
Ontology Theory,
Management and Design:
Advanced Tools and Models

Faiez Gargouri
Higher Institute of Informatics and Multimedia of Sfax, Tunisia

Wassim Jaziri
Higher Institute of Informatics and Multimedia of Sfax, Tunisia

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Acquisitions Editor: Lindsay Johnston
Development Editor: Joel Gamon
Publishing Assistant: Sean Woznicki
Typesetter: Myla Harty
Production Editor: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Ontology theory, management, and design : advanced tools and models / Faiez
Gargouri and Wassim Jaziri, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "The focus of this book is on information and communication sciences, computer science, and artificial intelligence
and provides readers with access to the latest knowledge related to design, modeling and implementation of ontologies"--
Provided by publisher. ISBN 978-1-61520-859-3 (hardcover) -- ISBN 978-1-61520-860-9 (ebook) 1. Ontologies (Information
retrieval) 2. Knowledge representation (Information theory) 3. Artificial intelligence. I. Gargouri, Faiez, 1965- II. Jaziri,
Wassim, 1975-
 TK5105.88815.O588 2010
 004--dc22
 2009053383

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

98

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

An Algebra of Ontology
Properties for Service

Discovery and Composition
in Semantic Web

Yann Pollet
CEDRIC Laboratory, France

INTRODUCTION

The number of available Web data sources and
services has exploded during the last years. This
enables users to access rich information in many
domains such as health, life sciences, law, geog-
raphy, and many other domain of interest. Thanks
to this wealth, users rely more on various digital
tasks such as data retrieval from both public and
corporate data sources and data analysis with Web

tools or services organized in complex workflows
[Gao, 2005, Kinsi,2007]. However, human users
have to spend uncountable hours to explore and
discover Web resources that meet their requirements.
In addition, in many cases, users need to compose
a specific set of Web resources in order to fulfill a
complex question. This situation is mainly due to
the inability of present standards in capturing Web
Service semantics, i.e. the precise meaning of what
a given Web Service exactly delivers regarding a
specific user context.

AbsTRACT

The authors address in this chapter the problem of the automated discovery and composition of Web
Services. Now, Service-oriented computing is emerging as a new and promising paradigm. However,
selection and composition of Services to achieve an expected goal remain purely manual and time con-
suming tasks. Basing our approach on domain concept definitions thanks to an Ontology, the authors
develop here an algebraic approach that enables to express formal definitions of Web Service semantics
as well as user information needs. Both are captured by the means of algebraic expressions of ontology
properties. They present an algorithm that generates efficient orchestration plans, with characteristics
of optimality regarding Quality of Service. The approach has been validated by a prototype and an
evaluation in the case of an Health Information System.

DOI: 10.4018/978-1-61520-859-3.ch004

99

An Algebra of Ontology Properties

Meanwhile, Service-oriented computing (SoC)
is emerging as a new and promising computing
paradigm that centers on the notion of service
as the fundamental element for accessing het-
erogeneous, rich and distributed resources in an
interoperable way [Roman, 2005]. Web services
are self-describing components that support a rapid
and significant reuse of distributed applications.
They are offered by service providers, which pro-
cure service implementation and maintenance, and
supply service descriptions. Service descriptions
are used to advertise service capabilities, behavior,
Quality of Service, etc. (UDDI, WSDL, OWL-
S). Service descriptions are meant to be used by
other applications (and possibly other services),
and not only by humans. WSDL and UDDI are
the basic standards used for Web Service capa-
bilities descriptions and advertising. However,
they focus on the description of interfaces and
syntactic considerations.

So, at present, the development of powerful
applications on the Web is still facing two major
problems. The first one is related to the increasing
difficulties of identifying services that perform a
specific task. The second one concerns the dif-
ficulty to orchestrate and compose services in a
smooth, automated, and, if possible, optimal way,
regarding the Quality of Service (QoS). This is
still very challenging for many reasons. The main
raison is the present limited ability of languages
and models to describe the semantic of Web
Services, despite tremendous efforts driven by
the semantic Web Services community [Roman
2005, Kopecki 2007, Martin 2007].

In order to increase the benefits gained from
rich Web resources, it would be of the highest
importance to express formal semantic descrip-
tions of Web Services. Such descriptions are in
fact the absolute requisite condition to enable
assisted or automated selection of relevant Web
Services, and generate meaningful compositions
of them. In addition, non functional aspects such
as QoS (performance, availability, …) should be
taken into account at Services selection and for

the generation of a composition plan. This remains
at present challenging and hard issue.

bACKGROUND

Emerging infrastructures such as the Semantic
Web [Berners-Lee, 2001], the Semantic Grid
[Goble, 2005] and Service Oriented architectures
[Roman, 2005], support on-line access to a large
number of resources from data sources and Web
services to knowledge representation models
such as taxonomies and ontologies. Ontologies
play an important role in the Semantic Web and
provide the basics for the definition of concepts
and relationships that make information integra-
tion possible. OWL-S is proposed as a way to
express more detailed descriptions of Web Services
via a provided ontology of Web Services. But it
remains limited and fails in expressing what a
Service really provides, although services should
ideally export also their semantics.

The new Semantic Service-Oriented Architec-
ture (SSOA) leverages rich, machine-interpretable
descriptions of data, services and processes to en-
able software agents to automatically interact and
achieve collaborative goals. The SSOA integrates
the principles of Service-Oriented Computing with
semantics-based computing, Typically, a Semantic
Service-Oriented Architecture (SSOA) includes
four layers: the data layer, the resource layer,
the ontology layer, and the community layer, as
depicted in figure 1. The data layer represents data
published by Web resources, and the hyperlinks
that interconnect theses data objects, for example
PubMed publications or medical records stored in
Google Health. The resource layer is comprised
of Web resources and their links, Resources can
be either data source, e.g., SwissProt which is a
protein database, or a Web service, e.g., BLAST
which is a bioinformatics Web-based alignment
tool. In the case of a data source, a resource imple-
ments some concepts and individuals of the ontol-
ogy level, while in the case of Web Services, they

100

An Algebra of Ontology Properties

implement a semantic link that relates input and
outputs parameters. Web Services infrastructure
provides the syntactical basis for interoperability
between resources thanks to standards such as
WESL [Akkiraju, 2005], UDDI, and SOAP.

Semantic Web service (SWS) technology
aims at providing richer semantic specifications
of Web services in order to enable the flexible
automation of service processes. The field includes
substantial bodies of work to enhance resource
descriptions with the use of an ontology includ-
ing OWL for Services (OWL-S) [Martin, 2007],
the Web Service Modeling Ontology (WSMO)
[Roman, 2005], and SAWSDL [Kopecki, 2007].
Some approaches, such as [Ayadi, 2008] introduce
a canonical set of semantic descriptions of Web
services in order to extend SAWSDL standard
and support automatic reasoning.

Regarding Service discovery, several tech-
niques have been proposed to support service
discovery using logical inference. Existing solu-
tions, including those of Paolucci et al. [Paolucci,
2002, 2007] and Sycara et al. [Sycara, 2003, 2006]
propose a method based on DAML-S descriptions
for matching goals and capabilities of semantic

Web services. Sycara et al. describe the imple-
mentation of the DAML-S/UDDI matchmaker
that expands UDDI by providing semantic capa-
bility matching. OWLS-MX [Klusch, 2006] is a
hybrid matchmaker that complements logic based
reasoning with approximate matching based on
similarity computations.

The proposed FUSION semantic registry
[Kourtesis, 2008] relies on a combination of
three standards: UDDI, for storing and retriev-
ing syntactic and semantic information about
services and service providers, SAWSDL for
creating semantically annotated descriptions of
service interfaces, and OWL, for modeling ser-
vice characteristics and performing fine-grained
service matchmaking via Description Logic rea-
soning. In contrast with prominent approaches,
FUSION relies on functional and non-functional
properties for matchmaking. However, it is not
clear in [Kourtesis, 2008] how service discovery
is realized in this System.

