
Automated Certified Proofs with CiME3∗

É. Contejean1,2 P. Courtieu3 J. Forest4,3 O. Pons2

X. Urbain4,2

1 CNRS, LRI, UMR 8623, Orsay, F-91405
2 INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893

Univ Paris-Sud 11, Orsay, F-91405
3 Lab. Cédric, CNAM, Paris, F-75141
4 ENSIIE, Évry, F-91025

evelyne.contejean@lri.fr, pierre.courtieu@cnam.fr,

julien.forest@ensiie.fr, olivier.pons@cnam.fr,

xavier.urbain@ensiie.fr

Abstract

We present the rewriting toolkit CiME3. Amongst other original features, this
version enjoys two kinds of engines: to handle and discover proofs of various prop-
erties of rewriting systems, and to generate COQ scripts from proofs traces input
in certification proof format (CPF) (an XML format widely accepted by the certi-
fied rewriting community) in order to certify them with a skeptical proof assistant
like COQ. CiME3 may thus be used to add automation to proofs of termination or
confluence in a formal development in the COQ proof assistant.

1 Introduction
Automated tools based on complex mathematical arguments have become widely used
in various domains of computer science. Cryptographic systems, proof assistants or
systems analysing programs involve highly intricate deduction procedures that are in-
deed beyond human capabilities. However, this situation raises a real issue as the
counterpart of such a useful deduction power is the difficulty to trust a result that no
human can check.

Regarding rewriting, and in particular automated termination proof, there has been
many new tools since the introduction of the dependency pair approach [2] at the end
of the 90’s: CiME 2, APROVE [13], TTT 2 [16], Jambox1, etc., to cite a few of them.

However, all these tools exhibited incorrect behaviour at some point, in particular
during the Termination Competition [17] or its preparatory rounds. Several approaches
to certify the results of automated provers with skeptical proof assistants have been de-
veloped: A3PAT [6, 5] and CoLoR/Rainbow [3] targeted to COQ, CETA [18] targeted
to Isabelle/HOL.

∗This work was partially supported by the french ANR projec A3PAT (ANR-05-BLAN-0146).
1http://joerg.endrullis.de/jambox.html

1

New member of the CiME family2, CiME3 is a toolbox dedicated to the handling
and analysis of rewriting programs. It allows one to define term algebras, rewriting sys-
tems, etc., and to perform a range of treatments over these terms and systems: namely
computation, normalisation, matching and unification (modulo equational theories),
completion (Knuth-Bendix) and proofs of equality (both modulo equational theories),
etc. An important part of CiME3 is dedicated to the proofs of termination (including
solving of ordering constraints), local confluence and convergence. CiME3 enjoys a
top level mode for interactive development of rewrite programs; it can also be used in
batch mode with full automation.

CiME3 has been developed in the context of the A3PAT project3 regarding cer-
tification of automated proofs and automation for proof assistants. In comparison to
its ancestors, CiME3 features, in addition to its various proof engines, a certification
mechanism which issues proof traces and certificates, and which allows one to check
that the result of a (semi-) decision procedure is correct. To be certified, a proof trace
can be translated into a script checked by a trusted tool: a skeptical proof assistant like
COQ4, or it can be given directly to a certified dedicated tool like CETA. A unique
feature of CiME3 is in particular the (discovery and) certification of proofs of conver-
gence. CiME3 was in 2010 the only certifier tool targeted for COQ in the Category
“certifying” of the Termination Competition.

The present article is organised as follows.We present in Section 2 some of the
proof engines at work in CiME3, for termination in Sections 2.1.2 and 2.1.3, and local
confluence, KB completion and convergence in Section 2.2. Some criteria allow for
parallel solving, this is presented in Section 2.1.4. The certification engine is then
described in Section 3, along with its input, output, and the general structure of emitted
COQ scripts. Section 3.3 sketches the use of CiME3 in batch mode. We conclude with
a list of resources and companion tools, and with future work regarding the current
implementation.

Problem

termination,
confluence,

constraints...

CiME 3

Proof
engine

Proof

Certif.
engine

Alternate
prover

Proof trace(CPF)

Termination

COQ

COCCINELLE

Certification

.vo

USER

.v

Figure 1: Global CiME 3 architecture.

