be equally shared
between both transmission phases. Besides, in the MAC phase,
power is split between nodes so that the node with best channel
conditions gets the least power. Power allocation not only
depends on the channel gains and on 𝑃sum, but also on the
noise variance, due to noise amplification at the relay.

B. Point-to-point data rate

The point-to-point data rates for AF and DF with and
without power optimization as a function of 𝑃sum

𝜎2 is represented
on Fig. 2. The reference cases correspond to the optimum
values when ∣ℎ𝐴∣2 = ∣ℎ𝐵∣2: 𝑃𝐴 = 𝑃𝐵 = 𝑃sum

4 and 𝑃𝑅 = 𝑃sum
2

with AF, and EPA with DF. Fig. 2 also shows the minimum
and maximum data rates with these power allocations.

With power optimization, higher data rates are reached with
AF than with DF when 𝑃sum

𝜎2 exceeds 11 dB. The average data
rate is higher with power optimization than in the reference
case with AF, but the opposite holds for DF. This is due to
the unfairness of DF with EPA. On the contrary, even without
power optimization, AF is quite fair, with low differences
between the minimum and maximum data rates.

V. CONCLUSIONS

This letter has determined the analytical solutions for max-
imizing the sum rate while achieving fairness on the two-way
relay channel, with AF and DF. Numerical results have shown
that fair AF is more efficient than fair DF, and that fairness also
improves the average data rate for AF, compared to reference
cases.
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