There is today a wide agreement on the fact
that a flexible Web Service infrastructure, where
resources can be discovered and smoothly com-
posed into workflows, is strongly required. But,

Figure 1. A layered web architecture

101

An Algebra of Ontology Properties

in spite of tremendous efforts around semantic
Web Services, the automation of these tasks is
still challenging and hard to achieve.

AN ALGEbRAIC APPROACH
FOR sERVICE DIsCOVERY
AND COMPOsITION

We explore here an algebraic approach for Ser-
vice Discovery and composition based on an
ontology of a given application domain. In order
to motivate the need for an automated selection
and execution of relevant Services, we present at
first a simplified case study in healthcare domain.
Then we present the RCS algebra (Relationship
Composition with Structured Expressions) that
we propose as a new theoretical basis, and detail
its mathematical foundations. We present then a
mapping model based on the Algebra that enables
to formally express the semantics of Services,
referring to domain ontology. We present also an
efficient algorithm for execution plans generation
developed on the basis of our approach. At last, we
give a short presentation of a developed software
framework and of its application to the case study
in order to validate our approach.

A Motivating Example

As a way to illustrate our problem, we present
here a case study issued from the Healthcare do-
main. In a given regional area, we have several
healthcare institutions (hospital and practitioner
offices), each of them managing data about their
patients. A medical file is a set of time labeled
medical events from different types (diagnosis,
treatment prescription, medical act), with standard
codifications. An institution may have zero, one
or several medical files for a given patient. Each
practitioner from an institution has access rights
regarding a patient file, depending of his /her role
in the healthcare process of this patient (referent
practitioner, consultant, etc.). Access rights may be
limited in time, e.g. for some roles in relationship
with specific acts. In addition to medical files, it
may exist Identities Servers, at regional level, that
deliver information about patient’s administrative
details, as well as links to existing medical files
on the basis of a patient identity. The figure 2
below illustrates a fragment of a relevant simpli-
fied ontology (based on a consistent combination
of different existing standards). For a concern of
readability, datatype properties (attributes) and
cardinalities don’t appear.

A practitioner has access to a secured infra-
structure where the different information servers
that deliver data about patients are accessed via
Web Services.

Figure 2. A simplified fragment of ontology in medical practice domain

102

An Algebra of Ontology Properties

In healthcare domain, therapeutic decision, e.g.
decision in oncology, requires access to various
pieces of information scattered among various
several institution servers. Therapeutic decision
is the most convincing use case regarding the
requirement for Services selection and composi-
tion, as there are many sources from which data
have to be retrieved, with possible alternatives.
But there exist many examples of support applica-
tions leading to the same requirements, such as
epidemiologic studies, and access to anonymous
patient files for medical students. Plans should be
flexible in order to be automatically adapted when
new sources are added to the community.

Problem and basic Hypothesis

We assume here that the various information
sources provide access to relevant data by the
means of Services. We define here a Service just
as a black box function that may be invoked by
a distant software entity, with input data, and
delivering output results. We make no assump-
tion about technology, and these Services may
be implemented as Web Services, or thanks to
another technology. We consider here stateless
data access Services, excluding Services having
a side effect on internal data and/or on external
world. A Service encapsulates all the details of
operations executed to deliver a required piece of
information. In particular, the user entity doesn’t
know whether the output is extracted from a lo-
cal database, results from a calculation, or from
a combination of both (e.g. rights determination
from roles in our example).

We consider a domain Ontology O. This Ontol-
ogy defines a set of classes {Ci,}, each of these
having some attributes proprieties {Vi,j} (datatype
properties), and directed relationships {Ri,k} to
other classes (object properties).

By hypothesis, a Service will be such as {x’}
= S (x1, …, xn), or {v} = S (x1, …, xn), where x’ et
xi are individuals whose types directly correspond
to Ontology classes, and where v is a type cor-

responding to a datatype in O. In the following,
we shall also consider Services with more than
a single output parameter. The development of
relevant wrapping code, in the case of Service
reuse, is out of the scope of the issue addressed
by the chapter.

Principles

The domain Ontology provides a well defined for-
malisation of the various concepts of the domain,
with meaningful properties and relationships. This
enables to attach a precise meaning to a given
piece of information, in particular when required
by a user. However, the concern of a user may not
exactly correspond to an Ontology concept. For
example, the exams and the treatments that have
been provided to a patient P have an interest for
some users; nevertheless, this concept does not
immediately correspond to a property of patient
class. To define such a result, we have to consider
at first all the medical files associated to the
given individual patient, the union of all medi-
cal events from each file, and then the extraction
of exams and treatments. There are in fact two
problems. The first one is that we want to deal
with an indirect access to medical events from
a patient, with restriction condition on medical
events. The second one is the fact that the type
of results does not match with a concept known
in the Ontology.

In order to define such information, we shall
introduce the notion of derived property. A de-
rived property will be formally defined by the
means of an algebraic expression of the Ontology
properties. A derived property will be attached
to an Ontology class, or to new class defined on
the basis of existing Ontology classes, and called
here a derived class. A native or derived property
will be called an extended property. So, a piece
of information needed by a user will be always
defined by both an individual, and an extended
property to evaluate. This is the first principle of
our approach.

103

An Algebra of Ontology Properties

The second principle concerns the capture
of Services semantics. It consists in defining
the semantic of a Service, i.e. the link between
input and output by a correspondence with a
property of the Ontology, such a relationship or
an attribute. The most simple case is this where a
Service, with an individual x as input, delivers as
output the set of objects {x’} in correspondence
with x via a given propriety R. As an example,
if a Service delivers the content of a medical file
starting from the reference to this file as input,
the meaning of the Service is perfectly defined
by the relationship “Contains” of the Ontology.
Our principle is therefore this of defining the
semantic of a Service by an Ontology property
that this Service may realize. We shall call such
a correspondence a mapping between a Service
and a property. However, this is only a specific
case, and there is no reason for a given Service
to realize exactly a particular Ontology relation-
ship. First of all, a Service may directly realize
an indirect correspondence. For example this is
the case if a Service delivers the overall content
of a patient file given the patient’s identity. This
is the case in which a Service realizes a derived
property. So, a Service may realize a native or a
derived property.

Another case is this of a partial realization.
Consider a Service provided by an institution
delivering a set of medical events, for a given
patient. The Service will be able, of course, to
deliver results only for patients known in the
institution, i.e., that have at least one event in this
institution. In addition, it will be able to deliver

only known events, i.e. those which have been
performed in this institution. We shall present a
general mapping model that enables to express
sophisticated semantic correspondences between
an available Service and properties. This model
covers the more complex cases involving Services
with more than one input parameter and/or more
than one output parameter. The figure 3 synthesizes
the two principles of our approach.

The RCs Algebra

We present here the RCS algebra that enables to
express formal definition of new properties.

Derived Classes

Starting from the classes defined in the Ontology,
called here natives classes, one can define new
classes by application of the following OWL op-
erators and their combinations. Such new classes
will be called derived classes.