2http://cime.lri.fr
3http://a3pat.ensiie.fr
4http://coq.inria.fr

2

2 Proof Engines

2.1 Core Language, Termination
CiME3 can be used in interactive or batch mode. We hereafter describe some of the ba-
sic commands for the interactive mode. Note that the batch mode can accept additional
files in various formats (like TRS or SRS formats from the Termination Competition,
or in CPF5, developed by the CETA group and our team), however the commands de-
scribed here can be used in both modes. See Section 3.3 for batch specific command
line options.

The core top level language of CiME3 is a simple language which allows the user to
type in expressions terminated by a semicolon. Simple expressions consist of booleans,
integers, strings, and basic operations on them. As in previous versions of CiME the
nominal language is powerful enough to define functions (polymorphic higher order,
allowing partial application, functions as arguments) with a let fun construct. Ap-
plication is denoted by a juxtaposition of the function and its arguments, as in LISP or
other functional languages based on λ-calculus. A detailed manual is available online
on the A3PAT web page. We focus here on the new syntax and features of CiME3 for
rewrite systems and constraints.

2.1.1 Declarations

The user can define and name objects, algebras, and systems in the CiME input lan-
guage akin to the definitions found in the literature: sets of variables, signatures (sym-
bols with arities), term algebras, rewrite systems, term ordering constraints. . .

A let construct introduces global declarations. Listing 1 declares successively a
set X of variables, a signature F for Peano numbers and addition, and the corresponding
term algebra T. One can then easily declare terms, rewrite systems, and even ordering
constraints (built from conjunctions /\ and disjunctions \/ of atomic constraints).

Listing 1: A few simple declarations.

let X = variables "x,y";
let F = signature "plus : binary; O:constant; S:unary;";
let T = algebra F;
let t1 = term T "S(O)";
let R = trs T " plus(O,x) -> x; plus(S x, y) -> S(plus(x,y)); ";
let c = order_constraints T "O < S(O) /\ S(plus(x,y)) < plus(S(x),y)";

2.1.2 Ordering Parameters

CiME3 features a proof engine dedicated to the discovery of (well-founded) term order-
ings that fulfil a set of (ordering) constraints. These constraints may come from a direct
declaration by the user (see Listing 1), or may appear as the result of operations like
the application of termination criteria on a termination problem, i.e. from termination
constraints. As soon as the ordering constraints are provided, one can try to discover
a relevant well-suited ordering pair (�, <) using the command ordering_solve or
ordering_solve_strict depending on the expected monotonicity of the ordering,
that is depending on whether only �, or both � and <, respectively, are supposed to
be monotonic.

5The Certification Proof Format, http://cl-informatik.uibk.ac.at/software/cpf/
index.php

3

Listing 2: Ordering constraints solving commands.

ordering_solve c; (* Search for weakly monotonic well-founded ordering fulfilling c *)
ordering_solve_strict c; (* Search for strictly monotonic well-founded ordering *)

CiME3 can search for different kinds of orderings, all of which being parameterised
by the user. The presently implemented orderings range from full RPO (with or without
argument filtering systems) to various polynomial and matrix interpretations. Note that
the certification engine can accept traces from other provers, and, thus, can handle more
orderings than those that are currently searched for by the termination proof engine.

The parameters for the search are provided using the grammar in Figure 2. Order-
ing specifications (Ordering param) are of the generic form n1 ord kind n2 n3 n4 . . .
where ord kind specifies the kind of ordering for which to search, n1 is the (optional)
timeout of the solver in seconds, n2 (only for polynomial and matrix interpretations)
specifies the upper bound of the (nonnegative integral) coefficients in polynomials or
matrices, n3 (matrices only) specifies the size of the matrix coefficients, and n4 and fol-
lowing parameters are the list of allowed sizes of strict sub-matrices as defined in [10].
For example, matrix 1 3 1 2 specifies a search for matrix interpretations, with ma-
trix coefficients less or equal to 1, 3× 3 matrices, and strict sub-matrices of size either
1 or 2. As the optional timeout is not provided, the default will be used (no timeout).
Similarly, 30 linear 3 specifies a search for linear polynomials with coefficients
less or equal to 3, and a search timeout after 30s.

