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Abstract. Clusterwise regression is applied to functional data, using PCR and
PLS as regularization methods for the functional linear regression model. We com-
pare these two approaches on simulated data as well as on stock-exchange data.

1 Introduction

Clusterwise linear regression method provides classification of data such that
each cluster is generated by some linear regression model. More precisely, if
{Y,X1, . . . , Xq}, q ≥ 1, are real-valued random variables, the homogeneity
of subjects within a cluster is given not only by similarities of the observed
values of these variables but mainly by the proximity of subjects with respect
to some linear model. One can consider that data is generated by a mixture of
several regression models (DeSarbo and Cron (1988)), Hennig (1999),(2000)),
that is, there exists a latent categorical random variable G, G ∈ {1, . . . ,K},
K ≥ 2, defining the clusters such that for ∀k ∈ 1, . . .K, P(G = k) 6= 0 and

E(Y
∣∣X1 = x1, . . . , Xq = xq) = βk

0 + βk
1x1 + . . .+ βk

q xq,

where {βk
i }i=0,...,q are the regression coefficients for the cluster defined by

{G = k} .

The estimation aspects in clusterwise linear regression was addressed
firstly by the pioneering works of Bock (1969) and Diday (1976) who propose
a piecewise linear regression algorithm as a special case of k-means clustering
with a criterion based on the minimization of the squared residuals instead
of the classical within-class dispersion. The problem of multicollinearity and
overfit under the least squares criterion is the subject of works of Charles
(1977) which establish properties and conditions for convergence of the alter-
nating algorithm proposed by Diday(1976) and introduce the ridge regression
as a regularization method for the clusterwise procedure. One can also men-
tion the works of Spaeth(1979) which propose an estimation procedure of
clusterwise regression models by an exchange algorithm.
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These clusterwise algorithms are largely used nowadays but few signif-
icant modifications have been done since then (Plaia (2004)). Recent con-
tributions in this area are due mainly to the development of techniques for
estimating the linear models within clusters subject to different inconsistency
issues : multicollinearity of predictors, number of observations within a cluster
smaller then the number of predictors, etc.

In this paper we are interested in clusterwise linear regression when the
set of explanatory variables (predictors) are of functional type, i.e., data are
functions or curves of some continuous parameter t (usually time or wave-
length). A well accepted model for this kind of data is to consider them as
paths of a stochastic process X = {Xt}t∈T taking values in a Hilbert space
H of functions on some set T. For example, a second order stochastic process
X = {Xt}t∈[0,1], L2–continuous with sample paths in L2([0, 1]) can be used
as model for index stock-exchange evolution during a time period or for the
knee flexion angle measure over a complete gait cycle.

There is a rich and recent literature devoted to functional data, the last
contributions being reported by the monographs of Ferraty and Vieu (2006),
Ramsay and Silverman (1997, 2002). As an alternative to the work of Abra-
ham et al. (2002) on unsupervised classification of functional data, Preda
and Saporta (2005b) proposed the PLS approach for clusterwise regression
on functional data.

We propose a comparative study of the partial least squares (PLS) and the
regression on principal components (PCR) approaches for estimating coeffi-
cient regression functions within clusters in the context of clusterwise linear
regression with predictors of functional type. The paper is divided into three
parts. After a brief introduction to PCR and PLS regularization methods
for functional data, we describe the clusterwise linear model using the esti-
mations given by PCR and PLS. In the last section we present a simulation
study as well as an application on stock exchange data.

2 PCR and PLS for functional data

Let us consider the functional data as sample paths of a stochastic process
X = {Xt}t∈[0,T ] with continuous time, and Y = (Y1, Y2, . . . , Yp), p ≥ 1, a ran-
dom vector defined on the same probability space as X, (Ω,A, P ). We assume
that {Xt}t∈[0,T ] and Y are of second order, {Xt}t∈[0,T ] is L2-continuous and
for any ω ∈ Ω, t 7→ Xt(ω) is an element of L2([0, T ]). Without loss of general-
ity we assume also that E(Xt) = 0, ∀t ∈ [0, T ] and E(Yi) = 0, ∀i = 1, . . . , p.

The functional linear regression model assumes that

Y =

∫ T

0

β(t)X(t)dt+ ε, (1)

where β is a Rp-valued function on [0, T ] and ε is the random error term.
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It is well known that the approximation of Y obtained by the classical

linear regression on X = {Xt}t∈[0,T ], i.e., Ŷ =
∫ T

0 β(t)Xtdt, is such that
β is in general a distribution rather than a function of L2([0, T ]) (Saporta
(1981)). This difficulty appears also in practice because one has generally
more predictors than the number of observations, the least squares criterion
providing inconsistent estimators (infinite number of solutions). Regression
on principal components (PCR) of X (Deville (1978)) and PLS approach
(Preda and Saporta (2005a)) give satisfactory solutions to this problem.