Intersection: C = C1.C2 (C1 ∩ C2) defined by:
x є C1.C2 iff x є C1 AND x є C2, where C1 and C2
are natives classes, or already defined derived
classes. Properties which are valid for x є C are
those valid for x є C1 or for x є C2

Union: C = C1 + C2 (C1 U C2) defined by: x є
C1 + C2 iff x є C1 OR x є C2, where C1 and C2 are
natives or already defined derived classes, Valid
properties are those valid for x є C1 and x є C2

Property Restriction: C’ = CP is defined by
x є CP iff x є C AND P(x), where C is a native or
an already defined derived class, and P a predi-

Figure 3. Organization of the ontology based framework

104

An Algebra of Ontology Properties

cate defined as a logical expression AND-OR of
elementary predicates of the form Vi Θ v, where
Vi is a property defined on C, v a value of this
property, and where Θ a comparison operator
defined on the value domain. Valid properties for
an x є CP are those valid for x є C

Property (Ontology Lattice). Let be an
Ontology O, the set of native classes of O com-
pleted by the set of derived classes generated by
intersection, union, and property restriction is
a Lattice. The associated pseudo order is « ≤ »,
defined by: C1 ≤ C2 iff C1 c C2 (set inclusion) and
IsProperty (C2) → IsProperty (C1). This extends
the Ontology relationship of specializations /
generalization. A native or derived class will be
called an extended class.

Algebraic Operators on Properties

We introduce here two binary operators on re-
lationships: the composition and the union, plus
a third operator called relationship restriction.
These operators apply on extended (i.e. native of
derived) relationships. In addition to relationships
operators, we introduce the projection that enables
to deal with attribute properties. We shall write
<R, x, y> to express that the individual x and y
are in relationship by R. In addition, dom(R) and
range(R) will respectively denote the domain of a

relationship R (i.e., the set of x), and its range (i.e.
the set of y). At last, minCard(R) and maxCard(R)
will respectively denote the minimum and maxi-
mum cardinalities of R (by default minCard(R)
= 0 and maxCard(R) = ∞).

Composition

Definition (composition operator). Given two
relationships R1 and R2, the composition R1 * R2 is
the relationship such as dom(R1 * R2) = dom(R1),
range(R1 * R2) = range(R2), and <R, x, z> iff there
exists y є range(R1)∩dom(R2) such as <R1, x,y>
and <R2, y,z>

The result is defined for any R1 and R2 and be-
longs to the set of relationships R. * is associative
but not commutative. If range(R1) ∩ dom(R2) = Ø,
then R is a null relationship, with no value for any
individual. In addition, we have minCard(R1 * R2)
= minCard(R1) . minCard(R2), and maxCard(R1 *
R2) = maxCard(R1).maxCard(R2). The figure be-
low illustrates the principle of the composition
operator and an example of composition:

Union

Definition (union operator). Given two rela-
tionships R1 and R2, the union R = R1 + R2 is the
relationship such as dom(R1 + R2) = dom(R1) ∩

Figure 4. Illustration of the composition operator

105

An Algebra of Ontology Properties

dom(R2), range (R1 + R2) = range (R1) U range
(R2), and <R, x, y> iff <R1 x, y> or <R2, x, y>

The set of individuals {y} associated to an
individual x by R is so the union of the two
sets of individuals respectively associated to x
by R1 and by R2. R1 + R2 is always defined as a
relationship, possibly empty (in particular in the
case where dom(R1) ∩ dom(R2) = Ø). The union
operator is commutative and associative. The
composition operator * is distributive with respect
to the union +. We have: minCard(R1 + R2) = Max
(minCard(R1), minCard(R2)) and maxCard(R1 +
R2) = Min (maxCard(R1), maxCard(R2))

Restriction Filter and
Relationship Restriction

Definition (restriction filter). Given two classes
C1 and C2, the relationship [C1, C2], called restric-
tion filter from C1 to C2, is the relationship such
as dom([C1, C2]) = C1, range([C1, C2]) = C2, and
< [C1, C2], x, y> iff (x=y) and (x є C1 ∩ C2)

Such a relationship is a constant as it is canoni-
cally defined from any ordered pair of classes,
independently of the domain ontology relation-
ships. [C1, C2] associates to any individual from C1
either the individual itself, either an empty value
set. An individual y from C2 may be associated to
an x from C1 by [C1, C2] only if y є C1. If C1 = C2 =
Universal, so [C1, C2] is the Identity relationship.
If C2 = C1

P, where P is a predicate defined on C1,
[C1, C1

P] is a classical P-predicate restrictor. In
particular, we have the following property:

[C, C PRE1] * [C, C PRE2] = [C, C PRE1 AND PRE2]

So, we can define the relationship restriction
operator in the following way:

Definition (restriction). Given a relationship
R, two predicates PRE(x) and POST(y) respec-
tively applying on individuals x from dom(R)
and y from range (R), the relationship restriction
of R by PRE and POST is defined by RPRE, POST =

[C1, C1
PRE] * R * [C2

PRE, C2], where C1 = dom(R)
and C2 = range(R)

So, the relationship RPRE, POST associates to any
individual x from C1 such as PRE its correspondent
individual y by R if POST(y) is satisfied, and an
empty set if not. The above figure 5 illustrates the
relationship restriction operator:

Examples: One may derive from the relation-
ship « contains » new relationships with the same
domain (Medical File) and same range (Medical
Event), but with a more specific meaning, e.g.:

R•	 1, that associates to the medical files of
a given institution H their content (with
an empty value set for other ones): R1 =
Contains ManagedByH, True, where ManagedByH
(d) = d.managedBy = H
R•	 2, that associates to any medical files
the sets of its diagnosis: R2 = Contains
True, Is(Diagnosis)

Canonical Decomposition
of a Relationship

Let’s consider a relationship R, two sets of predi-
cates {PREi ; i=1, ..,n} and {POSTj ; j=1, ..,m}
respectively applying on the classes dom(R) and
range(R), and such as:

PRE1 OR …. OR PREn = True, and POST1 OR
…. OR POSTm = True,

We have: R = ∑ i=1 , . . ,n OR PREi = True
RPREi, True = ∑j=1, …,m OR POSTj = True RTrue, POSTj =
∑i=1,..,n, j=1, …,m OR PREi = True, OR POSTj = True R

PREi, POSTj

Figure 5. Illustration of the relationship restric-
tion operator

106

An Algebra of Ontology Properties

If R is a native relationship, and if the predicate
sets PREi and POSTj are composed of mutually
exclusives conditions, the above property defines
a canonical way to decompose a relationship.

Algebraic Expressions and
Extended Relationships

The above operators enable to formulate algebraic
expressions, where operands are extended rela-
tionships, i.e. native Ontology relationships, and/
or already defined derived ones. Formulas define
new derived relationships. Their domain and range
are defined using the operator rules.

As an example, R = R1 + R2 * R3
PRE1, POST1 +

R4
PRE2, POST2

* R5 is a relationship with domain
dom(R) = dom(R1).dom(R2).dom(R4) and
range(R) = dom(R1) + dom (R3) + dom(R5)

R = hasTrue, role=Referent
* concerns * hasFile

True, managedBy=H
* contains True, Is(Diagnostic) is a property

of domain « Practitioner », and its range is the
class « Diagnosis ».

It is possible to transform a given formula
into equivalent expressions using the properties
of operators (associativity of composition and
union, commutativity of union, distributivity). If
an operand is an extended relationship, another
formula should have previously defined it, and
we exclude in the present version of the theory
cyclic definitions. The set of derived relationships
associated to the Ontology O will be defined by a
sequence of expressions of the form: Ri = EXPRi
(R1,i, …., Rni, i) ; 1=1, …, N, where EXPRi is an
expression whose operands Rk, i k = 1, …, ni are
either native relationships, either derived relation-
ship taken among the R1, …, Ri-1

Example 1: The relationship R1 that associ-
ates to any patient registered in the institution H
the set of his/her medical files is: R1 = hasFile *
[MedicalFile, MedicalFile managedBy=H] * contains.