The user can declare several ordering parameters for different situations. This is
illustrated on Listing 3 where two different ordering parameters sequences op1 and
op2 are declared, in order to be used later in heuristics (see Listing 4).

Listing 3: Ordering parameters.

let op1 = params "30 linear 3; 30 simple 2; 30 rpo; 30 matrix 2 2 1; 30 matrix 1 3 1 2";
let op2 = params "linear 3; simple 2; rpo; matrix 2 2 1; matrix 1 3 1";

Ordering parameters are interpreted sequentially, unless a parallel search is en-
abled. In the latter case, several orderings are searched for at the same time, depending
on the computer architecture and the specific parameters given by the user, see Sec-
tion 2.1.4.

2.1.3 Criteria and Heuristics

Termination criteria are commonly seen as transformations of termination problems
into sets of other termination problems (possibly empty); they can be represented as
inference rules [6, 9] or processors [14]. The strategy of application of termination
criteria is specified in CiME3 with the help of heuristics. Intuitively, a successful
heuristic must describe a cover of a closed termination proof tree.

CiME comes with a simple heuristic description language which contains built-in
criteria and criteria combinators. Heuristics are specified following the grammar de-
scribed in Figure 2 where id is a previously declared heuristic, manna ness stands
for the well-known Manna and Ness criterion, lex manna ness for rule removal
using lexicographic combination of orderings, DP and DPM stand respectively for un-
marked and marked dependency pair criteria [2], DPG for the graph refinement (es-
timation EDG) of dependency pairs [12] (DPG returns the set of strongly connected
components), ST denotes the extended sub-term criterion [5], and RMVx denotes ver-
tex removal in dependency graphs components [15] and its variant RMC which removes
all vertices of the component.

4

Ordering param ::= linear n | simple n | quadratic n | rpo | matrix n n n+
Solver params ::= n Ordering param (; Solver params)?
Criterion ::= manna ness | lex manna ness | DP | DPM | DPG | ST | RMVx | RMC
Heuristic ::= Criterion {Solver params}? | id {Solver params}?

| Then [Heuristic l] | Do n Heuristic | Repeat Heuristic | Solve [Heuristic l]
Heuristic l ::= Heuristic (; Heuristic l)?

Figure 2: Grammar for heuristics and ordering parameters.

A heuristic x applies to a problem and returns the set of generated sub-problems.
The following constructs allow one to combine heuristics. Then[x;y . . .] applies
heuristic x on a problem and then, if it succeeds, heuristic y on each generated sub-
problem. It fails if either x or y fails. Repeat x calls x on a problem and, if x
succeeds, applies Repeat x again recursively on sub-problems. It never fails. Do n x
is similar to Repeat but uses a limit n for recursive depth. Finally Solve [x;y . . .
] tries to apply x, and in the case x does not succeed tries to apply y, etc., it fails if
all heuristics failed. When all recursive calls have ended, the proof is successful if all
sub-problems are empty.

Listing 4 provides two examples. Heuristic h2 first tries to apply repeatedly rule
removal by lexicographic combination (using strictly monotonic orderings) until it fails
to do so. It transforms then the remaining TRS termination problem into a marked
dependency pairs termination problem and repeats recursively the previously declared
h1. Heuristic h1 first splits the given (DP) problem into sub-problems corresponding
to the strongly connected components of the dependency graph, and then tries on each
component: firstly the extended sub-term criterion, and then, if it failed, vertex removal
with a weakly monotonic ordering.

Some criteria may be parameterised specifically, for instance the number of rewrite
steps allowed in the extended sub-term criterion may be set to n using command
subtermparams n.

Listing 4: Heuristics declarations and commands.

let h1 = heuristic " Repeat Then [DPG ; Solve [ST ; RMVx {op2}]] ";
let h2 = heuristic " Then [Repeat lex_manna_ness {op1} ; DPM ; h1] ";
set_heuristic "h2"; (* Sets the termination heuristic. *)

When relevant parameters are set, proof search may be launched using commands
termination, confluence. . . , which print answers and possibly store traces.