2.1 Linear regression on principal components (PCR)

The principal components of the stochastic process X = {Xt}t∈[0,T ] are
linear combinations of Xt, t ∈ [0, T ], given by the eigenfunctions of the co-
variance operator of X :

ξi =

∫ T

0

fi(t)Xtdt,

where {fi}i≥1 are solution of the eigenvalue equation

∫ T

0

C(t, s)fi(s)ds = λifi(t),

and C(t, s) = cov(Xt, Xs), ∀t, s ∈ [0, T ].
Observe that the principal components {ξi}i≥1 are eigenvectors of the

Escoufier operator, WX , defined by

WXZ =

∫ T

0

E(XtZ)Xtdt,

for any real-random variable Z in L2(Ω) (Escoufier (1970)).
As in the classical setting, the process {Xt}t∈[0,T ] and the set of its

principal components, {ξk}k≥1, span the same linear space. Thus, the re-
gression of Y on X is equivalent to the regression on {ξk}k≥1 and we have

Ŷ =
∑

k≥1

E(Yξk)

λk
ξk.

In practice one has to choose an approximation of order q, q ≥ 1 :

ŶPCR(q) =

q∑

k=1

E(Yξk)

λk
ξk =

∫ T

0

β̂PCR(q)(t)Xtdt, (2)

where

β̂PCR(q) =

q∑

k=1

E(Yξk)

λk
fk(t)
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is the estimator of the coefficient regression function β obtained with the first
q principal components.

Using the first q principal components raises a problem since they are
computed independently of the response. Principal components with a great
power of explanation yield generally stable models but could be uncorre-
lated with the response, whereas the principal components highly correlated
with the response could be less explanatory for X. Moreover, for functional
data, the number of principal components could be infinite. Thus, the choice
of principal components is a trade-off between stability of the linear model
and its predictive power (see also Escabias et al. (2004)). A solution to this
problem is the PLS approach.

2.2 Partial least squares regression (PLS)

The PLS approach offers a good alternative to the PCR method by re-
placing the least squares criterion with that of maximal covariance between
{Xt}t∈[0,T ] and Y (Preda and Saporta (2005a)).

One obtains a set of PLS components {ti}i≥1 using an iterative procedure.
At each step, the PLS component being defined as the linear combination of
Xt variables that attains maximum covariance with the response or between
residuals :

Let X0,t = Xt, ∀t ∈ [0, T ] and Y0 = Y. At step q, q ≥ 1, of the PLS

regression of Y on {Xt}t∈[0,T ], we define the qth PLS component, tq, by the
eigenvector associated to the largest eigenvalue of the operator WX

q−1W
Y
q−1,

where WX
q−1, respectively WY

q−1, are the Escoufier’s operators associated
to {Xq−1,t}t∈[0,T ], respectively to Yq−1. The PLS step is completed by the
ordinary linear regression of Xq−1,t and Yq−1 on tq. Let Xq,t, t ∈ [0, T ] and
Yq be the random variables which represent the error of these regressions :
Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.

Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and
the following decomposition formulas hold :

Y = c1t1 + c2t2 + . . .+ cqtq + Yq,
Xt = p1(t)t1 + p2(t)t2 + . . .+ pq(t)tq +Xq,t, t ∈ [0, T ].

The PLS approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + . . .+ cqtq =

∫ T

0

β̂PLS(q)(t)Xtdt. (3)

Notice that de Jong (1993) and Phatak (2001) show that for a fixed q,
the PLS regression fits closer than PCR, in that sense

R2(Y, ŶPCR(q)) ≤ R2(Y, ŶPLS(q)),

where R is the multiple correlation coefficient.
The number of PLS components used for regression is generally deter-

mined by cross-validation.
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3 Clusterwise regression model and functional data

Let us suppose that the response Y is one dimensional (p = 1). The clus-
terwise linear model assumes that there exists a random variable G, G ∈
{1, 2, . . . ,K}, K ≥ 2, such that for each cluster defined by {G = i} one has

E(Y
∣∣X = x,G = i) = αi +

∫ T

0 βi(t)x(t)dt,
V (Y

∣∣X = x,G = i) = σ2
i > 0, x ∈ L2([0, T ]), ∀i = 1, . . . ,K.

(4)

i.e.,

Y|G=i = αi +

∫ T

0

βi(t)X(t)dt+ εi, ∀i = 1, . . . ,K.