Example 2: The relationship R2 that associates
to any patient having hepatitis as diagnosis, the
institution where his/her has a medical file is:

R2 = asFile * [MedicalFile, MedicalFile
Hepatitis IN medicalFile.contains] * managedBy

R1 and R2 are extended properties of the class
“Patient”

Extended Attributes

In order to support the definition of derived at-
tribute properties, we define at first the operator
of projection that gives access to the values of an
attribute of a given individual.

Definition (projection). Given a native class
C having an attribute property V. The projection
C.V of the class C on the attribute V is the func-
tion that associates to any individual x from C
the set {Vi} of the values attached to x by the
attribute V.

The projection allow to formulate expressions
such as: V’ = EXPR (R1, …, Rn).V, where EXPR
(R1, …, Rn) is an algebraic expression of the re-
lationships R1, …, Rn, and where V is an attribute
property attached to the class C’ = range (EXPR
(R1, …, Rn)).

This expression defines a new property at-
tribute attached to the class dom (EXPR (R1, …,
Rn)). It is such as dom(V’) = dom (EXPR (R1, …,
Rn)), and range(V’) = range(V). If V = R.V, we
have maxCard(V’) = maxCard(R).maxCard(V)
and minCard(V’) = minCard(R).minCard(V)

Example: (hasFile * contains * [MedicalEvent,
Diagnosis]).longName is the property attached to
a patient giving his/her various diagnosis names
in clear. Such a property will be said derived at-
tribute. A native or derived attribute is said to be
an extended attribute.

semantic services Mapping

Basic Principles

So far, we have at our disposal an Algebra enabling
to manipulate and combine the properties of an
Ontology in order to define new properties with

107

An Algebra of Ontology Properties

the help of rigorously defined operators. In this
section, we exploit this Algebra for the purpose
of Services semantic definition. We define here a
mapping model enabling to express the meaning of
a given Service (i.e. the meaning of the transfor-
mation it performs from its inputs to its outputs)
thanks to Ontology properties. We have indicated
that the basic principle was this of capturing Ser-
vice semantics by the means of relationships. In
the simplest case, the operation performed by a
1-1 Service (i.e. a Service with one input and one
output parameter) may exactly correspond to an
Ontology relationship. In the case when there ex-
ists a Service with a patient identification as input
and delivering as output the set of the references
to his/her various medical files, the semantic of
this Service corresponds exactly to the ontology
relationship « hasFile».We call here mapping, such
a semantic correspondence. We shall say that the
Service realizes the relationship.

For a given practitioner, a Service may deliver
the set of his/her patients (i.e. for who his/her is
referent practitioner), although this relationship
does not exist in O. In order to express such a
link, we shall considerer more general mappings,
linking a Service to an extended relationship.
Such a correspondence may be total, or partial
(case where a Service realize only a part of the
relationship).

However, 1-1 Services are a particular case of a
more general n-p Services, with n input parameters
and p output parameter. So we need a mapping
model more general that direct association. For
that, we introduce mapping correspondences link-
ing an output individual to n input individuals by
the mean of algebraic expressions.

At last, if the notion of mapping expresses
what the Service delivers regarding meaning,
we should also be able to capture non functional
aspects, such as e.g. performance or availability of
Services. We introduce for that a model of Qual-
ity of Service (QoS) in order to have a complete
definition of a Service.

Simple Mapping Assertions

We consider here a 1-1 Service, whose input pa-
rameter is an individual from a class Cin = In(S),
and output parameter a set of individuals from
class Cout = Out(S). The output set of S is so 2Out(S)
= 2Cout, i.e.: S: Cin → 2Cout

Definition (realization of a relationship by
a service). Given a 1-1 Service, where In(S) and
Out(S) are natives or derived classes, and R a
native or derived relationship. We shall say that
the Service realizes the relationship R iff y є S(x)
⇔ <R, x, y>

We have so: In(S) = dom(R) and Out (S) = range
(R). We shall write <MAP, S, R>. This expression
being called a mapping assertion.

A service may also realize an attribute. Let’s
consider a 1-1 Service S, whose input set In(S)
is a class Cin, and whose output set Out(S) is 2D,
where D is a datatype such as Interger, String,
Date, etc.

Definition (realization of an attribute by
a service). Given a 1-1 Service where In(S) is
an extended class, and Out(S) a datatype D. Let
be V a native or extended attribute of type D. S
realizes V iff v є S (x) ⇔ <V, x, v>. We write:
<MAP, S, V>

We can therefore consider individual-oriented
Services, which deliver sets of individuals from a
given class, and datatype-oriented Services, which
deliver as output sets of datatype values from a
given Ontology datatype. In order to simplify the
presentation, we describe here the mapping model
with only individual-oriented Services, only a few
extensions being necessary to integrate datatype-
oriented Services.

Restricted Mappings

A existing Service may realize only a part of a
relationship R, i.e. only apply to a sub domain of
R, and only deliver a sub part of expected results
regarding R. There are many reasons for that, the
main one being that it is natural that an organiza-

108

An Algebra of Ontology Properties

tion only delivers information in its perimeter of
influence or knowledge. In our example, it is il-
lustrated on one hand by the relationship “hasFile”,
and on the other hand by the Services provided by
the various institutions, that have a view limited to
their own patients and events. Such Services only
realize parts of the “hasFile” relationship, with
restrictions on inputs and output individuals.

In this case, we have so a weaker property,
i.e.:{yi} = S (x) → <R, x, yi>, although the inverse
may be false. S is said a partial realization of R.
We consider here the case where the limitations
in R realization follow criteria of rationality, in
relationship with some known organizational
rules. So, well defined criteria of limitation may
be expressed (there exist cases where it is not true,
e.g. in the case of a asynchronously lazy replicated
databases, where limitation may depend on delay.
This case will be captured in our approach by the
means of QoS).

So, we consider a more general mapping model,
based on a new form of mapping assertions.

Definition (general mapping assertion).
Given a Service S, a relationship R, two predicates
PRE and POST respectively applying on dom(R)
and range(R), a mapping assertion states that S is
a realization RPRE, POST, i.e. (y є Y = S (x)) ⇔ (<R,
x, y> AND PRE(x) AND POST(yi)). We write:
<MAP, S, R, PRE, POST>, that is equivalent to
<MAP, S, R PRE, POST >

It has to be noticed that this notion of post con-
dition on output is not at all this of effect, related
to the semantic capture of Web Service with side
effect as it may be found in the literature.

The Algebra of Services

Let’s consider a set of 1-1 Services {Si}, a set of
relationships {Rj}, and a set of mapping assertions
<MAP, Si, Rj, PREi,j, POSTi,j >. The relationship
Rj

PREi,j, POSTi,j defines the semantic of Si. We define
the operators of Composition, Union and Restric-
tion applying on Services. These operators are
symmetrical to those applying on relationships:

Definition (composition, union, and restric-
tions of services). Given three Services S1, S2, S,
and two predicates PRE and POST respectively
applying on In(S) and Out(S).

S• 1 * S2 is defined by: x’’ є (S1 * S2)(x) iff
there exists x’ such as x’ є S1(x) AND x’’
є S2(x’)
S• 1 + S2 is defined by: x’ є (S1 + S2)(x) iff x’
є S1(x) OR x’ є S2(x)
and S• PRE, POST is defined by: x’ є SPRE, POST(x)
iff x’ є S (x) AND PRE (x) AND POST
(x’)

We have: in(S1 * S2) = in(S1), out(S1 * S2) =
out(S2), in(S1 + S2) = in(S1).in(S2), and out(S1 +
S2) = out(S1) + out(S2). The invocation of (S1*S2)
(x) leads to an invocation of S1, and a number of
invocations of S2 depending of result {S2 (o)}
cardinality, that may be 0, 1 or many. In addition
to the Services provided by infrastructure, we
consider filters F[C1, c2], that are predefined Services
realizing [C1, C2] relationships.