Listing 5: Proof search.

termination R;
local_confluence R;
convergence R;
complete o R; (* Completion of R using term ordering o *)
prove_goal o R t1 t2;(* Ordered completion of R, stops when t1 and t2 are found equal*)
unify (term T "plus(O,x)") (term T "plus(y,O)");

2.1.4 External Solvers, Parallel Search for Orderings

External Solvers Ordering constraints are nowadays usually translated into SAT
problems. Thus, the main solving parts are delegated to a SAT solver [11, 1] or an SMT

5

solver [16].This scheme is implemented in CiME3, and the discovery of relevant inter-
pretations, RPO and AFS, and application of the extended sub-term criterion amount
to solving SAT problems.

The directive #Set_sat_solver invoc name allows one to specify the invocation
name of the external SAT solver, which must fulfil the requirements of the SAT format
for input and output, and the invocation of which must be of the form: invoc name
in file out file.

Note that polynomial interpretations and LPO+AFS may still be found without
the help of any external solver, using the internal Diophantine constraint solver of
CiME [8].

Parallel Search Ordering solvers may be used in parallel. When ordering con-
straints are generated during termination analysis, CiME3 forks one solver process by
ordering constraints set and ordering parameter (Listing 3), thus searching for different
orderings in parallel. Note that solving of different ordering constraints is thus also
parallelised. The maximum number of processes that can be launched in parallel may
be set using the #Set_nb_proc directive. If this limit is reached, new forks are put
in a queue and wait for previous ones to stop before they can be activated. Default
behaviour is sequential computation.

2.2 Local Confluence, Completion and Convergence
A noticeable feature of CiME3 is its ability to check and moreover certify local con-
fluence. Combining this with its possibility to prove and certify termination, one can
easily obtain proof and certification of convergence. To date and to our knowledge
CiME3 is the only tool that can prove and certify convergence of rewrite systems. The
proof search of local confluence (and hence of convergence) is obtained by checking
joinability of critical pairs. When proving local confluence, CiME3 stores a trace in
order to be able to certify it later.

Since critical pairs computation is the core of the standard Knuth-Bendix comple-
tion, our implementation of KB completion (commands complete or prove_goal)
also benefits from the trace production: given two terms which are found equal thanks
to ordered completion, CiME3 yields a trace of equality between these terms, and can
also produce a COQ certificate [4]. Completion modulo AC is also a part of CiME3,
but is not instrumented yet.

Certification of convergence proof is obtained by application of Newman’s lemma,
either using a known proof of termination, or assuming termination of the considered
system. Convergence is then proved by showing that in particular each critical pair is
joinable: we try to normalise each member of the pair and to show that both reduce to
the same term.

3 Certification Engine
As proof engines perform proof search, various verbosity levels allow one to control
the process. Once a proof is discovered, its description is printed on the standard
output. Generation of a CPF trace6, or directly of the corresponding COQ script (for

6Presently for termination proofs only as CPF is not yet extended to handle confluence proofs.

6

termination, local confluence and convergence), is done by command or through batch
mode (Section 3.3).

The purpose of the certification engine is to take a proof trace as an input, and
to output a COQ script for this trace’s certification. Traces may come from proofs
discovered with CiME3, or with other provers (APROVE, TTT . . .) provided they
come as CPF files6.

3.1 Input, Output
The normal input trace format for termination proofs is CPF. CiME3 is not yet able to
certify all criteria supported by the CPF format, but may generate scripts for all criteria
it uses in proof discovery. For properties other than termination (including termination
for convenience), one can take as an input a problem instead of a proof trace. In this
case all the problem formats described in Section 2.1 are supported, CiME will search
the proof by itself and will generate the script, without any intermediate trace. See
Listing 7.