Let us assume that K is known and the homoscedasticity hypothesis
holds, i.e. the variance of the random error term εi within each cluster are
equals, σ2

i = σ2, ∀i = 1, . . .K.
In such a model, the parameters that have to be estimated are the regres-

sion coefficient functions for each cluster {(αi, βi)}i=1,...,K and σ2. Charles
(1997) and Bock (1969) use the following criterion for estimating the linear
models within clusters, {αi, βi}Ki=1 :

min
{αi,βi}K

i=1,L(G)

{
V(Y − Ŷ L)

}
, (5)

where Ŷ L =

K∑

i=1

Ŷ i1G=i and Ŷ i = αi + 〈β̂i,X〉 is the approximation of Y

given by the linear regression of Y on X within the cluster i, i = 1, . . . ,K.
If n data points {xi, yi}ni=1 have been collected, the cluster linear regres-

sion algorithm finds simultaneously an optimal partition of the n points, Ĝ
(as estimation of the distribution of G, L(G)), and the regression models for

each cluster (element of partition) (α̂, β̂) = {α̂i, β̂i}Ki=1, which minimize the
criterion :

V(K, Ĝ, α̂, β̂) =

K∑

i=1

∑

Ĝ(j)=i

(
yj − (α̂i + 〈β̂i, xj〉)

)2
. (6)

In order to minimize (6), the clusterwise linear regression algorithms it-
erates the following two steps :

i) For given Ĝ, V(K, Ĝ, α̂, β̂) is minimized by the LS-estimator (α̂i, β̂i) from
the points (xj , yj) with Ĝ(j) = i.

ii) For given {α̂i, β̂i}Ki=1, V(K, Ĝ, α̂, β̂) is minimized according to

Ĝ(j) = arg min
i∈{1,...,K}

(
yj − (α̂i + 〈β̂i, xj〉)

)2
. (7)
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That is, V(K, Ĝ, α̂, β̂) is monotonely decreasing if the steps i) and ii) are
carried out alternately :

Ĝ0 ⇒ (α̂0, β̂0)︸ ︷︷ ︸
V0

⇒
≥
Ĝ1 ⇒ (α̂1, β̂1)︸ ︷︷ ︸

V1

⇒
≥
. . . ⇒
≥
Ĝl ⇒ (α̂l, β̂l)︸ ︷︷ ︸

Vl

⇒
≥
. . . (8)

where the index of each term denotes the iteration step, Ĝ0 being an initial
partition of the n data points.

When the predictor is of functional type, the classical linear regression
is not adequate to provide estimators for the linear models within clusters,
{αi, βi}Ki=1. We propose to adapt the PLS and PCR regression approaches for
the clusterwise algorithm in order to overcome this problem. The convergence
of the clusterwise algorithm using these regularization methods is discussed
in Preda and Saporta (2005b).

Let us denote by {α̂i
PLS , β̂

i
PLS}Ki=1, respectively by {α̂i

PCR, β̂
i
PCR}Ki=1 the

estimators for the coefficient regression functions within clusters.

As a quality measure of the fit in clusterwise regression one can use the
square of the correlation coefficient between the response (Y ) and the predic-
tor (X) within each cluster. If a clusterwise linear model underlies data, it is
interesting to compare each cluster regression quality with that obtained by
the linear model without clusters. For comparison of several techniques for
estimating the clusterwise model (for example, PLS and PCR) the criterion
given in (7) is a natural choice.

4 Numerical results

In this section we compare the clusterwise PLS and PCR approaches in the
context of functional data both on simulated and real data.

Firstly we consider simulated data with two clusters each having its own
linear structure with respect to a one dimensional response Y and a set of
curves {Xt, t ∈ [0, T ]} drawn from the one-dimensional Brownian motion.
The aim is to check the capability of the clusterwise regression to identify
these two clusters. The second application concerns stock exchange data and
the aim is to ”predict” the last five minutes of the evolution of a particular
share, considered on a certain interval of time.

We quote by CW-PLS(K) and CW-PCR(K) the clusterwise PLS, respec-
tively PCR, regressions with K clusters, by PCR and PLS, the global linear
regression models obtained with the principal components, respectively on
the first PLS components. The number of components considered for regres-
sion (PLS and PCR) is determined by cross-validation (leave-one-out) using
a significance level of 95%.
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4.1 Simulation study

Let us consider that the stochastic process underlying the functional data is
the standard Brownian motion on the interval [0, 1], X = {Xt}t∈[0,1], E(Xt) =
0, E(XtXs) = inf{t, s}, ∀t, s ∈ [0, 1]. The response variable Y is defined with
respect to a group variable, G, with two modalities in the following way :

Class 1 : Y =

∫ 1

0

tXtdt+ ε1

Class 2 : Y =

∫ 1

0

(1 − t)Xtdt+ ε2

where ε1 and ε2 are Gaussian noises such that σ2
1 = σ2

2 = σ2. We consider
two situations σ2 = 0.01 and σ2 = 0.02 which correspond to the following
ratios σ2/V(Y ):

σ2 = 0.01 σ2 = 0.02

Class 1 0.069 0.137

Class 2 0.167 0.285

Table 1. Noise to response ratio, σ2/V(Y ).