An algebraic expression of Services is equiva-
lent to an execution graph, where elementary
instructions are Services invocations, controlled
by the means of composition, union and restriction
operators that respectively stand for sequence,
parallel activation (fork and join) and test condi-
tions. The Services provided by the infrastructure
are called real Services, as Services defined by
algebraic expressions of real Services are abstract
Services. As an example, consider three Services
S1, S2 and S3 that respectively realize the relation-
ship « hasFile », the relationship “contains” for
public institutions, and the same relationship «
contains » other institutions. The complete medi-
cal file of a patient P is given by invocation of the
abstract Service S1 * (S2 + S3).

If <MAP, S1, R1> AND <MAP, S2, R2>, we
have <MAP, S1*S2, R1*R2> and <MAP, S1 + S2,
R1 + R2>. If <MAP, S, R>, then we have <MAP,
SPRE, POST, RPRE, POST>. This defines an algebraic
homomorphism between the relationship Algebra

109

An Algebra of Ontology Properties

and the 1-1 Services Algebra. An important result
concerns the evaluation of derived relationships
with several Services realizing partial mappings,
thank to the following property:

Let be a relationship R, a set of Services Si,
i =1, …, n, such as <MAP, Si, R, PREi, POSTi>.
The Service S = ∑i = 1, …, n Si realizes the relation-
ship R, i.e. <MAP, ∑i = 1, …, n Si, R> iff ORPREi, POSTi
(PREi AND POSTi) = True

Similar definitions and results may be devel-
oped for datatype oriented Services.

Complex Mappings

We consider here n-p Services, i.e. with n input
parameters and p output parameters. We suppose
that parameter types are still Ontology extended
classes. We consider at first the n-1 Services, then
the general case of n-p Services.

Let’s consider three classes “Patient”, “Medi-
calFile” and “Institution”, linked by relationships
“hasFile” (one or several files for a given patient)
and “managedBy” (only one institution for a given
file), as indicated on the figure 6.

Let’s consider a Service provided by an identity
server delivering references to medical files for
each ordered pairs (patient, institution) given as
input, i.e.: S: (Patient, Institution) → 2 MedicalFile.
This is a 2-1 Service, with In1(S) = Patient, In2(S)
= Institution, and Out(S) = MedicalFile. The
relationship that links the output set {Files D} to
inputs Patient P and Institution I is simply:

RS = hasFileTrue, PR (I), where PR is the predicate
defined by PR(I) = P.Institution = E

This is a restriction of the Ontology relation-
ship “hasFile” by the predicate POST, parameter-
ized by the other input parameter I. This may be
written:

<MAP, Sin2 = I, hasFile, True, P.Institution= In2(S)>.

where Sin2 = I is the 1-1 Service that associates to
a patient P the output S(P, I), and where In2(S)
denotes the value of the second parameter of S,
i.e. the current value of input I.

In order to express the semantic of such a n-1
Service S: (Cin 1, …., Cin n) → 2Cout, one has to de-
fine an algebraic formula of the form: RS = EXPR
({Rk}, {PRl}) that gives the extended relationship
RS linking the output with an i0

th input parameter.
This relationship is expressed by the means of
Ontology relationships, and predicates {PRl}
involving the values of the other input parameters
from Ini(S), i≠i0, inside restriction predicates

The relationship RS is the relationship realized
by the Service S, i.e. such as <MAP, S, RS>. It ex-
presses the semantic of S on the basis of properties
and predicates. This expression is not necessarily
unique, in particular in the case where there ex-
ist in the Ontology inverse relationships of those
used in the considered expression. The general
method to define such an expression consists in:
1) determining a relationship path in the Ontology
O linking one of the input parameter class to the
output parameter class, and 2) adding predicates
corresponding to the constraints involved by the
data of other input parameters. The conditions of
existence of such a mapping should be studied
in detail.

Figure 6. Case of a mapping with (2, 1) service

110

An Algebra of Ontology Properties

Now, let’s consider the general case of a n-p
Service, with n input and p output parameters,
i.e. S: (Cin 1, …, Cin n) → (2 Cout 1, …, 2 Cout p). The
semantic of the Service S is perfectly defined by
the semantic of the p partial Services Sj: (Cin 1, ….,
Cin n) → 2 Cout j (p projections of S on the p output
sets Cout 1, …, C out p), which are n-1 Services, and
so, the previous results apply.

Quality of Service

It may exist several ways to realize a relationship,
i.e. to evaluate a property by the means of Services
invocations in response to a user query. E.g., in
order to access to the complete medical file of a
given patient, we may decide to address in paral-
lel direct queries to each institution, via ad hoc
Services provided by each of them. We may also
decide to query first a relevant Service provided
by the regional health server, that will deliver the
set of institutions in which the given patient has a
medical file, then to request only the relevant ones.
This choice is influenced by many factors such as
the number of institutions, the expected delay of
execution of each individual Service, their average
availability, and, may be, some additional factors
such as the expected quality of data, factor that
gives higher quality to fresh data against data with
possible lack of recent pieces of information (e.g.
data from mirror or cache sources). Each factor
may be quantified with a magnitude relevant with
its meaning (e.g. a time, a probability, etc.). We
consider here a set of quality factors Fi, i=1, …,
p, with their associated metrics qi. We consider
the quality function:

q = [q1, .., qp] = Q(Si),

that associates to each Service Si, a p-dimension
vector where the ith dimension is the quantification
of the Fi factor. Let be a function of preference:

Pref = Λ(q) = Λ ([q1, .., qp]) = ∑i=1, …, p αi. qi

provided by a calling entity, and that aggregates
the various quality dimensions is a single relevant
value and enables to compare various realisa-
tions of a given evaluation. For each factor qi, we
should express rules that define how to aggregate
values of qi factors when services are combined
by composition or by union:

q(S1 * S2) = F(q(S1), q(S2)) = [Fi (qi(S1), qi(S2))]

q(S1 + S2) = G(q(S1), q(S2))= [Gi(qi (S1), qi(S2))]

where Fi and Gi functions depend on the seman-
tic of the considered qi factor. Depending of this
semantic, each Fi or Gi function may be a sum, a
maximum, a minimum, etc. In the case of composi-
tion, where the number of S2 invocations depends
on the cardinality of S1 results, the definition of Fi
should reflect the chosen strategy of optimization
(e.g. minimax). So, the Services infrastructure
should provide relevant meta information such
as the maximum or the mean cardinal of results
for each Service. As a simplification, we may
write:

q(S1 * S2) = q(S1) * q(S2)

q(S1 + S2) = q(S1) + q(S2)

to denote the combination of QoS vectors by the
* and + operators.

Automated Execution
Plans Generation

We study here the general issue of determin-
ing the set of Services that should be invoked
in response to a request, as well as the way in
which they have to be orchestrated to meet their
objective. Firstly, we define in details the various
elementary issues. Then we present the principles
of new mapping assertion generation that may
be followed to solve our problem. This enables

111

An Algebra of Ontology Properties

to present at last an original algorithm providing
solutions to our problem.

The Execution Plan Problem

So far, we have defined: 1) a way to express the
semantic of the various Services provided by
a given configuration, and 2) a way to express
user queries under the form of derived properties
evaluations. Such properties are expressed with
the use of a combination of the various native
elementary properties of the ontology.

Now, the main question is to determine the
relevant execution plan of Services invocations
that will deliver the expected result, i.e. the
transformation of a given algebraic expression
of properties into a plan of services invocations.
Such a plan will be called here an orchestration
plan. As the order of invocations is significant,
and as some Services may be invoked in parallel,
such an orchestration plan may be represented by
an execution graph, where nodes represent the
intermediate results, and where branches represent
(sequential and/or parallel) tasks to execute.