The techniques for the generation by CiME of COQ scripts for certification have
been described in previous works [5, 7, 9]. The compilation of those scripts relies
on the COCCINELLE library, which allows for deep and shallow embeddings of the
theory of rewriting. Relying on a deep embedding to reuse generic theorems instead
of reproving them for each instances is usually fast. However it is interesting to notice
that CiME does use both embeddings depending on the proofs performed. We claim in
particular that dealing with a shallow representation of the dependency graph is very
efficient from a computational point of view, as presented in [9]. Listing 6 illustrates the
fact that the formalisation is partly shallow: on the one hand, symbols and rewriting
rules are defined by new inductive types (symb and R rules), on the other hand,
term structure and rewriting relations rely on generic deep definitions (Term, Var
and one step). However, depending on the content of the proof, a deep version of
R rules, automatically proved equivalent, is defined when needed.

3.2 Structure of a Proof
Listing 6 presents an excerpt of the proof of convergence for the example in Listing 1.
It displays in particular the general structure of a proof script for certification using the
A3PAT approach. Symbols (line 4) and signature (line 7) are defined at the beginning
of the file, followed by the definition of the system itself (line 10)7. The main lemma
for termination is at the end of the last module. The proofs related to the instances
of the different criteria mentioned in the input trace are formalised and proved in a
(nested) sequence of modules (from line 16), thus mirroring roughly the structure of
proof tree described in [5].

Eventually, the confluence proof may be generated with or without an actual proof
of termination (in the latter case, the confluence is proved with the assumption that the
system terminates). As termination is shown in our example, there is no assumption in
Listing 6.

To compile the script, and thus to ensure its validity, one must have the COC-
CINELLE library installed, and a shell variable COCCINELLE set to its root directory.
The last lines of the generated COQ file contains the coqc command line to run.

7Notice that R_rules t u means that u rewrites to t.

7

Listing 6: Coq script structure (notations are simplified).

1 Require Import equational_theory... (* Preamble: require coccinelle files. *)
2 Module algebra.
3 Module F <:term_spec.Signature. (* Signature definition *)
4 Inductive symb:Set := plus: symb | S: symb | O: symb. (* Symbols *)
5 ...
6 End F.
7 Module Alg := term.Make(F)(IntVars) (* Algebra by functor instantiation *)
8 End Algebra.
9

10 Inductive R_rules: term → term → Prop := (* Definition of the TRS *)
11 |R_rule0: R_rules (Var 1) (Term plus [Term O [];Var 1]) (* plus(O,x)→x *)
12 |R_rule1: R_rules (Term S [Term plus [Var 1;Var 2]])

(* plus(S(x),y)→S(plus(x,y)) *)
13 (Term plus [Term S [Var 1];Var 2]).
14

15 Module WF_R.
16 ... (* Criteria application proofs *)
17 Lemma wf: well_founded (one_step R_rules). (* Main termination lemma *)
18 ...
19 Qed.
20 End WF_R.
21 Module Confluence := Newman.Confluence(...).
22 ...
23 Lemma confluence: ∀ x, Newman.confluence _ (one_step R_rules) x.
24 ... (* Joinability of critical pairs. *)
25 Qed.

3.3 Batch Mode Command Line Options
In batch mode CiME takes an input file in a specified format, and returns a result file in
a specified output format. The whole process may include proof searches and/or gen-
eration of COQ scripts. Options -term/-noterm and -confl/-noconf specify
which properties must be considered. Input options include: -itrs (-isrs) for TRS
(SRS) (non XML) formats, -icime for CiME language, and -icpf for CPF format.
Similarly, output options include: -ocpf, -ocoq, and -ocime (outputs the global
environment in CiME format).

Listing 7: Sample command lines.

1 cime -itrs foo.trs -term -ocpf foo.cpf
2 cime -icpf foo.cpf -ocoq foo.v
3 cime -itrs foo.trs -term -ocoq foo.v
4 cime -itrs foo.trs -term -confl -ocoq foo.v
5 cime -icime preamble.cim3 -itrs foo.trs -term -confl -ocoq foo.v
6 cime -icime preamble.cim3 -noterm -confl -itrs foo.trs -ocoq foo.v

Line 1 asks for a termination proof for the system in file foo.trs and then generates
its CPF trace into foo.cpf. Line 2 generates the COQ script foo.v to certify CPF
trace foo.cpf. Line 3 is equivalent to line 1 followed by line 2 (no CPF file is gen-
erated). Line 4 additionally generates the COQ proof of confluence. Line 5 is similar
to 4 but loads a preamble in CiME format before proof search, this is a usual way to
set parameters in batch mode. Line 6 produces a COQ confluence proof parameterised