Our simulation is based on the following conditions:

- the trajectories of X are discretized in 101 equidistant points.
- values of Y as well as the principal and PLS components are computed

using integration by trapezoidal interpolation.
- the training sample sizes are identical for both groups, n = 500.
- 100 simulations.

Table 2 presents the performance values of PLS and PCR models in terms
of response variance explained by the predictor, i.e. the multiple correlation
coefficient, R2. For clusterwise models we present also the error classification
rate (ECR). Both measures are averaged over 100 samples.

Figure 1 plots β̂i
PLS , i = 1, 2., the two regression coefficient functions

obtained with the PLS approach attaining the best model with respect to
the criterion given by (7).

The results obtained on this example show that PLS fits slightly better
than PCR especially when the noise to response ratio is increasing. This is
mainly due to the fact that the PLS takes into account, for computing PLS
components, the correlation between the response and predictor, whereas
that is not the case for PCR. Notice that these results are in agreement with
those obtained by Barker and Rayens (2003) and Preda et al. (2007) on the
capability of PLS models for classification purpose.
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Model σ2 = 0.01 σ2 = 0.02

R2-PCR 0.718 0.597

R2-PLS 0.724 0.612

cluster 1 cluster 2 ECR cluster 1 cluster 2 ECR

CW-PCR(2) 0.882 0.794 0.112 0.752 0.625 0.322

CW-PLS(2) 0.908 0.812 0.103 0.826 0.674 0.260

Table 2. Model quality : R2 and error classification rate (ECR) averaged over 100
simulations.

cluster1
cluster2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

PLS coefficient regression functions

time

Be
ta

Fig. 1. Cluster-specific regression coefficient functions for PLS approach (σ2 =
0.01).

4.2 Application on stock exchange data

We have 84 shares quoted at the Paris stock exchange, for which we know
the whole behavior of the growth index during one hour (between 1000 and
1100). Notice that a share is likely to change every second. We also know the
evolution of the growth index of a new share (indexed 85) between 1000 and
1055.

Linear models for this data set were fitted with PLS and PCR regression
techniques in order to predict the way in which the new share will behave
between 1055 and 1100 (Preda and Saporta (2005a). We have shown (Preda
and Saporta (2005b)) that this prediction is improved when the clusterwise
approach is considered.

Since the curves are completely known, we use the time average approx-
imation developed in Preda (2000) by taking an equidistant discretization
of the interval [0, 3600] (time expressed in seconds) in 60 subintervals. The
forecasts obtained will then match the average level of the growth index of
share 85 considered on each interval [60 · (i− 1), 60 · i), i = 56, . . . , 60.

The results of the best models are presented in the Table 3.
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m̂56(85) m̂57(85) m̂58(85) m̂59(85) m̂60(85) SSE

Observed 0.700 0.678 0.659 0.516 -0.233 -

PLS 0.312 0.355 0.377 0.456 0.534 0.911

PCR 0.613 0.638 0.669 0.825 0.963 1.511

CW-PLS(3) 0.643 0.667 0.675 0.482 0.235 0.215
CW-PLS(4) 0.653 0.723 0.554 0.652 -0.324 0.044

Table 3. Forecasts for share 85.

Using the sum of squared errors (SSE) as measure of fit, let us observe
that the clusterwise models give better results than the global ones. The
clusterwise models predict better the crash of the share 85 for the last 5
minutes, whereas the global models do not. For the PLS model with 4 clusters,
the size of each cluster is given by the distribution (17

84 ,
32
84 ,

10
84 ,

25
84 ). Following

the K-NN procedure proposed by Charles (1977), the share 85 belongs to the
first cluster.

5 Conclusion

PLS and PCR approaches are regularization techniques for linear regression
used with success when the least squares criterion produces inconsistent esti-
mators, in particular, when multicollinearity and sample size problems occur.
This is the case for functional data (multicollinearity) and the clusterwise al-
gorithm (cluster size less than the number of predictors). We show by a
simulation study and an application on stock-exchange data the efficiency of
these two methods and point out the accuracy of PLS with respect to PCR.
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de doctorat, Université Paris IX.
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