In order to simplify the presentation, we focus
here the presentation on the evaluation of derived
object properties (relationships), the whole ap-
proach described in this section remaining valid for
the evaluation of datatype properties (attributes),
with a simple extension.

Having a configuration defined by an ontology,
a set of defined derived properties, and a set of
Services, with definitions of mappings relating
Services to ontology properties, we consider a
property R to evaluate, with a possible given util-
ity function, and an individual x given as input.
There are in fact three problems:

A first issue is this of determining whether, •
in the given configuration, there exists or
not a plan of Service invocations that may
deliver the expected values.
If we can be sure there exists a solution, a •
second issue concerns the construction of

the solution graphs, and, if there are sev-
eral solutions, the determination of the op-
timal plan regarding the criteria defined by
the function of preference.
If there is no solution, a third issue is this of •
determining possible restricting conditions
regarding the input x, in case of which it
would exist partial solutions

The second problem is this of the search for a
uniform optimal solution, i.e. a unique solution
which is optimal for any input x. If this solution
exists, this will define an optimal orchestration
plan that may be kept in memory for any further
evaluation <R, x, ?y> to perform on this property
R (static optimal execution plan). If it does not
exist, there may exist solutions which are optimal
for some (dom(R))P subclasses of dom(R).In this
case, at runtime, the plan to execute should be
the relevant one regarding the value of the input
(dynamic execution plan).

In this the following, we present an approach that
enables to deal with the three issues, thanks to one
single algorithm. Such an algorithm generates a set
of possible execution graphs. An execution graph
determines a plan for Service invocations, with some
Service composition (execution of two Services
as a sequence), union (concurrent execution with
join and result fusion), and restrictions (invocation
with test condition). An execution graph Gi defines
an algebraic combination of Services. During the
execution of the algorithm, we shall consider plans
that realize the property to evaluate, but also plans
that realize only a subpart of the expression.

An execution graph Gi has an origin denoted
Orig(Gi), which stands for an input set of individu-
als, labeled by a PRE(Gi) predicate, expressing
the conditions to be satisfied by the input for the
plan to be valid. The execution graph has also a
end denoted End(Gi), that stands for the output
set of individuals, labeled with a POST(Gi) predi-
cate, that can express limitations in the delivered
results. An execution graph is also labeled with a
QoS value Q(Gi).

112

An Algebra of Ontology Properties

An execution graph Gi which have the dom
(R) class as origin, the range(R) class as end,
and verifying POST(Gi) = True, will be called a
candidate partial solution. If, in addition, PRE =
True, then Gi will be a candidate solution. If we
want to evaluate in advance an orchestration plan
associated to a property, we shall apply at first the
algorithm. Then, if there are candidate solutions,
then the delivered solution (uniform optimal solu-
tion) will be the candidate solution G0 maximizing
QoS(G). This plan will enable to evaluate the
property for any value of the input individual x.
If there is no candidate solution, but if there exists
some candidate partial solutions {Gj}, then it will
be possible to evaluate the property iff the input
given individual x satisfies the PRE(Gj) predicate.
The delivered solutions will be the partial candi-
date solution G1 maximizing QoS(Gj) among all
partial candidate solutions such as PRE(Gj) (x)
is satisfied. At the contrary of the previous case,
there is here only a pseudo order on solution, as
their associated valid input domains are not the
same. This pseudo order become a total order as
soon as the input individual x is specified. In this
case, for a given input x0, either there will be no
solution; or there will be a solution for which the
optimality is ensured, only for x0.

Orchestration of Services

The basic idea on which our algorithm is based will
be this of an iterative generation of new mapping
assertions, derived from already defined ones. The
problem is this of identifying the states in which
it is actually possible to generate such new map-
pings assertions. Let be two relationships R1 and
R2, and two services S1 and S2, such as:

<MAP, S1, R1, PRE1, POST1> and <MAP, S2,
R2, PRE2, POST2>

In order to characterize S1 * S2 and S1 + S2 in
terms of mappings, we use the following proper-
ties:

Property 1: It is possible to define a mapping
for S1 * S2 iff: POST2 = True AND PRE1 = True,
and this mapping is:

<MAP, S1 * S2, R1* R2, PRE1, POST2>

As a particular case, we may notice that,
if S1realizes R1 (PRE1 = POST1 = True) and if
S2realizes R2 (PRE2 = POST2 = True), then S1 *
S2realizes R1 * R2

Property 2: the best mapping that may be
defined for S1 + S2 is:

<MAP, (S1 + S2), (R1 + R2), PRE1 OR PRE2,
POST1 AND POST2>.

So, the mapping exists iff POST1 AND POST2
≠ False, i.e. iff out(S1) ∩ out(S2) ≠ Ø.

Example: let be a class C1 with a datatype
property A, a class C2 with a datatype property B,
a relationship R1 from C1 to C2, and a relationship
R2 from C2 to C3.If we have some Services S1,1,
S1,2, S2,1, S2,2, such as:

<MAP, S1,1, R1, PRE1,1 = (A=a0), True> ; <MAP,
S1,2, R1, PRE1,2 = (A≠a0), True>

<MAP, S2,1, R2, PRE2,1 = (B=b0), True> ; <MAP,
S2,2, R2, PRE2,2 = (B=b0), True>

At first, we may generate two mappings. The
first one is: <MAP, S1,1 + S1,2, R1, True, True>
and the second one is: <MAP, S2,1 + S2,2, R2, True,
True>. Considering this new abstract Services S
= S1,1 + S1,2, and S’ = S2,1 + S2,2, it appears that we
may generate a new mapping involving S, that is:
<MAP, S, * S’, R1, True, True>. At the contrary,
in the case we would have at the beginning the
following mappings:

<MAP, S1,1, R1, PRE1,1 = (A=a0), POST1,1 =
“B=b0”>

<MAP, S1,2, R1, PRE1,2 = (A≠a0), POST1,2 =
“B≠b0”>

113

An Algebra of Ontology Properties

the only mapping to be derived is: <MAP, S2,1
+ S2,2, R2 >, and no other new mapping may be
generated after that. This is symbolized on the
Figure 7.

Before presenting the algorithm, we state the
following definitions:

Definition (service equivalence). Given two
Services S1 and S2, whose semantics are defined
by the two mapping assertions <MAP, Si, Ri,
PREi, POSTi>, i = 1, 2. S1 and S2 are said to be
equivalent (S1 ≈ S2) iff R1 = R2, PRE1 = PRE2, and
POST1 = POST2.

We shall say that S1 ≥ S2 iff R1 = R2 AND (PRE1
→ PRE2) AND (POST1 → POST2) (i.e. S1 is a
better realization than S2 of the same relationship
R = R1 = R2)

It has to be noticed that “≥” is not a pseudo
order, because S1 ≥ S2 AND S2 ≥ S1 implies S1 ≈
S2, but not necessarily S1 = S2. In an algebraic
expression of Services, it will be possible, at first,
to replace an operand Service Si by an equivalent
Service Sj or by a Service Sj such as Si ≥ Sj if q(Sj)
≥ q(Si). In order to realize an algebraic expression
of properties, it is then necessary to find in the
repository of available Services, all the Services
that realize (totally or partially) a part of the ex-
pression. The Services found in the repository,
that will “match” a given relationship, will be
the possible building blocks of a future execution
plan for the evaluation of R.

At last, we define the matching of Service with
the following definition.

Definition (service matching). Given a re-
lationship R defined as an algebraic expression,
given a Service S, we shall say S matches R iff
if exists a mapping assertion such as <MAP, S,
R’, PRE, POST>, where R’ is a sub expression
of R.