8

by a proof of termination (not discovered). All these options may finally be chained in
one command line:
cime -noconfl -itrs foo1.trs -ocpf foo1Term.cpf -confl -ocoq foo1TermConf.v\

-icpf foo2.cpf -ocoq foo2Term.v -noterm -ocoq foo2Conf.v

This asks for a termination proof for the system in foo1.trs, generates the cor-
responding CPF file foo1Term.cpf, then produces (without any new search) a
termination and confluence COQ proof foo1TermConf.v. It then generates the
COQ script foo2Term.v to certify the CPF trace foo2.cpf, and build script
foo2Conf.v to certify the confluence of the TRS in foo2.cpf. The last proof
is parameterised by a proof of termination (not computed).

3.4 Experiments
The following tables present some experiments run on a 24GB machine equipped with
12 cores and running linux. The base for termination is the category TRS (taken raw of
the TPDB 5.0 consisting of 2506 problems8; 11 simultaneous processes are allowed.
Local confluence and convergence tests are run on the problems that are proved to be
terminating. The version of COQ is the 8.3 release. A global timeout is set to 180s.

< 0.1s < 1s < 10s < 30s
Termination 1155 354 (30.7%) 730 (63.2%) 1012 (87.6%) 1080 (93.51%)

The vast majority of termination proofs are discovered in less than 10s, and 30% in less
than a tenth of a second. Compared to certification by extracted tools like CETA, the
compilation of COQ script is slow. However, 730 termination proofs are certified under
the time limit. Actually, the only failures observed (out of this run) are due to time or
memory limitations.

Regarding local confluence and convergence, 310 proofs of convergence are dis-
covered, 306 of which are certified under 180s (4 timeouts). The average compile time
for convergence is less than 17s. More than 53% of the convergence proofs are certified
in under 10s.

< 5s < 10s < 30s < 60s
Certif. Term. 730 200 (27.5%) 293 (40.3%) 481 (66.2%) 573 (78.8%)
Certif. Confl. 306 157 (51.3%) 234 (76.5%) 287 (93.8%) 299 (97.7%)
Certif. Conv. 306 53 (17.3%) 164 (53.6%) 271 (88.6%) 293 (95.8%)

4 Resources and Perspectives
CiME3 is an open source piece of software; it is available under the CeCiLL-C li-
cence on the resources page of the A3PAT project: http://a3pat.ensiie.fr/
pub. The web site provides ELF executables for 64 bit architectures, a tarball of
the sources and installation instructions, as well as a short user-manual (http://
a3pat.ensiie.fr/pub/manual-cime3.html), and a script tool to ease benches
and tests over databases of problems. Note that it is also possible to give CiME3
a try online through our dedicated web interface http://a3pat.ensiie.fr/

8In particular strategies are not taken into account.

9

online, with a limited choice of options. The companion library COCCINELLE is
also available from this page, and requires version 8.3 of the COQ proof assistant.

Perspectives regards proof and certification engines. Regarding proofs, some tech-
niques implemented in CiME 2 have not been transferred yet, notably termination mod-
ulo equational theories and modular techniques, including usable rules refinements.

Regarding certification techniques for termination a short term perspective is the
handling of arctic matrices, min/max polynomials, useable rules, and proofs under
strategies, as all the formal material is ready in COCCINELLE.

References
[1] Elena Annov, Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René

Thiemann. A SAT-based Implementation for RPO Termination. In Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (Short Paper), November 2006.

[2] Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

[3] Frédéric Blanqui, Solange Coupet-Grimal, William Delobel, Sébastien Hinderer,
and Adam Koprowski. Color, a coq library on rewriting and termination. In
Alfons Geser and Harald Sondergaard, editors, Extended Abstracts of the 8th In-
ternational Workshop on Termination, WST’06, August 2006.