An Algorithm for Execution
Plan Generation

We present here the algorithm enabling the con-
struction of solution execution graphs in response

to a given derived property evaluation. Depend-
ing on the case, the algorithm will provide: 1)
A uniform optimal plan that will work for any
individual x from the class dom (R), or 2) a set of
plans with a associated constraints on input and
QoS values for each plan.

The algorithm works in five main steps:

• Step 1. Evaluate the input algebraic
expression in terms of elementary na-
tive properties. We replace, in a recur-
sive way, each operand derived property
by their definitions. So, for an expression
such as: R = R’ + R’’, where R’ and R’’ are
derived properties defined by: R’ = R1*R2,
R’’ = R1*R’’’, and R’’’ = R3*R4, and where
R1, R2, R3 and R4 are native properties. The
expression of R will be transformed via the
following iterations: R = R1*R2 + R1*R’’’,
then R = R1*R2 + R1*R3*R4

• Step 2. Simplify the algebraic expres-
sion, thank to algebraic properties of op-
erators (factorization). So, the expression:
R = (R1 * R2) + (R1 * R3 * R4) becomes: R =
R1 * (R2 + (R3 * R4)). This is done in order
to minimize the number of Service invoca-
tions and the flow of intermediate results.
The algebraic formula is stored under the
form of an execution tree, where the leaves
are operands Ri and the nodes are partial
results. In the above example, we shall
have the following nodes: (N1):R1 * (R2 +
R3*R4) ; (N2): R2 + R3*R4 ; (N3): R3*R4

Figure 7. Example of mapping generation

114

An Algebra of Ontology Properties

• Step 3. Build the flow - relationship graph
associated to the expression. On the basis
of the previous, maybe simplified, expres-
sion, one generates a directed acyclic graph,
corresponding to the evaluation of the re-
sult property, where nodes {Ci} stands for
collections of values corresponding to the
various intermediate levels of evaluation,
and edges {Rj} are instances of relation-
ships, relating an input collection Cj, 1 to an
output one Cj, 2, and labeled by the corre-
sponding operand relationship.

The origin of the graph is the input x issued
from the class C0 = dom(R), the end of the graph
is the expected collection of result values (it has
to be noticed that the same relationship may have
several instances as several distinct edges in the
graph). As an example, the expression R = R1 *
(R2 + (R3 * R4)), above considered, generates the
following flow - relationship graph, which has
four nodes and four edges.

• Step 4. Find Services that matches parts
of the graph. This step consists in extract-
ing from the repository of Services, all the
Services that match a part of the flow – re-
lationship graph, as it has been defined in
the previous section (match operator). We
get a subset {Si} of Services which will be
the input service set of the following step
of the algorithm.

• Step 5. Generate the candidate execu-
tion graphs. This is done by combining
the selected Services in various manners,
in order to construct a combination of

Services realizing the relationship R, if this
realization exists. There are two possible
approaches for developing such an algo-
rithm: the first one is this of a descendant
algorithm that start from the relationship
to evaluate, and tries to express it in func-
tion of the given input Services. The sec-
ond one, that we have adopted here, is this
of an ascendant algorithm. The algorithm
takes the input Services, and combines
them iteratively, in order to derive at each
iteration new mappings that give better or
more complete realizations (in the mean-
ings of the QoS and of the above defined
comparator ≥) than those already exhibit-
ed. The algorithm stops when there is nei-
ther new possible matching, neither new
(better, or more complete) mapping. This
stop is guaranteed due to the strict increas-
ing of a function on a discrete set. When
there exists a mapping involving both the
graph origin and end, then there exists an
execution plan which is at least a partial
candidate solution.

If the uniform optimal solution does not exist,
this algorithm stops with, as present state, the best
partial solutions, solving de facto the third issue
presented at the beginning of this section. With
no global solution, these partial solutions will
nevertheless permit to have a possible available
solution for a given input x. In this case, the best
solution will be selected at runtime.

The principle of the present step of the algo-
rithm is so the following: we consider now the
realization graph, that is a directed graph based
on the previous flow – relationship graph, where
nodes are those of the flow – relationship graph,
but with possible additional edges. So, there are
two types of edges in this graph:

The • relationship edges, that are the edges
of the flow - relationship graph, standing
for operand relationships,

Figure 8. Example of flow – relationship graph

115

An Algebra of Ontology Properties

New edges iteratively generated by the •
algorithm, and standing for partial real-
izations of the flow - relationship graph.
Such a Service edge may represent a real
Service, as well as an abstract Service,
i.e. an algebraic expression of some real
Services. A Service edge (Ci, Cj) is a real-
ization of the relationship relating Ci to Cj.
It is labeled by a 3-uple (PRE, POST, q)
where PRE and POST are mapping predi-
cates, and q is the QoS vector associated to
the realization.

The relationship edges are present at the be-
ginning of the algorithm. The Service edges are
incrementally added at each stage of the algorithm.
The algorithm corresponding to this step may
be expressed as a recursive procedure: at each
stage, a new Service is considered. This Service
may come from the input Service set or may have
been generated at a previous stage. We integrate
this Service as a new edge in the realization
graph, labeled by the existing mapping. Among
the already present Services edges, we consider
those that may be combined with the new Service
to generate at least a new mapping. In case it is
possible, only one new Service edge is created,
and a similar process is applies recursively. This
recursive algorithm is so:

Algorithm

 for each S IN Input Service set

 Express mapping M
i
 = (R, PRE, POST)

 between S and a Relationship R

 Add a new Service edge in the graph

labelled

 with this mapping M
i
 and the QoS vec-

tor of S

 INTEGRATE (S)

 End for each

end Algorithm

Procedure INTEGRATE (in S: Service)

if There exists S’ such as (S’ ≥ S) OR

((S’ Eq S) AND q (S’) ≥ q (S)

then delete S

else Associate S to possible Service

Edges E
i
for each E

i

Determine the associated mappings (R
i
,

PRE
i
, POST

i
) and the resulting quality of

service q
i

Add a Service edge labelled with R, PRE,

POST and q

INTEGRATE (E
i
)

end for each

end if

end Procedure

Redundant Service edges (i.e. that correspond
to Services inferior to an already present Service,
or equivalent with lower QoS) are removed in
order to avoid the explosion of non significant
mappings. At the termination of the algorithm,
the partial solutions are the Service edges (if they
exist) linking the origin with the end of the graph,
and labelled with a (POST = True) condition. If
one of such Service edges has a (PRE = True)
condition, then it is an optimal solution. If not,
the result of the algorithm is the set of 3-uples (Si,
PREi, qi), where Si is a partial realization, PREi the
corresponding PRE validity condition, and qi the
associated QoS. In any case, a solution is an alge-
braic expression of the input Services that defines
an orchestration of Services, i.e. an execution plan
defining the Service invocation to execute with
sequences and possibly concurrent branches, as
well as test conditions to perform. The solution to
the problem of a datatype property evaluation is
based on the evaluation of a relationship, as seen
above, with some additional specific operations
not detailed here.

A software Framework

On the basis of our approach, a software framework
has been prototyped. This framework supports the
definition and management of derived properties,
issued from various user communities, and defined
on the basis of a provided ontology defined via

116

An Algebra of Ontology Properties

PROTEGE. It supports the generation and run
time execution of the relevant Service orchestra-
tion in response to a request for information. The
framework also enables the management of Web
Services, with all their relevant associated meta
information. The framework includes: 1) A derived
properties repository, where the description of de-
rived object and datatype properties are stored, and
queried, 2) a Web Service platform, that enables to
develop and execute Web Services, with interface
types conformant with classes and datatypes of
the ontology, 3) a Web Service repository that
stores the semantic descriptions of Services, and
other required meta information, as defined in the
present paper, In addition, we have two software
components: 4) the Generator that generates
execution plans, with an implementation of the
algorithm we have proposed, and the Orchestrator,
that executes such generated plans.