[4] Évelyne Contejean and Pierre Corbineau. Reflecting proofs in first-order logic
with equality. In 20th International Conference on Automated Deduction (CADE-
20), number 3632 in Lecture Notes in Artificial Intelligence, pages 7–22, Tallinn,
Estonia, July 2005. Springer-Verlag.

[5] Évelyne Contejean, Pierre Courtieu, Julien Forest, Andrei Paskevich, Olivier
Pons, and Xavier Urbain. A3PAT, an Approach for Certified Automated Termi-
nation Proofs. In ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM 10), pages 63–72. ACM, 2010.

[6] Évelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Ur-
bain. Certification of automated termination proofs. In Boris Konev and Frank
Wolter, editors, 6th International Symposium on Frontiers of Combining Systems
(FroCos 07), volume 4720 of Lecture Notes in Artificial Intelligence, pages 148–
162, Liverpool,UK, September 2007. Springer-Verlag.

[7] Évelyne Contejean, Julien Forest, and Xavier Urbain. Deep-Embedded Unifica-
tion. Technical Report 1547, Cédric, 2008.

[8] Évelyne Contejean, Claude Marché, Ana Paula Tomás, and Xavier Urbain. Me-
chanically proving termination using polynomial interpretations. Journal of Au-
tomated Reasoning, 34(4):325–363, 2005.

[9] Pierre Courtieu, Julien Forest, and Xavier Urbain. Certifying a Termination Cri-
terion Based on Graphs, Without Graphs. In César Muñoz and Otmane Ait Mo-
hamed, editors, 21st International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’08), volume 5170 of Lecture Notes in Computer Science,
pages 183–198, Montréal, Canada, August 2008. Springer-Verlag.

10

[10] Pierre Courtieu, Gladys Gbedo, and Olivier Pons. Improved Matrix Interpre-
tation. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorný,
and Bernhard Rumpe, editors, 36th Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM 2010), volume 5901 of Lecture Notes in
Computer Science, pages 283–295, Špindlerův Mlýn, Czech Republic, January
2010. Springer-Verlag.

[11] Carsten Fuhs, Aart Middeldorp, Peter Schneider-Kamp, and Harald Zankl. SAT
solving for termination analysis with polynomial interpretations. In SAT 07,
volume 4501 of Lecture Notes in Computer Science, pages 340–354. Springer-
Verlag, 2007.

[12] Jürgen Giesl, Thomas Arts, and Enno Ohlebusch. Modular Termination Proofs
for Rewriting Using Dependency Pairs. Journal of Symbolic Computation, 34:21–
58, 2002. doi:10.1006/jsco.2002.0541.

[13] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. Aprove 1.2: Auto-
matic termination proofs in the dependency pair framework. In Ulrich Furbach
and Natarajan Shankar, editors, Third International Joint Conference on Auto-
mated Reasoning, volume 4130 of Lecture Notes in Computer Science, Seattle,
USA, August 2006. Springer-Verlag.

[14] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Mech-
anizing and Improving Dependency Pairs. Journal of Automated Reasoning,
37(3):155–203, 2006.

[15] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair method.
In Franz Baader, editor, 19th International Conference on Automated Deduction
(CADE-19), volume 2741 of Lecture Notes in Computer Science, pages 32–46,
Miami Beach, FL, USA, July 2003. Springer-Verlag.

[16] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Ty-
rolean Termination Tool 2. In Ralf Treinen, editor, 20th International Conference
on Rewriting Techniques and Applications (RTA 09), volume 5595 of Lecture
Notes in Computer Science, pages 295–304, Brası́lia, Brazil, July 2009. Springer-
Verlag.

[17] Claude Marché and Hans Zantema. The Termination Competition. In Franz
Baader, editor, 18th International Conference on Rewriting Techniques and Ap-
plications (RTA 07), volume 4533 of Lecture Notes in Computer Science, pages
303–313, Paris, France, June 2007. Springer-Verlag.

[18] René Thiemann and Christian Sternagel. Certification of Termination Proofs us-
ing CeTa. In Tobias Nipkow and Christian Urban, editors, 22st International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’09), volume
5674 of Lecture Notes in Computer Science, pages 452–468, Munich, Germany,
August 2009. Springer-Verlag.

11