The framework has been tested in the context
of the federation of several Health Information
Servers, described in the Case Study section, and
more specially in the context of a new applica-
tion in oncology: a support to multidisciplinary
meetings in which therapeutic decisions are
taken. The results are very encouraging because
the framework clearly adds important factors
of openness and flexibility to the context. The
experiment shows the approach constitutes an
efficient way to easily integrate new information
sources in an Information Server federation, and
take into account new user needs, while avoiding
huge amount of specific software coding.

FUTURE REsEARCH DIRECTIONs

To deal with the problem of Web Services au-
tomatic discovery and composition, we have
presented in this chapter an Algebra allowing
rigorous combinations of Ontology properties.
This algebra enables to attach a precise meaning
to any expected piece of information, as well as to
confer to an existing Web Service a well defined

semantic based on the Ontology concepts. On
this basis, we show it is possible to develop an
efficient algorithm generating optimal execution
plans of Web Services.

The main hypothesis on which relies the ap-
plicability of the approach is this of a common
agreement of user communities on an exhaustive
and fine-grained ontology of their domain. Of
course, this is at present a major limitation in the
adoption of such an approach, but we do think that,
on one hand, a capture of the application domain
via an Ontology, and, on the other hand, a rigor-
ous model, able to confer a well defined formal
semantic to a Service, are the absolute requisite
to achieve the expected objective. There are still
many difficult issues to solve in the future in or-
der to meet the complete objective of automated
discovery and composition. To continue in the
direction presented in this chapter, three main
axes may be defined now:

A first axis consists in extending our approach
to more general form of ontology properties. In
particular, we may consider those that would be
deducted by the means of inference rules. For
example, such rules would be defined by per-
mitting cyclic definitions of derived properties.
This would introduce a reasoning aspect in the
approach, and would lead to logical approaches
for orchestration plan generation;

A second axis concerns the extension of the
approach by considering Services having an ef-
fect on internal data (creation, update) and/or on
external world. This would permit to address topics
related to popular applications, such as these of
electronic commerce, or construction of ad hoc
processes in Information Systems of companies.
Substantial works have already be done on these
issues, and we think an Ontology-based algebraic
approach would bring new developments;

The third axis is this of elaborating on the
results in the framework of present standards and
languages (OWL, OWL-S, …). In particular, de-
clarative languages and user-friendly tools adapted
to the problematic would be highly required. In

117

An Algebra of Ontology Properties

addition, approach for the reuse and integration
of existing Web Services in an Ontology-based
approach is also a challenging issue.

CONCLUsION

The flexible integration of heterogeneous informa-
tion sources, as well as the ways to query them by
the mean of Web Services orchestrations, are not
recent issues. But with the increasing importance
of Ontologies, new approaches have to be devel-
oped. In the context of Semantic Web and widely
spread decentralised architectures, a new challenge
relative to the taking into account of the semantic
dimension has now appeared with a very strong
importance. This dimension concerns in particu-
lar the definition of semantic correspondences
between on one hand Web Services, and, on the
other hand, knowledge about domain, expressed
via Ontologies.

In this paper, arguing that an important part
of Services semantic may be captured by the
means of Ontology relationships, we show that,
on the basis of this hypothesis, it is possible to
build a consistent and well formalized Algebra
that enables to perceive any property definition,
combination and evaluation of them as algebraic
operations.

In this context, we propose (1) an Algebra of
Ontology properties, that enables definitions of
new properties on the basis of native ontologi-
cal ones, (2) a model that enables to associate a
formal semantic to a Service using mapping
assertions using Ontology properties, and (3) a
general algorithm that performs an automated
generation of execution plans, and translates a
property evaluation into a optimal orchestration
of Services.

On the basis of our proposed approach, a soft-
ware prototype has been developed and deployed
in the context of an Health Information Systems,
in order to provide new facilities. The evaluation
shows that our approach provides to the application

the properties of openness and flexibility, saving
huge efforts that would have been spent in spe-
cific code development in the case of a classical
software development approach.

REFERENCEs

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,
Schrnidt, M.-T., Sheth, A. & Verma K. (2005).
Web service semantics – wsdl-s. W3C Member
Submission, November 2005

Ayadi, N., & Lacroix, Z. (2008, November).
Biomap: a deductive approach for resource dis-
covery. In UWAS’2008 - The Tenth International
Conference on Information Integration and Web-
based Applications Services, 24-26 November
2008, Linz, Austria, pages 477-482

Berners-Lee, T., Hendler, J., & Lassila, O. (2001).
The semantic web. Scientific American, (5):
35–43.

Gao, H. T., Hayes, J. H., & Cai, H. (2005).
Integrating biological research through web
services. Computer, 38(3), 26–31. doi:10.1109/
MC.2005.97

Goble, C., Kesselman, C., & Sure, Y. (Eds.).
(2005). In Semantic Grid - Convergence of Tech-
nologies, number 05271 in Dagstuhl Seminar
Proceedings.

Klusch, M., Pries, B., & Sycara, K. (2006). Au-
tomated semantic web service discovery with
OWLS-MX. In Proc. 5th International Joint Con-
ference on Autonomous Agents and Multiagent
Systems, (pp. 915-922), Hakodate, Japan. New
York: ACM.

Kopecky, J., Vitvar, T., Bournez, C., & Farrell,
J. (2007). SAWSDL: Semantic Annotations for
WSDL and XML Schema. IEEE Internet Comput-
ing, 11(6), 60–67. doi:10.1109/MIC.2007.134

118

An Algebra of Ontology Properties

Kourtesis, D., & Paraskakis, I. (2008). Combining
SAWSDL, OWL-DL and UDDI for Semantically
Enhanced Web Service Discovery. In M. Haus-
wirth, M. Koubarakis, and S. Bechhofer, (Eds.),
Proc. 5th European Semantic Web Conference,
(LNCS 5021, pp. 614-628). Berlin: Springer.

Martin, D., Burstein, M., Mcdermott, D., Mcil-
raith, S., Paolucci, M., & Sycara, K. (2007).
Semantics to Web Services with OWL-S. World
Wide Web (Bussum), 10(3), 243–277. doi:10.1007/
s11280-007-0033-x

Maximilien, E. M., & Singh, M. P. (2004). A frame-
work and Ontology for Dynamic Web Services
Selection. IEEE Internet Computing, 5.

Paolucci, M., Kawamura, T., Payne, T. R., &
Sycara, K. P. (2002). Semantic Matching of Web
Services Capabilities. In Proc. lst International
Semantic Web Conference on The Semantic Web,
(LNCS 2342 pp. 333-347). London: Springer.

Papazoglou, M. P., Traverse, P., Dustdar, S., &
Leymann, F. (2007). Service-oriented computing:
State of the art and research challenges. Computer,
40(2), 38–45. doi:10.1109/MC.2007.400

Roman, D., & Keller, U., H. Lausen H., De
Bruijn, J., Lara R., Stollberg,M., Polleres, A.,
Feier, C., Bussler, C. & Fensel, D. (2005). Web
Service Modeling Ontology. Applied Ontology,
1(1), 77–106.

Sirin, E. (2003). Semi-automatic composition of
Web services using semantic description . In Pro-
ceedings of Web Services Modelling, Architectures
and Infrastructures workshop in conjunction with
ICEIS’2003, 12(8), 72-7. Hendler J, Parsia B.

Sycara, K., Paolucci, M., Ankolekar, A., &
Srinivasan, N. (2003, December). Automated dis-
covery, interaction and composition of Semantic
Web services. Web Semantics: Science . Services
and Agents on the World Wide Web, 1(1), 27–46.
doi:10.1016/j.websem.2003.07.002

